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A Framework for Speech Activity Detection
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Abstract—One of the hallmarks of sound processing in the brain
is the ability of the nervous system to adapt to changing behav-
ioral demands and surrounding soundscapes. It can dynamically
shift sensory and cognitive resources to focus on relevant sounds.
Neurophysiological studies indicate that this ability is supported
by adaptively retuning the shapes of cortical spectro-temporal re-
ceptive fields (STRFs) to enhance features of target sounds while
suppressing those of task-irrelevant distractors. Because an impor-
tant component of human communication is the ability of a listener
to dynamically track speech in noisy environments, the solution
obtained by auditory neurophysiology implies a useful adaptation
strategy for speech activity detection (SAD). SAD is an important
first step in a number of automated speech processing systems,
and performance is often reduced in highly noisy environments. In
this paper, we describe how task-driven adaptation is induced in
an ensemble of neurophysiological STRFs, and show how speech-
adapted STRFs reorient themselves to enhance spectro-temporal
modulations of speech while suppressing those associated with a
variety of nonspeech sounds. We then show how an adapted en-
semble of STRFs can better detect speech in unseen noisy envi-
ronments compared to an unadapted ensemble and a noise-robust
baseline. Finally, we use a stimulus reconstruction task to demon-
strate how the adapted STRF ensemble better captures the spectro-
temporal modulations of attended speech in clean and noisy condi-
tions. Our results suggest that a biologically plausible adaptation
framework can be applied to speech processing systems to dynami-
cally adapt feature representations for improving noise robustness.

Index Terms—Adaptive filtering, neural plasticity, spectro-tem-
poral receptive fields, speech activity detection (SAD), stimulus
reconstruction.

I. INTRODUCTION

C URRENT sound technologies borrow numerous
biomimetic mechanisms widely observed in the brain

in order to augment their robust sound processing. However,
they remain mostly passive systems constrained to scenarios
and conditions for which they were trained. Importantly, they
fail to take advantage of adaptive capabilities that underlie the
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brain’s ability to intelligently alter its response to changing
tasks and listening environments. For example, we can easily
follow the first flute solo among the cacophony of an orchestra
or keep track of a friend’s voice at a noisy cocktail party. Con-
siderable effort has been focused on studying the nature of this
adaptive processing at the perceptual and neurophysiological
levels in humans as well as animal models [1]–[5]. Moreover,
a better understanding of the mechanisms by which the au-
ditory system defines and selectively enhances the acoustic
foreground while minimizing the impact of a noisy background
has significant implications for signal processing strategies in
noisy environments.
At the neural level, manifestations of adaptive processing are

intricate, operating at multiple processing scales from subcel-
lular all the way through network levels [6], [7]. For individual
neurons, changing behavioral tasks can induce changes in a
neuron’s spectro-temporal receptive field (STRF) [8], [9]. The
STRF is a two-dimensional kernel in time and frequency that
summarizes the linear processing characteristics of a neuron. It
can be thought of as a filter that operates on incoming acoustic
inputs in order to extract specific features from sounds. In mam-
malian primary auditory cortex, STRFs exhibit detailed sensi-
tivities to a broad range of acoustic features and are particularly
selective of spectro-temporal energy modulations that charac-
terize slow changes in temporal envelopes and spectral profiles
of natural sounds [10]–[14].
Beyond their inherent tuning to specific acoustic modula-

tions in the signal, cortical neurons can dynamically adapt their
filtering properties towards relevant sounds in a task-driven
manner. When cognitive resources are directed towards a
sound of interest, cognitive feedback is believed to induce
STRF plasticity, whereby cortical filters adapt from some “de-
fault” tuning to task-optimal shapes in order to enhance neural
responses of task-relevant features while suppressing those of
distractors. Such plasticity patterns have been observed in a
number of neurophysiological studies involving simple tonal
stimuli [15]–[17] as well as stimuli characterized by complex
spectro-temporal dynamics [18]–[20]. The overall adaptation
patterns reflect that of a contrast-matched filter, and it has
been hypothesized that such changes serve to improve dis-
criminability between the acoustic foreground and background
[17]. Importantly, similar effects have been observed in other
sensory modalities [21]–[23], suggesting that such discrim-
inative changes in receptive field shape represent a general
strategy used by sensory cortex to highlight task-relevant
stimuli. The present work aims to understand the relevance
of task-driven adaptation of filter tuning properties in speech
processing tasks.
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Human listeners are especially adept at tracking speech
sounds in very noisy environments [24]. This ability engages
a number of complex sensory and cognitive processes, most
notably adaptive neural plasticity which allows the brain to
hone in on conversations of interest. Speech signals are well
characterized by their spectro-temporal modulation content,
and so the Fourier domain is a natural space for exploring
adaptive feature extraction strategies for speech signals. This is
because a number of speech features can be expressed jointly
in the spectro-temporal modulation domain, including voicing
state, phoneme identity, formant trajectories, and syllable rate
[25]–[28]. Furthermore, sounds having considerable overlap in
time-frequency may in fact be disjoint in the modulation do-
main, leading to methods for signal denoising and enhancement
[29]. Finally, modulation-domain adaptation has connections
to a general form of object-based cognitive feedback. Specif-
ically, Fourier-based analysis facilitates the separation of
magnitude and phase components in the signal. Adapting the
Fourier magnitude profile, which characterizes the strength of
spectro-temporal modulations present in the signal, separately
from its phase profile, which characterizes the relative timing
of these modulations, is akin to processing an abstracted repre-
sentation of the signal, an important component of object-based
attention [2], [4], [30], [31].
Based on this knowledge, task-driven adaptation strategies

that improve the separation between foreground speech and
background nonspeech sounds are particularly attractive for
the challenge of speech activity detection (SAD). SAD refers
to the task of assigning a speech or nonspeech label to samples
in an observed audio recording and is a fundamental first
step in a number of automated sound processing applications.
For example, in automatic speech recognition tasks, one
should transcribe only speech events in the observed audio. In
low-noise environments with a close-talking microphone, SAD
can usually be solved using traditional measures like signal
energy, zero-crossing rate, and pitch (see, e.g., [32]–[34]),
but performance rapidly degrades in noisy, reverberant, and
free-field microphone conditions. However, research in the past
decade has begun to focus on the issue of noise-robust SAD,
with successful approaches leveraging prior knowledge about
the differences in acoustic profiles that differentiate speech and
nonspeech sounds. Early efforts based on statistical models
(see, e.g., [35], [36]) have been especially improved in recent
studies [37]–[47]. Furthermore, a variety of approaches have
been designed to specifically exploit the spectral and temporal
structure of speech [48]–[56]. Most recently, data-driven ap-
proaches based on recurrent and deep neural networks have
further pushed the state of the art, yielding extraordinary results
on difficult corpora [57]–[62].
In this paper, we take a different approach to SAD, and con-

sider to what extent task-driven adaptive retuning of STRFs can
improve SAD performance. We begin by reviewing relevant
concepts regarding auditory peripheral and central processing
as they pertain to the framework presented here. Next, we de-
scribe a computational model of task-driven STRF plasticity in
the modulation domain inspired by auditory neurophysiology
and explore its application to the challenge of detecting speech
in noisy environments. We show how to induce adaptation in an

ensemble of neurophysiological STRFs, and demonstrate how
the STRFs reorient themselves to enhance the spectro-temporal
modulations of speech while suppressing those associated with
a variety of nonspeech sounds. Importantly, we demonstrate
how features derived from the adapted STRFs improve perfor-
mance in a SAD task in unseen noise conditions with respect to
an unadapted ensemble and a recently proposed baseline. Lastly,
to better understand how STRF adaptation affects the represen-
tational quality of a target speech sound, we consider a stim-
ulus reconstruction task similar to those recently considered in
a variety of neurophysiological studies.We show that stimuli re-
constructed from STRFs adapted using our proposed framework
yield a higher fidelity representation for speech in clean and ad-
ditive noise conditions using a variety of objective and percep-
tual measures. Overall, the results suggest that a framework for
task-driven adaptation formulated in themodulation domain can
yield a high-fidelity, noise-robust, and improved representation
of the target source that is applicable to automated speech pro-
cessing tasks.

II. PRELIMINARIES

The ascending auditory pathway comprises a hierarchy
of stages that transform sound observed at the outer ear to
neural responses in central cortical areas. We begin by briefly
describing the relevant aspects of this processing pipeline as it
pertains to the adaptation framework considered in this paper.

A. Auditory Peripheral Processing

To account for the transformation of sound from the outer ear
through the auditory midbrain, we use a computational model of
mammalian auditory periphery to obtain a time-frequency rep-
resentation for input stimuli referred to as an auditory spectro-
gram [63]. This model accounts for peripheral processing span-
ning the cochlea through the auditory midbrain. First, an input
signal is processed by a bank of 128 constant-Q gammatone-like
filters. The filters are uniformly spaced along the logarithmic
tonotopic axis, starting at 90 Hz, and span 5.3 octaves. This
is followed by a first-order derivative and half-wave rectifica-
tion to model lateral inhibition in the cochlear nucleus and acts
to sharpen the filter responses in each channel. Finally, the re-
sponses are smoothed in time using an exponentially decaying
filter with a 10 ms time constant to model short-term integra-
tion and the loss of phase locking in the midbrain. Examples of
auditory spectrograms for speech and a nonspeech jet sound are
shown in Fig. 1.

B. Cortical Processing Via Spectro-Temporal Receptive Fields

Beyond the midbrain, the time-varying tonotopic signal
is further analyzed by ensembles of neurons in primary au-
ditory cortex (A1) [64]. Cortical neurons essentially act as
filters that extract information about the frequency content and
spectro-temporal dynamics of an input auditory spectrogram,
and each filter’s tuning characteristics is described by its
spectro-temporal receptive field [8]. As illustrated in Fig. 1,
STRFs reflect sensitivity to a variety of input energy patterns,
with simple shapes preferring highly localized and narrowband
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Fig. 1. Proposed discriminative framework for task-driven STRF adaptation.
Examples of speech and non speech stimuli are passed through a model of
the auditory periphery, and the resulting auditory spectrogram is analyzed by
a bank of STRFs derived from recordings from ferret primary auditory cortex.
Top-down feedback acts to assign a behaviorally meaningful categorical label
to observed population responses, which are subsequently discriminated using
logistic regression. Feedback from the discriminative model, in the form of the
regressor prediction error, is used to iteratively adapt the shapes of the STRFs
to improve prediction of speech vs. non speech sounds.

input to complex shapes preferring spectral, temporal, and joint
spectro-temporal variations.
In this paper, we consider ensembles of neurophysiological

STRFs estimated from recordings from non-behaving ferret
primary auditory cortex, collected in the context of studies
not specifically related to the current work [15], [16], [65].
We use neurophysiological STRFs because of their inherent
ability to form a rich, redundant, and over-complete neural
representation that captures the span of spectro-temporal mod-
ulations that characterize natural sounds [66], [67]. All STRFs
were derived from neural responses to modulated noise stimuli
known as temporally-orthogonal ripple combinations (TORCs)
[68]. TORCs represent a spectro-temporally rich stimuli for
driving cortical neuron responses, and facilitate a mathemati-
cally tractable method for estimating the transfer function of a
neuron, i.e., its STRF [13].

The STRFs spanned 5 octaves in frequency over 15 chan-
nels with starting frequencies of either 125, 250, or 500 Hz. The
choice of frequency range of each STRF was determined by ex-
perimental considerations, as discussed in neurophysiological
studies for which data was collected [15], [16], [65]. Further-
more, the STRFs spanned 250 ms in time over 13 bins. The
ensemble STRFs included in the current study were selected
from a larger sample of neurophysiological data based on two
criteria: (i) only STRFs with a signal-to-noise ratio (SNR)

were included; SNR was estimated based on the variance
of neural responses to different repetitions of the same stimuli
using a bootstrap procedure (further details can be found in
[68]). (ii) We sorted STRFs according to a separability index

, defined as , where is
the ’th singular value for a given STRF [12], [69]. All STRFs
with were removed from any further analysis. These
two criteria yielded 810 neurophysiological STRFs used for the
SAD experiments described later.

III. AN ADAPTIVE FRAMEWORK FOR SPEECH
ACTIVITY DETECTION

In this section, we first describe a computational framework
inspired by auditory processing to induce adaptive driven
changes in a set of neurophysiological STRFs. We then demon-
strate how the adapted STRFs yield features that improve SAD
performance across a variety of unseen noise conditions.

A. Methods

1) STRF Adaptation Framework: In earlier work, we ex-
plored a mathematical foundation for task-driven changes in
neurophysiological STRFs [31]. Here, we build on these con-
cepts to develop a model of task-driven STRF adaptation to re-
liably detect speech in noisy environments. The framework con-
sidered in this study is designed to be consistent with neural cir-
cuits thought to induce adaptive changes in cortical STRFs [70],
and a schematic of the process is shown in Fig. 1. In essence,
we model adaptation as an iterative process that alternates be-
tween (1) STRF perturbations that improve discrimination be-
tween speech and nonspeech sounds and (2) updates to the pa-
rameters of a linear discriminative model.
We first model the influence of top-down adaptation as

the assignment of a behaviorally relevant categorical label
to an observed ensemble response , where

is associated with examples of speech and
is associated with examples of nonspeech. To improve discrim-
ination between speech and nonspeech, we assume that the
adaptive feedback acts to maximize the conditional likelihood
of the labels defined as

where is the logistic function,
is a vector of regression coeffi-

cients, and denotes the size of the neural ensemble. To obtain
an ensemble response , we first define the firing rate of an
individual neuron as

(1)
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with corresponding modulation domain representation

where denotes 2D convolution in time and frequency, and
, , and are the 2D Discrete

Fourier Transforms (DFT) of firing rate, STRF, and the ’th
stimulus token, respectively. characterizes modulations along
the temporal axis (rate, in Hz) whereas characterizes mod-
ulations along the spectral axis (scale, in cycles/octave). Fi-
nally, the ensemble response vector is constructed as

.
To induce adaptation in an ensemble of STRFs, we define the

cost function

(2)

where and
. Thus, the overall goal is to determine settings of

and that optimize the proposed cost function. The dis-
criminability term is a common form of logistic regression reg-
ularized by a Gaussian prior on the weight vector [71], and
quantifies the average (negative) conditional log-likelihood of
the labels. We also include a stability term to ensure that the
adapted STRFs do not vary “too far” from their nominal tuning
shape [72]. The hyperparameters and allow the user to vary
the influence of each term in the optimization, i.e., increasing
in the objective function will favor improved discrimination,

whereas increasing will resist changes to the STRFs.
One strategy for jointly optimizing the shapes of the STRF

modulation profiles and regression parameters is the use
of block coordinate descent where we optimize Eq. (2) by alter-
nating between solving two convex subproblems:

(P1)

(P2)

for . The constraints on (P1) are justified below
whereas the constraints on (P2) are required since modulation
profiles are necessarily nonnegative. Because

is a sum of convex functions, and the constraints
on (P1) and (P2) are convex, each subproblem is therefore
convex with a unique global minimum. Furthermore, since each
update to and does not increase the value of ,
alternating updates to and guarantee convergence to a
local minimum of the overall objective function [73], [74].
The solutions to (P1) and (P2) are found numerically

[75], [76] by searching for stationary points of the respec-
tive objective functions, i.e., when and

. For the regression coefficients, upon
convergence of (P1), and assuming the minimum lies within the

feasible set formed by the constraints on the , the regression
coefficient vector can be written as

We interpret the term as a “prediction error”
and consequently hard-to-predict responses have more influ-
ence on choice of the optimal regression coefficients. Moreover,
because the for are constrained to be positive, those
coefficients can be thought of as a population gain vector that
applies more weight to task-relevant vs. task-irrelevant neurons.
Next, upon convergence of (P2), and assuming the min-

imum lies within the feasible set formed by the constraints
on , the adapted STRF modulation profiles can be
written as

(3)

Eq. (3) shows how the STRF adaptation patterns are consistent
with a contrast-matched filter in the modulation domain. First,
task-driven STRF plasticity directly reflects the spectro-tem-
poral modulation profiles of the speech and nonspeech stimuli,
as shown in the averaging term. The impact of each stimulus
sample on adaptation is proportional to the difficulty of pre-
dicting its corresponding label. Importantly, because we have
constrained the regression coefficients to be positive, we are
guaranteed that speechmodulations are enhancedwhereas those
from nonspeech are suppressed. Finally, the first term acts to re-
sist changes from the initial STRF modulation profile, with the
magnitude of the effect being controlled by and .
Upon optimizing the cost function in Eq. (2), we obtain a

set of adapted modulation profiles . To analyze the effect
of STRF adaptation on the neural ensemble, we consider the
average difference between the adapted and initial modulation
profiles by computing

In this way, one can visualize which modulations of speech and
nonspeech stimuli are enhanced or suppressed, respectively.
2) Proposed SAD System: To test the hypothesis that task-

adapted STRFs can improve speech activity detection in unseen
noisy environments, we consider a Gaussian Mixture Model
(GMM)-based SAD system and compare performance of be-
tween features derived from the initial and adapted STRFs. An
overview of the proposed SAD system is shown in Fig. 2. For
training (top row), we use clean speech and a variety of non-
speech samples to extract a set of features from the passive en-
semble , yielding ensemble responses . Feature
extraction is followed by a series of post-processing and di-
mensionality reduction steps. First, the responses are full-wave
rectified and averaged over one-second intervals every 50 ms,
yielding three-dimensional tokens . Next, we apply
dimensionality reduction using the tensor singular value de-
composition (TSVD) [77], projecting the tokens to a subspace
that retains 99.9% of the variance along each dimension, and
stack the reduced-dimension tokens to obtain column vectors
.We then standardize each vector to have zero-mean and unit-
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Fig. 2. Overview of the proposed SAD system.

variance. Finally, we finally fit GMMs to the observed speech
and nonspeech tokens, yielding model parameters (i.e., weights,
means, and covariance matrices) and , respectively.
For testing (Fig. 2, bottom row), features are similarly ex-

tracted from observed noisy speech utterances using both pas-
sive and adapted STRFs and , respectively. We again
apply post-processing and dimensionality reduction, and com-
pute the log-likelihood ratio (LLR) of speech versus nonspeech
using the GMMs trained in the passive conditions. We eval-
uate system performance by sweeping a threshold on the LLR
scores, labeling tokens that exceed the threshold as speech, and
those below as nonspeech. Using ground truth labels, for a given
threshold value we compute miss and false alarm probabili-
ties, and , respectively, and consider these error prob-
abilities across all thresholds to yield a detection error tradeoff
(DET) curve [78]; an example DET curve is shown ahead in
Fig. 4(A). To summarize performance of the system, we com-
pute the equal-error rate (EER), i.e., the threshold setting that
yields . A system that performs well has small
and across a broad range of thresholds, hence (1) the cor-
responding DET curve will be close to the origin and (2) EER
will be small.

B. Experimental Setup

1) STRF Adaptation Framework: We use clean speech
from the TIMIT corpus [79] and ,

, and noise from the NOISEX-92 corpus [80].
The speech class is constructed to contain equal amounts of
clean and noisy speech (at 5 dB SNR) whereas the nonspeech
class contains equal amounts of pure noise from the five noise
classes. The use of clean and noisy speech reflects the notion
that a listener has prior knowledge of speech in both clean
and moderately noisy environments. We use audio samples
approximately 3 seconds in length, apply pre-emphasis, and
standardize each waveform to be zero-mean and unit variance,
and we use approximately 5 minutes of audio for each class.
Next, for each audio sample we compute an auditory spectro-
gram, apply cube-root compression, and downsample along
the frequency axis to 32 channels. Finally, the 2D discrete
Fourier Transform (DFT) was applied to 250 ms segments
of spectrogram, followed by the modulus operation to obtain
input tokens for the adaptation algorithm. Tokens
are scaled to have unit variance for each class as this seemed to
improve convergence time of the adaptation algorithm.

We next select random samplings of STRFs from
the large physiological ensemble described in Section II-B. The
use of a larger ensemble is computationally challenging be-
cause the number of parameters involved in the optimization
of (P2) becomes prohibitively large. Furthermore, we find that
random samplings 50 STRFs are sufficient to tile the relevant
modulation space of speech tokens given the redundant and
overcomplete nature of neurophysiological receptive fields [66],
[67]. Next, each STRF is interpolated along the time and fre-
quency axis to match the temporal and spectral sampling of the
input tokens (i.e., 100 Hz temporal and 6.04 cyc/oct spectral, re-
spectively). We also assume that each STRF has a starting fre-
quency of 90 Hz spanning 5.3 octaves. We scale each STRF
to have unit Euclidean norm, and apply the 2D DFT, followed
by the modulus operation, to obtain the initial set of modula-
tion profiles . This set represents a
“passive” listening state, one where adaptation is not induced.
Note that for adaptation we only need to consider the first two
quadrants of the DFT since for real-valued input

. Finally, to visualize the adapted STRFs in the
original time-frequency domain, we use the phase of the orig-
inal passive filters.
2) Proposed SAD System: Firing rates are computed as in

Eq. (1), with 128-channel auditory spectrograms and cube-root
compression applied. The STRFs are also interpolated
to span the full 128 channels. Post-processing and dimension-
ality reduction are performed as described in Section III-A.
For the passive and adapted STRFs, we consider three

random draws from the large physiological STRF set as well
as a range1of model hyperparameters ; we report results for
the STRF ensemble that yields the best performance. We train
our GMM SAD system using clean speech from the TIMIT
corpus and nonspeech samples from the BBC Sound Effects
Library [81]. The nonspeech set comprises an equal amount of
audio from a range of acoustic classes2. For both the speech
and nonspeech categories, we use 7500 one-second tokens, or
approximately 2.1 hrs of audio, and reduce the dimension of
extracted features via TSVD from (128 frequency channels

STRFs) to 40-dimensional column vectors. Finally, we fit
32-mixture GMMs to the speech and nonspeech categories.
We evaluate our system in unseen noise cases using audio

from the QUT-NOISE-TIMIT corpus, a database specifically
designed for evaluating different SAD algorithms [82]. The

1We found it was sufficient to fix and explore a range of values for .
2For this study we used the

, and classes.
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Fig. 3. Effect of the proposed model for a speech-in-noise detection task.
(A) Population effects were quantified by computing the average difference
modulation profile and show that the model tends to increase
sensitivity to slower modulations close to the origin while suppressing faster
modulations away from the origin. (B and C) Individual examples illustrating
how adaptation causes the STRFs to reorient themselves in a task-driven
manner. Results shown for .

corpus is formed by mixing clean TIMIT utterances with
realistic background noise covering four noise scenarios3
( , and ) with two unique locations
per noise type at various SNRs. For our experiments, we select
ten utterances (each 60-seconds in length) at random from each
noise condition and SNR, ensuring that there is no overlap
between TIMIT utterances seen in training and those used
in testing. For a baseline comparison, we use the statistical
model-based likelihood ratio test of Tan et al. that leverages
harmonicity cues to improve detection of speech in noisy
environments [40]; this approach has been shown to work well
in a variety of noise conditions.

3There is also a fifth condition, but for our experiments it is ignored.

Fig. 4. SAD Results. (A) DET curves for the street noise condition, computed
by pooling scores across all SNRs, for the baseline, passive, and adapted
STRFs. (B) Visualization of LLR score distributions (as mean and standard
deviation) for the passive and adapted ensembles, showing how use of
improves separation between the speech and nonspeech LLR scores. (C) Av-
erage EER over all noise conditions. Adapted STRF ensembles are reported
for .

C. Results

1) STRF Adaptation Framework: We first apply the model to
simulate a scenario where a listener adapts processing to focus
on speech sounds in additive noise environments. This result
is shown in Fig. 3(A), and illustrates that the overall effect of
task-driven adaptation is to increase population sensitivity to
slower modulations, with the effect being stronger for down-
ward vs. upward moving modulations (i.e., the right- vs. the
left-half planes, respectively), while suppressing sensitivity to
faster modulations away from the origin. This pattern was also
found for other random selections of the initial ensemble .
The magnitude of the effect depends on choice of model hyper-
parameters, becoming stronger for decreasing and increasing
(data not shown). Finally, shown next in panels B and C are

the adaptation patterns of two individual neurons, illustrating
how the neurons broaden and reorient themselves to better focus
on upward and downward modulations as suggested by panel A.
2) Proposed SAD System: Shown in Fig. 4(A) is an ex-

ample DET curve for the noise for the baseline and
proposed system using passive and adapted STRFs. The
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DET curve is obtained by pooling LLR scores across SNRs
dB. Because the DET curve for the

adapted ensemble is closest to the origin with no overlap
with the other curves, it represents clear improvement over
the baseline and the passive ensemble across all SNRs,
with absolute reductions in EER of approx. 11% and 3%,
respectively.
To better understand how the adapted STRFs improve per-

formance, Panel B shows an analysis of the distribution of LLR
scores for the STRF ensembles with respect to speech and non-
speech categories. These results show that under the GMMs
trained on the passive STRF features, use of the adapted STRF
ensemble increases the overall likelihoods of speech and non-
speech. However, despite this added bias to the scores, there
is an overall improved separation between the speech and non-
speech distributions as computed using the Kullback-Leibler di-
vergence ( and assuming Gaussian-
distributed scores). Similar improvements are found across the
other noise scenarios.
Finally, panel C summarizes the overall performance of the

various SAD configurations in terms of average EER across all
noise conditions, showing that the adapted STRFs improve over
the baseline and passive STRF results by an absolute 8% and
3.5%, respectively.

IV. STIMULUS RECONSTRUCTION

The previous section showed empirically that the proposed
STRF adaptation framework improved detection of speech in
unseen noisy conditions by increasing the separability between
the LLR scores of speech and nonspeech (Fig. 4(B)). However,
we sought to better understand how the adapted STRF ensemble
improved the representational fidelity of a target speech signal.
One way to assess the ability of a neural ensemble to encode
features of the target source is to use a stimulus reconstruction
approach. By reconstructing the observed input to the ensemble,
one can assess how the features of the input are encoded by the
population. One can then vary the state of the ensemble (i.e.,
passive vs. adapted) and compare the reconstructions with the
original stimulus.
The stimulus reconstruction approach has been successful in

a number of neurophysiological studies. The approach was pi-
oneered in studies of the fly visual system [83], [84] and has
been used to study feature encoding in visual [85], [86] and au-
ditory cortical circuits [87], [88]. Of particular interest are recent
studies that have shed light on how cortex represents imagined
speech [89] and the nature of how top-down adaptive feedback
influences representation in cortical circuits [90]–[92].
In this section, we explore the stimulus reconstruction ap-

proach as it relates to the challenge of speech-in-noise detection,
using the approach outlined by Mesgarani et al. [87]. We hy-
pothesize that adapting an STRF ensemble according to the pro-
posed model yields a higher fidelity representation of the target
stimulus, and we explore this via reconstruction experiments in
clean and additive noise conditions using objective and percep-
tual measures.

A. Stimulus Reconstruction Model
In physiological studies, neural firing rate is typically mod-

eled as

where is an STRF, is the stimulus, is the
number of frequency channels, , and denotes con-
volution in time. To reconstruct an input stimulus from observed
neural firing rates we use the linear form

(4)

where is the (user-defined) temporal extent of the re-
construction filters and is a collection of inverse
mapping functions [87].
Eq. (4) implies that individual frequency channels are inde-

pendent of one another and hence we can compactly write

where

...
...

...

and

...
...

...
...

...
...

...
...

...
...

...
...

The operator performs a column-wise stacking of the
input matrix. Furthermore, defining the inverse mapping matrix

, we can write .
One way to arrive at an optimal reconstruction of is to de-

termine the matrix that solves the least-squares problem

where is the observed stimulus. This closed-form
solution is readily obtained as

(5)
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where is the response autocorrelation matrix and
is the stimulus-response correlation matrix. Be-

cause some of the STRFs in the neural ensemble have similar
shapes, the observed firing rates consequently yield redundan-
cies in the rows of . Thus, it is often the case that is
poorly conditioned, necessitating the use of some form of reg-
ularization to properly invert the response autocorrelation ma-
trix. Here we use the subspace regression approach proposed by
Theunissen et al. [11]. Since is real-symmetric, it can be
expressed as where is a matrix of eigenvec-
tors, , and are the eigenvalues of

. Because of the redundancies in the rows of , it gener-
ally holds that and thus we should ig-
nore the eigenvectors corresponding to small eigenvalues (oth-
erwise they tend to introduce noise once is inverted). We
set eigenvalues smaller than a pre-defined threshold to zero.

B. Experimental Setup

We consider two measures to evaluate the quality of a given
reconstruction from an inverse mapping obtained by Eq. (5).
The first is the temporally averaged mean-square error between
the original and reconstructed spectrogram, defined as

and serves as an objective mea-
sure of reconstruction quality. The second is a perceptual com-
parison between the original time-domain waveform and syn-
thesized version obtained using the Gaussian convex projec-
tion algorithm [26], [63]. The comparison between the wave-
forms is made using the ITU standard Perceptual Evaluation of
Speech Quality (PESQ) measure [93]. PESQ ranges between
1 and 5 and correlates well with listener-reported mean opinion
scores of perceptual quality, with higher scores indicating higher
quality.
To study how reconstruction performance varies as a function

of adaptation state, we use the passive and adapted STRF en-
sembles and to obtain optimal inverse mappings and

, respectively. We use 350 clean speech utterances from the
TIMIT corpus (approx. 17.5 minutes) to learn the inverse
mapping matrices. The neural responses are also stan-
dardized to have zero-mean and unit variance prior to obtaining

and , and these parameters are applied to subsequent re-
constructions. For a given inverse mapping, we also consider a
range of inverse filter lengths spanning ms and
eigenvalue thresholds . Results are re-
ported here for ensembles that achieve minimum average mean-
square reconstruction error on a test set of 100 clean speech ut-
terances from the TIMIT corpus. For synthesizing time-
domain waveforms, we first apply a nonlinearity to
synthesized spectrograms, followed by a maximum of 30 itera-
tions of the Gaussian convex projection algorithm.

C. Reconstruction Results

Shown in Fig. 5(A) are examples of reconstructions from
clean utterances obtained using the passive and adapted STRF
ensembles. We first find that both reconstructions are somewhat
noisy, with yielding a distinct temporal distortion whereas

introduces spurious patches of spectro-temporal energy.
However, both reconstructions are sufficient to capture the

Fig. 5. Analysis of clean speech reconstructions. (A) A reference spectrogram
(top) is compared with reconstructions obtained from the passive (middle) and
task-driven STRF ensembles (bottom). (B) Objective analysis shows that
yields a significantly better reconstruction compared to . (C) Perceptual anal-
ysis shows that yields a significantly higher quality waveform synthesis
compared to ( : -test, ). Results shown for .

broad prosodic characteristics of the reference spectrogram,
with good qualitative matches between pitch variations, syl-
labic rate, and broad formant dynamics over time. Furthermore,
it is clear that yields a reconstruction with better spectral
resolution, since the harmonic peaks during sections of voicing
are far more pronounced as compared with . Next, Panel B
shows that across the test set, the adapted ensemble yields an
objectively better reconstruction, with yielding a signif-
icantly lower reconstruction error as compared to ( -test,

). Finally, the perceptual analysis in Panel C shows
yields a significantly higher quality waveform synthesis

compared ( -test, ). Of course, while PESQ values
between 2-3 are generally considered somewhat noisy, informal
listening tests confirm that the synthesized waveforms are
nevertheless intelligible, with conveying a better percept
of voicing and pitch.
We also explore the extent to which the passive and adapted

STRF ensembles encode information about the attended source
in additive noise conditions. Here we consider a test set of 100
utterances from the TIMIT corpus corrupted by additive
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Fig. 6. Analysis of noisy speech reconstructions. Reconstruction quality de-
grades with increasing noise. However, in all SNR cases, the adapted ensem-
bles yield, on average, a higher quality reconstruction with respect to the clean
references. Results shown for .

noise from the NOISEX-92 corpus at a variety of SNRs. In ad-
dition to the and noises used in training, we
also consider the unseen noise classes
(a type of fighter jet), , and (a type of tank). For
each noisy utterance we reconstruct the spectrogram using the
inverse mappings and . We then quantify reconstruction
quality using the time-averagedmean-squared error between the
clean reference spectrogram and the noisy reconstruction. These
results, averaged across all noise types, are shown in Fig. 6. It is
clear that while reconstruction quality degrades with increasing
noise, in all SNR cases the adapted ensembles yield, on average,
a higher quality reconstruction with respect to the clean refer-
ences.We find no differences between averageMSE for the seen
vs. unseen noise cases.
In summary, the results of this section suggest that the pro-

posed model of task-driven adaptation induces STRF changes
that a facilitate higher-fidelity representation of attended speech
in clean and noisy environments. This lends further insight as to
how such an adaptation strategy is able to improve detection of
speech in noisy environments.

V. DISCUSSION

In this paper, we applied a model of auditory receptive field
plasticity that acts in the modulation domain to simulate a
listener dynamically adapting cognitive resources to better
track speech in noisy acoustic environments. We first described
how an ensemble of initial STRFs adapt to highlight the dif-
ferences in spectro-temporal modulation profiles for speech vs.
nonspeech sounds. We showed that the model induces STRF
plasticity that strengthens relatively slow spectro-temporal
modulations close to the origin (in the rate-scale domain) while
simultaneously suppressing faster modulations away from
the origin. We then showed how use of the adapted STRFs
improves the separation between the representation of speech
and nonspeech sounds, resulting in a substantial performance
gain in a speech activity detection task across a variety of pre-
viously unseen noise types. Finally, we explored, via stimulus
reconstruction experiments, the extent to which the passive

and adapted STRF ensembles captured the salient features of
the target speech source. These results showed how the use
of task-driven adaptation can improve the representation of
a speech target in clean and noisy conditions, as confirmed
by objective and perceptual measures. This helped shed light
as to how the representation improved to help facilitate the
detection of speech in noise. The overall results suggest that
STRFs adapted according to a biologically motivated model of
task-driven adaptation can form a noise-robust representation
of sound that is applicable to automated speech processing
applications.
Our model predicts that targeting speech versus nonspeech

distractors enhances sensitivity of STRFs to “slower” spectro-
temporal modulations. This is illustrated by the average differ-
ence modulation profile in Fig. 3. Increased slowness in the
modulation domain is realized in the time-frequency domain
as an overall broadening and reorientation of the STRFs, and
reflects an enhancement of the modulations known to charac-
terize speech and other natural sounds [11], [25], [26], [28]. The
fact that we obtain improved SAD results using “slower” fil-
ters is consistent with other strategies that concentrate the fea-
ture extraction pipeline to the range of speech-specific modula-
tions [27], [94]–[96]. Moreover, the STRF adaptation patterns
observed here are broadly compatible with traditional signal
processing schemes that emphasize slow modulations for im-
proving noise robustness in speech tasks [97]. The distinction
here is that our approach adapts the filter shapes “on the fly” and,
as our SAD results suggest, such changes can be compatible
with an existing statistical model to improve task performance.
As stated earlier, tracking speech in noisy environments is

a critical component of human communication, and is a task
at which listeners are especially adept. Based on this, and the
fact that reliably detecting speech-containing regions is a crit-
ical first step in many common speech applications, the task of
speech activity detection is a natural fit for our framework. Our
goal in this study was not to build a state-of-the-art SAD system
per se, but to instead focus on the design and understanding of
the impact of an adaptive spectro-temporal algorithm for speech
that is grounded in auditory neurophysiology. Admittedly, the
proposed framework is computationally expensive, particularly
for the STRF modulation profile adaptation described in (P2),
which involves an optimization over free param-
eters (where and are the number of temporal and spec-
tral bins in the STRFs, respectively) using a complex interior-
point numerical solver [76]. However, we expect that perfor-
mance of the framework would improve by optimizing choice
of the initial filter set, or perhaps by approximating the adapted
STRF profiles based on the average modulation profile differ-
ence ; we leave this fine-tuning of the system for fu-
ture work. That being said, many robust approaches to SAD
have been proposed over the years that perform well in noisy
and reverberant environments (see, e.g., [32], [35]–[37], [40]).
In particular, when large amounts of training data are available,
extraordinary results can be achieved for the SAD task on dif-
ficult corpora using high-order GMMs [45] and convolutional
neural networks [61], [98]. Nevertheless, these systems con-
tinue to be challenged by nonstationary interference, mismatch
between expected and observed acoustics, and limited training
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data, and it is our hope that the modulation-domain adaptation
framework presented here can be leveraged to improve these
approaches.
More generally, the increasing availability of mobile sound

processing applications has resulted in a significant increase
in the variety of acoustic environments, communication chan-
nels, and noise conditions encountered by existing systems.
Consequently, this necessitates signal processing strategies
that must gracefully accommodate these factors to maintain
state-of-the-art performance. We contend that because nature
has converged to a robust solution for handling unseen and
noisy acoustics, there is much to leverage from auditory neu-
rophysiology when designing automated sound processing
systems. Generally speaking, cortically inspired feature repre-
sentations based on spectro-temporal receptive fields underlie a
number of successful approaches to noise robust speech activity
detection [27], speech and speaker recognition [94]–[96], [99],
and auditory scene classification [100]. The present study, in
concert with other recent work in our lab [31], [101], [102],
represents an extension of this methodology by incorporating
the cognitive effects of dynamic, task-driven sensory adaptation
as part of the feature extraction pipeline. It is our belief that
new and existing systems can only benefit by incorporating the
adaptive mechanisms as outlined in this paper.
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