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Electronic Stethoscope Filtering Mimics the Perceived Sound
Characteristics of Acoustic Stethoscope
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Abstract— Electronic stethoscopes offer several advantages
over conventional acoustic stethoscopes, including noise reduc-
tion, increased amplification, and ability to store and transmit
sounds. However, the acoustical characteristics of electronic
and acoustic stethoscopes can differ significantly, introducing
a barrier for clinicians to transition to electronic stethoscopes.
This work proposes a method to process lung sounds recorded
by an electronic stethoscope, such that the sounds are perceived
to have been captured by an acoustic stethoscope. The proposed
method calculates an electronic-to-acoustic stethoscope filter
by measuring the difference between the average frequency
responses of an acoustic and an electronic stethoscope to multi-
ple lung sounds. To validate the method, a change detection
experiment was conducted with 51 medical professionals to
compare filtered electronic, unfiltered electronic, and acoustic
stethoscope lung sounds. Participants were asked to detect when
transitions occurred in sounds comprising several sections of
the three types of recordings. Transitions between the filtered
electronic and acoustic stethoscope sections were detected, on
average, by chance (sensitivity index equal to zero) and also
detected significantly less than transitions between the unfil-
tered electronic and acoustic stethoscope sections (p < 0.01),
demonstrating the effectiveness of the method to filter electronic
stethoscopes to mimic an acoustic stethoscope. This processing
could incentivize clinicians to adopt electronic stethoscopes by
providing a means to shift between the sound characteristics
of acoustic and electronic stethoscopes in a single device,
allowing for a faster transition to new technology and greater
appreciation for the electronic sound quality.

Index Terms— Electronic stethoscope, acoustic stethoscope,
stethoscope filtering, listening experiment, frequency response

I. INTRODUCTION

The stethoscope was first introduced in the early 1800’s
by Laennec as a means of observing sounds from a patient’s
body without making physical contact [1]. In contrast to
the original design of a long, hollow wooden tube, acoustic
stethoscopes now use a chest piece to capture acoustic
energy from the body and transmit the sound through
flexible tubing to the listener’s ears. The stethoscope is
currently amid another period of modernization with many
electronic stethoscope models becoming available [2]. Using
a transducer, the electronic stethoscope converts acoustic
energy into an electrical signal that can be further amplified,
filtered, and processed. This process of digitization in the
electronic stethoscope improves on the acoustic stethoscope’s
low sound levels and susceptibility to external noise [3]. The
electronic stethoscope has several other advantages compared
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to the acoustic stethoscope, including volume adjustment,
noise cancellation, automated diagnosis, remote auscultation,
unencumbered movement, and less dependence on ear piece
positions [4], [5]. Researchers are also exploring new designs
for long-term auscultating, including patch [6]–[8] and vest
[9] implementations, but these technologies are in the early
stages of development and not used in practice by physicians.

The effectiveness of acoustic and electronic stethoscopes
is dependent on the user’s capacity to accurately identify
sounds associated with disease [10]. The exception is for
newer electronic stethoscopes with capabilities to provide
computer-aided diagnoses [11], [12]. Because the stetho-
scope’s efficacy is largely dependent on clinicians’ hearing
and judgment, the listening experience is highly personal and
difficult to standardize. In order to lessen the subjectivity of
auscultation, there are trends towards adopting artificial in-
telligence in stethoscopes [13], improving teaching methods
and databases [14] , and using the stethoscope in conjunction
with other tools, such as handheld ultrasound [15]. While
some have argued less subjective instruments will replace
the stethoscope [16], it still remains one of the most simple,
easily available, and cost-effective tools to quickly assess the
health of the heart, lungs, bones, and intestinal tract [3], [17].

Besides the variability in the listening experiences of
individual clinicians, the acoustical characteristics of stetho-
scopes can also vary widely [18], [19]. Due to differences
in materials, tubing, and components, each stethoscope pos-
sesses its own response that determines how specific fre-
quency ranges, which are linked to the pathological state of
the organ being monitored, will be transmitted [19]. Stetho-
scope responses have been approximated in a number of
previous studies for acoustic [20], [21], electronic [22], and
acoustic and electronic stethoscopes [18], [23]. Responses
are generally measured by placing the stethoscope on a
simulator designed to mimic the characteristics of the human
body and exciting the simulator with noise or sine sweeps.
Other studies have focused on the objective differences in the
frequency responses of stethoscopes when auscultating on a
real patient [19]. To our knowledge, there are no studies that
include an objective analysis of the perceptual differences
between stethoscope models.

As clinicians are typically trained with an acoustic stetho-
scope, they become accustomed to the frequency response
of acoustic stethoscopes [24]. Despite the advantages of
electronic stethoscopes, their use is still limited in medical
practices [25]. One barrier to electronic stethoscope adop-
tion is the change in sound quality [26], [27]. Currently
available electronic stethoscopes implement selective filters
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to address differences in sound quality [2], [19]. It was shown
that the frequency responses of electronic stethoscopes with
bell and diaphragm filters are not consistent with acous-
tic stethoscopes [19]. These band-pass filters on electronic
stethoscopes remove high or low frequency components
from the signal to emulate an acoustic stethoscope’s bell
and diaphragm. While the filter characteristics of electronic
stethoscope models vary, bell and diaphragm modes typically
include frequencies below 200 Hz and between 100 and 500
Hz, respectively. Simply using a bandpass filter may not
take into account acoustical differences between acoustic and
electronic stethoscopes related to the transducer type, sound
transmission path, and mechanical coupling with the patient.

The aim of this study is to propose and validate an
electronic stethoscope filtering method that increases the
perceived similarity of lung sounds from filtered electronic
and acoustic stethoscopes. While it may seem counterpro-
ductive to use processing to render an electronic stethoscope
more similar to an acoustic stethoscope, rather than just
continuing to use an acoustic stethoscope, the electronic
stethoscope affords a number of distinct advantages, as men-
tioned previously. It is anticipated that, in time, the electronic
stethoscope will become increasingly more commonplace
and the filtering methodology will be important to slowly
aid physicians in transitioning to electronic stethoscopes.

First, the paper presents a method to calculate an
electronic-to-acoustic stethoscope filter using band equal-
ization for a specific acoustic-electronic stethoscope pair.
Second, a listening experiment with medical professionals
across experience levels is used to evaluate how well filtered
electronic stethoscope sounds mimic acoustic stethoscope
sounds. To our knowledge, this is the first study that fo-
cuses on an objective analysis of the perceptual differences
between stethoscopes, rather than quantitative results based
on response data. The details of the filter calculation and
listening experiment are presented in sections II and III,
respectively. Sections IV and V conclude the study, sum-
marizing findings and future directions.

II. METHODS

Lung sounds were played from a simulator that mimics
the characteristics of the human body and were recorded
from acoustic and electronic stethoscopes. The magnitude
spectra of ten recorded lung sounds were averaged for both
the electronic and acoustic stethoscopes. An electronic-to-
acoustic stethoscope filter was calculated as the difference
between the average magnitude spectra of the electronic and
acoustic stethoscopes for the ten lung sounds. The remaining
electronic stethoscope lung sounds were processed with the
electronic-to-acoustic stethoscope filter and included in a
listener experiment. The processing steps discussed in this
section are summarized in Fig. 1.

This band equalization approach was chosen due to the
perceptual nature of the listening experiment, which involves
sounds being played sequentially from each stethoscope. In
contrast to a direct measurement of an acoustic stethoscope
transfer function or response, the band equalization method

accounts for differences between the acoustic and electronic
stethoscope recordings due to hardware differences in the
recording setup. Pink or white noise excitations can induce
resonances due to the tubing and coupling between the
body and acoustic stethoscope housing, which lie outside the
frequencies of interest [18], [21]. As such, frequency char-
acterization using pink or white noise changed the perceived
characteristics of filtered sounds. Lung sounds were used as
the excitation source to calculate the electronic-to-acoustic
stethoscope filter to focus on the frequency content of lung
sounds.

Fig. 1: Flow chart of main processing steps from input to
output datasets.

A. Input dataset

Ten normal and nine abnormal lung sounds were obtained
from [28] and used without further modification. Previously
recorded lung sounds from a database were used, rather than
real subjects, to guarantee repeatable recordings for both the
acoustic and electronic stethoscopes. The abnormal group
consisted of four breath sounds with wheeze, three with
crackle, one with stridor, and one with wheeze and crackle.
The control group contained normal sounds recorded over
various chest areas in addition to tracheal and diminished
breath sounds. The sounds were each 15 seconds in length
and recorded at 44.1 kHz in 32-bit float. The patient pop-
ulations and recording devices used for the sounds in the
database may have varied and were not disclosed.

B. Recording setup

The selected sounds were played from a respiratory sound
simulator that imitates the characteristics of the human body
and produces stable, repeatable lung sounds. A respiratory
sound simulator was necessary because a stethoscope am-
plifies sounds from vibrating air as well as the movement
of the skin. Direct measurement from a speaker would not
have measured the full output of the stethoscope. Similar pro-
cesses and simulators for transducer and bioacoustic testing
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were used in [18], [29], [30]. The sound simulator contains
a Jawbone Jambox loudspeaker covered in 1.5-inch-thick
ballistic gelatin from Clear Ballistics, which approximates
the density and viscosity of human muscle tissue. The
loudspeaker has a frequency response of 40 to 20,000 Hz
with improved low-frequency sensitivity via a proprietary
bass radiator. The frequency response is fairly flat (within
± 2.5 dB) from 60 Hz to 12 kHz at 85 dB.

An electronic stethoscope (JHUscope [31]) and acoustic
stethoscope (Littmann Cardiology II, diaphragm mode) were
placed adjacent to each other on the respiratory sound
simulator (Fig. 2). The 15 second lung sounds were played
from the simulator in a sound isolation booth and recorded
from both stethoscopes simultaneously. The digital stetho-
scope output was captured directly from the included 3.5mm
headphone jack. The acoustic stethoscope output was cap-
tured from the earpiece with a calibrated microphone (PCB
Piezotronics 1/4” pressure, prepolarized condenser) that was
sealed with a thick layer of clay. The second earpiece was
also acoustically sealed with clay to restrict any potential
noise leakage through the open end of the earpiece. Both
signals were sent to a dual channel amplifier (Brüel & Kjær
5935) and recorded in Audacity at a sampling rate of 8 kHz.
This sampling rate captures the frequency content of lung
sounds, which is generally concentrated below 2,000 Hz [32].
Passthrough channels were also recorded simultaneously
with recordings for the acoustic and electronic stethoscopes.
The passthrough channels were used to characterize the noise
introduced in the amplification and recording setup.

Fig. 2: Diagram of lung sound recording setup with acoustic
and electronic stethoscopes placed on the respiratory sound
simulator.

C. Preprocessing

All recordings were clipped to an equal length of 10
seconds to reduce artifacts from the abrupt beginning and
ending of the sound. The recorded lung sounds were sub-
sequently denoised with spectral subtraction [33] to remove
any noise or coloration introduced in the recording setup, as
characterized by the passthrough channels. This processing
was necessary for the listening experiment so that listeners
distinguish recordings based on the quality of the sounds and
not on introduced recording noise mismatch. The recordings

were also bandpass filtered from 35 to 3000 Hz to remove
out-of-band noise.

D. Electronic-to-acoustic stethoscope filter calculation

Ten recorded lung sounds (5 normal, 5 abnormal) from the
electronic and acoustic stethoscopes were randomly chosen
and used to calculate an electronic-to-acoustic stethoscope
filter. The discrete short-time Fourier transform (STFT)
of each lung sound (Xs(pL,k)) was calculated using 100
ms Hamming windows without overlap. Overlap was not
necessary to gauge the average frequency response of the
recording. In the following equation, x[m] is the lung sound
signal of interest at sample m, w[pL−m] is a time-decimated
window with length 2L shifted in integer multiples of p from
−∞ to ∞, and 2πk/N is equal to the frequency where N is
the number of points used to calculate the discrete Fourier
transform and k is an integer multiple from 0 to N−1.

Xs(pL,k) =
∞

∑
m=−∞

x[m]w[pL−m]e− j2πkm/N (1)

The average normalized magnitude spectrum for each
lung sound was calculated with both the electronic (Es) and
acoustic (As) stethoscope recordings:

Es,As =
1
n

n

∑
p=0

|X(pL,k)|
max(|X(pL,k)|)

(2)

where n is the total number of STFT windows over the 10
second recording and s is the lung sound number.

The average magnitude spectra were subsequently
smoothed with a moving average filter over five samples. The
difference between the smoothed average magnitude spectra
of all ten acoustic and electronic stethoscope recordings was
calculated and smoothed to obtain the electronic-to-acoustic
stethoscope filter (F) in the Fourier domain.

F =
1

10

10

∑
s=1

As−
1

10

10

∑
s=1

Es (3)

E. Filtering of electronic stethoscope recordings

To filter the remaining nine lungs sounds from the input
dataset that were recorded on the electronic stethoscope and
not used for the electronic-to-acoustic filter calculation, FFT
multiplication was performed with the electronic-to-acoustic
stethoscope filter (F) and lung sound being processed. The
discrete STFT of a lung sound recorded with the electronic
stethoscope was calculated using 100 ms Hamming windows
with 99.7% overlap. Unlike the previous step to calculate
the filter, overlap was necessary in this step for accurate
reconstruction of the signal. The discrete STFT magnitude
was multiplied with the electronic-to-acoustic stethoscope
filter and recombined with its original phase to obtain the
filtered discrete STFT (XF(pL,k)).

XF(pL,k) = (|X(pL,k)| ∗F)e j∠X(pL,k) (4)

Overlap and add reconstruction was performed to obtain
the filtered signal, which was subsequently low pass filtered
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(fifth-order Butterworth filter with 2 kHz cutoff) to limit
processing induced noise and artifacts in a frequency range
listeners are particularly sensitive to.

F. Output dataset

The nine lung sounds that were not used for the electronic-
to-acoustic filter calculation from the acoustic and electronic
stethoscopes, as well as the nine filtered electronic stetho-
scope sounds, were high pass filtered at 80 Hz. Comparing
the frequency content of the original lung sounds and stetho-
scope recordings of the same lung sounds, it was observed
that the stethoscope recordings had significant energy below
50 Hz that was not in the original lung sounds. The high pass
filter was used to remove this artificial noise below 80 Hz that
was being amplified by the stethoscopes due to the recording
setup and environment. For consistent levels, the recordings
were all set to an integrated loudness of -23 LUFS by the
EBU R 128 standard [34]. This output dataset of acoustic,
electronic, and filtered electronic stethoscope sounds was
used in the listening experiment.

III. SUBJECTIVE VALIDATION

A listening experiment was used to evaluate the electronic-
to-acoustic stethoscope filtering effectiveness by quantifying
how well listeners differentiated between true recordings
of the acoustic stethoscope and filtered recordings from
the electronic stethoscope. Filtered electronic stethoscope
recordings will subsequently be referred to as simply ’fil-
tered’.

Participants were given five randomly chosen lung sound
files approximately 60 seconds in length to assess. Each
file comprised multiple sections of the same lung sound,
recorded from the electronic, acoustic, or filtered stetho-
scopes in randomized orders. Participants reported when a
change in the stethoscope used to capture the sound was
detected on a computer interface. All methods were approved
by the Johns Hopkins University Homewood Institutional
Review Board (HIRB00009382).

A. Participants

Medical professionals or students with self-proclaimed
training to use a stethoscope were eligible for this study.
No distinction was made based on whether the volunteer
typically uses an acoustic or electronic stethoscope. A total
of 51 participants enrolled, all affiliated with Johns Hopkins
Hospital or Johns Hopkins University in Baltimore, MD,
USA, with informed consent.

Prior to beginning the listening experiment, participants
completed a questionnaire reporting the number of years
of experience they have using a stethoscope in a clinical
setting (0 to 1 year, 2 to 4 years, 5 to 10 years, or over 10
years) and their current medical occupation (physician, nurse,
resident, fellow, or other). Table I shows the questionnaire
responses. The majority of respondents classified ‘Other’ as
their occupation, which largely consisted of nursing or medi-
cal students (17 participants) and several physician assistants,
researchers, and technicians. Physicians and nurses were

Years of experience

Occupation

0 - 1 2 - 4 5 - 10 >10 Total
Nurse 2 1 1 4 8
Physician - 1 7 7 15
Fellow - - - 1 1
Resident - 1 1 - 2
Other 14 7 4 - 25
Total 16 10 13 12 51

TABLE I: Listening experiment participants’ occupations
and years of experience using a stethoscope in a clinical
setting.

the second and third most prevalent participant occupations.
The participants had a fairly even distribution of years of
experience using a stethoscope in a clinical setting with 10
to 16 volunteers in each range.

B. Dataset

Nine acoustic, electronic, and filtered stethoscope lung
sounds were used for the listening experiment, as described
in section IIF. For each of the nine sounds, a single, long
lung sound file, approximately 60 seconds in length, was con-
structed by splicing together different sections and lengths of
the acoustic, electronic, and filtered stethoscope recordings
(Fig. 3). The transitions joining recordings occurred in the
silence between breaths and were crossfaded in the moments
of silence to avoid audible clipping. Efforts were made to
splice the sounds together such that the breaths transitioned
smoothly and naturally. The sound files included two to
three changes of each transition or its reverse (acoustic to
electronic, electronic to filtered, or acoustic to filtered) with
a minimum of 5 seconds between each change. The times
that changes occurred were pseudo-randomized and did not
repeat in a regular pattern. Volunteers were given a random
subset of these 9 sounds files in the listening experiment to
assess.

C. Setup

Listening experiments were given to participants in a quiet
area with minimal background noise and designed to last
for 10 to 15 minutes. The participant was seated in front
of a computer and instructions for the listening experiment
and graphical user interface (GUI) were provided with an
on-screen prompt. The prompt stated participants would be
presented with a series of five lung sounds and instructed
to click a button when a change in the stethoscope used to
record the sound was detected. Participants were given ample

Fig. 3: Diagram of sound file containing same lung sound,
but with transitions between acoustic (A), electronic (B), and
filtered (C) stethoscope recordings.
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time to proceed through the listening experiment at their own
pace. All participants used Sennheiser HD 595 headphones
and were allowed to set the volume to a comfortable level.
Based on visual observation, subjects did not adjust the
volume following the example sound files.

Prior to beginning the listening experiment, participants
were given three short (10 to 15 seconds) sound examples
with a single transition. The GUI displayed ‘CHANGE’
when a transition occurred to acclimate participants to the
sounds and change detection task. Following the presentation
of the examples, participants were given five randomly
chosen sound files out of the total nine available. Participants
used the GUI to record when a change in sound quality was
detected. When participants clicked the ‘Change detected’
button, the GUI displayed ‘Recorded’ for one second to
avoid user confusion with the interface. The time of change
detection was recorded for later analysis. The option was
given for participants to reset a sound file and restart the
change detection task if an error was made.

D. Analysis

The times when a participant recognized a change were
compared with the times of an actual change and recorded as
either a true or false detection. Change windows were defined
around 0 to 1.6 seconds of an actual change. The remaining
duration of the signal was broken into windows of no change
that were also 1.6 seconds in length. This change window
length was chosen based on [35], which studied the reaction
times for change detection in auditory textures. Reaction
times were found to vary based on several properties of the
stimulus, but typically peaked at approximately 1 second.
To account for silences between breaths, an additional 0.6
seconds was added to the change window length. This value
was obtained by calculating the maximum average silence
duration between transitions for each sound.

A true detection occurred when participants clicked within
a change window, while a false detection occurred when
participants clicked outside a change window. If a partici-
pant recognized multiple changes within a change window,
subsequent detections after the first were counted as false
detections. The detections were grouped based on two-
way transitions between acoustic to electronic, electronic to
filtered, or acoustic to filtered. The total number of true
detections for each transition type and the total number
of false detections were found for each volunteer over all
five sound files. This approach removed the dependence
on individual sound files in order to better understand the
average listening experience across multiple sound types.

The resulting data were analyzed using detection theory,
which takes the random variability of human perception into
account [36]. In contrast to solely reporting the number of
true detections, detection theory uses a sensitivity index to
provide a more robust measure of event detection by consid-
ering the underlying noise present through false detections.
The sensitivity index (d’) was calculated for each volunteer
and transition type using the difference in z-scores of the hit

and false alarm rates.

d′transition = z(transition hit rate)− z(false alarm rate) (5)

The hit rate for each transition type was calculated as
the total number of true detections (Dtransition) over the total
number of change windows of that type (Wtransition).

transition hit rate =
∑Dtransition

∑Wtransition
(6)

The false alarm rate was calculated as the total number
of false detections (Dfalse) over the total number of windows
with no change (Wno change).

false alarm rate =
∑Dfalse

∑Wno change
(7)

The R ‘psycho’ package was used to calculate the sen-
sitivity index. Within the package, the ’qnorm’ function is
used to calculate the z-score by finding the xth quantile with
mean 0 and standard deviation 1.

IV. RESULTS

A. Electronic-to-acoustic stethoscope filter

Fig. 4 shows the calculated average magnitude spectra of
the lung sounds recorded by acoustic and electronic stetho-
scopes in addition to the electronic-to-acoustic stethoscope
filter response. The stethoscopes have similar responses at
low (< 60 Hz) and high frequencies (> 800 Hz). However,
the acoustic stethoscope demonstrates a broader peak near
150 Hz and a more pronounced peak between 300 to 400
Hz, with additional gains of 10 and 14 dB, respectively. The
acoustic stethoscope also has a small peak of approximately
3 dB near 500 Hz. In general, the filter corrects for the the
main differences that are concentrated between 100 and 400
Hz.

The effects of the filter can be seen in Fig. 5, which
compares the power spectra for a single normal lung sound
from the electronic, acoustic, and filtered stethoscopes. Com-
pared to the acoustic stethoscope, the electronic stethoscope
sound has higher power between 225 and 275 Hz and lower
power from 300 to 350 Hz. The effectiveness of the filtering
can be seen by comparing the acoustic and filtered power
spectra which are much more similar in comparison to the
electronic power spectrum. Fig. 6 shows the cross power
spectral density of the same normal lung sound for each pair
of stethoscope combinations.

B. Listening experiment

The calculated sensitivity indices (d’) for each transition
type are shown in Fig. 7. A high d’ value indicates that the
participant is more sensitive to changes in the quality of the
sound and better able to recognize transitions. A d’ value
equal to zero indicates that the hit and false alarm rates are
equal and a person is likely detecting transitions by chance.

Transitions between acoustic and electronic stethoscope
sounds were detected most frequently with the highest aver-
age d’ value. This clearly indicates that clinicians differen-
tiate between the sound quality of these two stethoscopes.
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Fig. 4: Average magnitude spectra of lung sounds recorded
by acoustic and electronic stethoscopes and electronic-to-
acoustic stethoscope filter.
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Fig. 5: Power spectra comparison of electronic, acoustic, and
filtered stethoscope sound.

Transitions between the acoustic and filtered stethoscope
recordings had the lowest average d’ value indicating a lower
number of true transition detections.

To determine if significant differences existed between
the d’ values for each transition, a pairwise t-test with the
Bonferroni correction was performed. ANOVA was not used
because the dataset demonstrated non-homogeneous variance
by Levene’s test (p < 0.001). The p-values, shown in Fig.
7, indicate a significant difference between all groups at a
significance level of 0.05.

A one sample t-test with the d’ values for acoustic to
filtered transitions demonstrated that the group mean was
equal to zero (p > 0.9). This indicates that acoustic to
filtered transitions were detected by chance and, on average,
listeners could not differentiate between acoustic and filtered
stethoscope recordings. Similar results were obtained when
resets were taken into account to verify that no learning
effect was linked to the volunteers, indicating a significant
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Fig. 6: Cross power spectral density of normal lung sound
from acoustic and electronic (AcElec), acoustic and filtered
(AcFilt) and electronic and filtered (ElecFilt) stethoscope
combinations.
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Fig. 7: Sensitivity indices for each stethoscope transition type
presented in the listening experiment.

difference between acoustic-electronic and acoustic-filtered
transition groups (p < 0.001) and between electronic-filtered
and acoustic-filtered transition groups (p = 0.01).

Ideally, if the filtered stethoscope perfectly mimics an
acoustic stethoscope, then the sensitivity indices for acoustic-
electronic and electronic-filtered would be equal. However,
the pairwise t-test demonstrates a borderline significant dif-
ference (p= 0.04). We attribute this small difference between
the groups to: (1) the large variability due to human subjects
and their unique perceptions and (2) imperfections in the
electronic-to-acoustic stethoscope filter that bias the filtered
signal to contain both electronic and acoustic components.
However, the overall trend does favor the filtering to mimic
an acoustic stethoscope.

Fig. 8 shows the d’ values for acoustic to filtered transi-
tions based on experience level. While there is an increasing
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Fig. 9: Sensitivity indices for each transition based on length
of change window.

average sensitivity index with greater experience, a pairwise
t-test (no correction) between the groups shows no significant
differences (p > 0.2).

Fig. 9 shows the d’ values for each transition with change
window lengths of 1.5, 1.6, and 1.7 seconds. Pairwise t-tests
with the Bonferroni correction between the d’ values for each
change window length for acoustic to electronic, acoustic to
filtered, and electronic to filtered transitions show that there is
no significant difference between the groups based on change
window length (p > 0.19). This demonstrates the robustness
of the analysis method and results with small changes around
the chosen change window length of 1.6 seconds.

Overall, the statistical analysis demonstrates the effec-
tiveness of the electronic stethoscope filtering to mimic
an acoustic stethoscope by demonstrating that: (1) acoustic
to filtered transitions are detected significantly less than
acoustic to electronic or electronic to filtered transitions; (2)

acoustic to filtered transitions are detected, on average, by
chance; and (3) acoustic to filtered transition detections are
not dependent on experience level.

V. DISCUSSION

The calculated electronic-to-acoustic stethoscope filter was
demonstrated to increase the perceived similarity between
recorded acoustic and electronic stethoscope lung sounds for
a panel of physicians. The sensitivity index of transitions
between acoustic and filtered stethoscope sounds was signif-
icantly less than the sensitivity indices for other transitions
and also had a mean value near zero. This indicates that, in
general, clinicians did not differentiate between filtered and
acoustic stethoscope sounds.

It is important to note the following when considering the
results of the experiment described in this paper: (1) the
use of preprocessing techniques to reduce background and
electronic noise may affect the overall spectral shape of the
recorded lung sounds; (2) the calculation of an average filter
may not capture small differences between the acoustic and
electronic stethoscopes; (3) it is unclear how the filtering
impacts disease diagnosis since no data was collected from
medical professionals on this point; and (4) the use of
recordings of recordings for the listening experiment is
non-ideal, but necessary for consistency with the listening
experiment design.

In order to further validate the electronic-to-acoustic
stethoscope filter calculation with an additional dataset, the
filter was recomputed using recordings from [37] and [38].
Statistical analysis shows that the calculated electronic-to-
acoustic stethoscope filter from a different dataset obtains
quantitatively similar results for 501 of the 512 frequency
points (p > 0.05). The 11 frequency points with statistically
significant differences were concentrated in the frequency
range of heart sounds, which were present in the additional
clinical databases used, but not present in the original
database used for the study presented in this work. This
analysis indicates that the method is not sensitive to the
choice of data used to calculate the filter in the frequency
range of lung sounds. Details on additional processing can
be found in the supplementary material.

Although a number of challenges remain, it is envisioned
that this method could be applied to electronic stethoscopes
in the future to allow physicians to switch between the
sound characteristics of multiple acoustic and electronic
stethoscopes in a single device. While the filtering may not
be necessary in the long-term, it will be an invaluable tool
to help physicians trained to use an acoustic stethoscope
to adapt to the characteristics of electronic stethoscopes.
The question that remains is how the improved subjective
acoustic parameters translate to diagnosis from auscultation
examination and adoption.

A number of follow-up studies would need to be con-
ducted to validate this method for use in clinical practice
and determine how it impacts overall adoption in the medical
field. These studies would need to address: (1) real-time
filtering for direct comparisons of the acoustic stethoscope
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and electronic stethoscope on real patients; (2) evaluation
and optimization of the filter in the presence of background
noise; (3) use of a larger variety of driving signals to
obtain a stable approximation of the stethoscope filter; and
(4) comparison against a larger selection of stethoscopes.
The calculated filter is not meant to be generalized to be
applied to any electronic stethoscope, such that it mimics an
acoustic stethoscope. The filter was developed with a specific
stethoscope pair (JHUscope with Littmann Cardiology II) to
validate the equalization matching approach and new filters
should be calculated for other stethoscope pairs. The results
presented in this study form a strong foundation in improving
the similarities between acoustic and electronic stethoscopes
to perform these future investigations.

VI. CONCLUSION

With improvements in sound quality, the rise of telehealth,
and capabilities to provide computer-aided auscultations, the
stethoscope is currently amid a period of modernization
after decades with the same basic design. Despite the elec-
tronic stethoscope’s technological advantages, the transition
is moving slowly in practice and the device does not have
widespread adoption among clinicians. The differences in
sound characteristics are one barrier that deter physicians
from moving from an acoustic to electronic stethoscope.

The presented method addresses the sound differences by
calculating an electronic-to-acoustic stethoscope filter. Vali-
dated with a panel of clinicians, the electronic-to-acoustic
stethoscope filter has been demonstrated to significantly
increase the perceived similarity between recorded acoustic
and electronic stethoscope lung sounds. The filtering method
can provide a means to transition physicians from acoustic
to digital stethoscopes and also be used as a training tool
to assess the perceived auditory differences between the
stethoscopes.
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