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ABSTRACT

Auditory Attention Decoding (AAD) algorithms play a cru-
cial role in isolating desired sound sources within challenging
acoustic environments directly from brain activity. Although
recent research has shown promise in AAD using shallow rep-
resentations such as auditory envelope and spectrogram, there
has been limited exploration of deep Self-Supervised (SS)
representations on a larger scale. In this study, we undertake
a comprehensive investigation into the performance of linear
decoders across 12 deep and 2 shallow representations, ap-
plied to EEG data from multiple studies spanning 57 subjects
and multiple languages. Our experimental results consistently
reveal the superiority of deep features for AAD at decoding
background speakers, regardless of the datasets and analysis
windows. This result indicates possible nonlinear encoding
of unattended signals in the brain that are revealed using deep
nonlinear features. Additionally, we analyze the impact of
different layers of SS representations and window sizes on
AAD performance. These findings underscore the potential
for enhancing EEG-based AAD systems through the integra-
tion of deep feature representations.

Index Terms— auditory attention decoding, electroen-
cephalogram (EEG), self-supervised speech representations

1. INTRODUCTION

Throughout daily life, we all experience the challenges of fol-
lowing a particular conversation in presence of other compet-
ing speakers or noise sources. This challenge is particularly
pronounced in individuals with hearing impairment and im-
pedes their ability to interact socially. This process relies on
our brain’s attentional mechanisms in order to hone in on a
speaker of interest and render the rest of the acoustic scene
to the background. Auditory attention decoding (AAD) is a
general framework developed to determine the sound a lis-
tener is attending to based on their brain activity; hence hold-
ing the potential to improve hearing aids and neuroprosthet-
ics [1]. Various methods to collect brain data have shown
promise for AAD, though they come with different trade-offs
in terms of invasiveness, portability, resolution, and signal

This work was supported by ONR N00014-23-1-2050 and N00014-23-
1-2086 and NIH U01AG058532

quality. Non-invasive electroencephalography (EEG), for in-
stance, relies on scalp electrodes to capture signals [2]. It is
also the most portable and adaptable allowing the user to po-
tentially go about their daily life; though it comes at a cost of
lower spatial resolution and signal quality. On the other hand,
magnetoencephalography (MEG) offers higher resolution in
mapping brain activity patterns, but demands bulky and ex-
pensive equipment for its operation [3]. Alternative invasive
methods such as electrocorticography (ECoG) implant elec-
trodes directly into the brain, providing unparalleled precision
but also exposing the patient to surgical risk.

Across all these techniques, AAD learns a mapping be-
tween the complex auditory stimuli entering the ears and
the brain activity patterns generated in response [2]. In its
simplest form, this mapping can be approximated by a linear
function (e.g. regression) by learning correspondence be-
tween brain signals and the attended envelope or spectrogram
of the foreground speaker [4]. These techniques have shown
great promise for AAD given their simplicity and minimal
training and data needs. In contrast, deep learning excels
at learning hierarchical abstractions, allowing it to identify
intricate relationships between auditory inputs and neural
representations. Recent work has shown promise in applying
mappings learned through CNNs or LSTMs [5, 6]; though
by-and-large, these models are data-and computation-hungry
and require extensive tuning.

Nevertheless, deep learning representations offer the po-
tential to capture intricate and nuanced connections between
auditory stimuli and neural responses, which may elude sim-
pler linear models, particularly in shedding light on how the
brain disentangles the representation of foreground (attended)
and background (unattended) information. Building on this
potential, this study performs a meta-analysis of a range of
deep and shallow features, all evaluated within the same
framework on publicly available datasets, spanning different
research subjects and languages. The study addresses the
following research questions: 1) How do deep features fair
against shallow features in a direct AAD comparison? 2) Do
abstractions learned through deep features reveal distinctions
in how the brain represents foreground and background sen-
sory signals? 3) How generalizable are deep features trained
on one language to other languages when applied to AAD?
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Fig. 1. Auditory Attention Decoding (AAD) framework

2. AAD METHODOLOGY

2.1. General AAD framework

The general AAD framework learns the mapping between an
audio signal a(t) and the brain response r(t, n), where t is the
index of time and n represents different neural channels. This
mapping is often estimated in two steps (Eq.1):

a(t)
Γ(.)−−→ s(t)

Ψ(.)←−→ r(t, n) (1)

The first step (Γ) projects the audio signal onto a mean-
ingful auditory representation s(t) (see Fig. 1), such as the
signal envelope or spectrogram (or mel-spectrogram). These
two representations have meaningful links to the patterns that
invoke strong responses in cortical networks in the brain that
are typically observed in surface electrodes [2, 4]. The second
step learns a mapping Ψ between the representation s(t) and
neural response r(t, n). The linear AAD scheme employs a
regression framework that minimizes the Mean Squared Error
(MSE) loss between the ground truth and predicted signals.
Alternative models have considered end-to-end schemes to
learn nonlinear transformations using CNNs, LSTMs and
self-attention networks, therefore accounting for complex
relationships and variable interactions between the sensory
and brain signals [5, 6, 7]. Though leading to improved
performance over the linear formulations, these end-to-end
systems have limited generalizability due to data require-
ments, computational resources and need for extensive tuning
and regularization. An alternative method that has been re-
cently considered is to leverage deep methods for the initial
mapping Γ(.) ending with a linear layer for the second map-
ping Ψ(.). This approach enables adoption of a wider range
of deep methods particularly self-supervised embeddings
which can be trained independently on larger datasets. This
framework has been recently tested on a small scale in ECoG
recordings from 3 subjects [8]. The scalability of this scheme
for different embedding features and larger datasets has not
been evaluated before.

Table 1. Self-Supervised Model Specifications
Model Quantized Stride # Layers

AlBERT x 10ms 4
Mockingjay x 10ms 4

TERA x 10ms 4
HuBERT ✓ 20ms 13

Wav2Vec2.0 ✓ 20ms 13
WavLM ✓ 20ms 13

2.2. Meta Analysis of Sensory Representations

The current study explores a diverse array of Self Super-
vised (SS) representations, which have recently demonstrated
promising results in various audio and speech tasks [9]. Cen-
tral to the potential of these models is the use of pre-trained
transformer architectures, adaptable for different audio and
speech applications. The current study explores the bene-
fits of a range of these representations for AAD. Generally,
SS mappings can be grouped into 2 broad categories. Mod-
els such as ALBERT [10], Mockingjay [11], and TERA
[12] focus on reconstructing continuous filter bank features
by masking parts of the input along different axes. Con-
versely, wav2vec2.0 [13] and HuBERT [14] focus on extract-
ing discrete features from time-domain signals and learning
to predict these discrete representations from masked audio
signals. Notably, while wav2vec2.0 jointly trains the tasks
of vector quantization and mask prediction, HuBERT em-
ploys an iterative re-clustering and re-training method for
discrete representation learning and mask prediction. Based
on HuBERT, a more recent development WavLM [15] fur-
ther extends the pre-training task to both reconstruction and
denoising. Table 1 summarizes all the deep representations
considered for our meta-analysis. All SS embeddings map
onto a 768 dimensional representation hence allowing side-
by-side comparisons of different deep features. Additionally,
we also consider ’shallow’ features that have been widely
used in AAD tasks, notably the auditory envelope and mel-
spectrogram.

2.3. Decoding Evaluations

In a two-speaker scenario, AAD can be approached from
two distinct angles, as suggested by [16]: attended decod-
ing and unattended decoding. Attended decoding focuses on
identifying the speaker to whom attention is directed, while
unattended decoding aims to ascertain information about the
unattended speaker (see Fig. 1). In attended decoding, a trial
is considered correctly decoded if the correlation between
foreground and predicted foreground is greater than or equal
to the correlation between background, and predicted fore-
ground; and the opposite in unattended decoding. Studies
suggest that both the attended and unattended speech streams
are present in brain signals [17], further emphasizing the
significance of these different decoding approaches.
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Table 2. Dataset Information
Dataset #Subjects Duration Language

FU 18 [18] 18 15 hrs Dutch
ET 22 [19] 18 6 hrs English
ZH 20 [20] 21 14 hrs Mandrian

Total 57 35 hrs -

3. EXPERIMENTAL SETUP

3.1. Neural Datasets and Preprocessing

The evaluation covers three unique datasets each with a differ-
ent language: the Fuglsang dataset (FU 18) also commonly
known as the DTU dataset [18]; the Etard dataset (ET 22)
[19]; and the Zhang dataset (ZH 22) [20], as outlined in
Table 2. The trials corresponding to the repetition and single-
speaker conditions were discarded from all datasets to avoid
any potential leaks in the test set. To ensure a fair comparison
across these datasets, we employed a standardized prepro-
cessing pipeline using the MNE python toolbox [21]. The
standardized preprocessing involved the following steps: line
noise removal, band pass filtering 0-8 Hz, artifact removal,
and re-referencing based on average. All EEG channels were
included in the modeling and downsampled to 64 Hz for
AAD. All auditory stimuli were downsampled to 16KHz be-
fore applying different transformations for feature extraction.

3.2. Deep Feature Extraction and Preprocessing

Each deep feature was extracted using the standard S3PRL
[9] upstream configuration. Amongst different versions of the
models available online, we only selected the model check-
points that were trained on the LibriSpeech [22] corpus. We
analyze two different layer combinations for each SSL model:
the Last Layer (LL) and the First-Middle-Last (FML) con-
catenation representation. Analyzing the FML outputs al-
lowed us to assess whether using information from multiple
layers could improve AAD performance. To reduce the high
dimensional embedding space of deep representations (768
dimensions), we reduced the embedding space of each layer
in a model down to its 20 principal components. Leading to
20 channels for LL and 60 channels for FML configuration
after concatenation. Due to different stride values (see Table
1), all features were resampled to 64 Hz. Lastly, all features
underwent normalization before training.

3.3. Shallow Feature Extraction and Preprocessing

The speech envelope is estimated using a gamma tone filter
bank of 28 filters, covering frequencies from 50 Hz to 5 kHz
to capture key auditory features (Bisman et al. [23]). To en-
hance the envelope first, the absolute value of each filter sam-
ple is computed to focus on signal magnitude. Then, these ab-
solute values are exponentiated with a power factor of 0.6 to
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Fig. 2. AAD performance of Attended and Unattended de-
coders with varying window sizes averaged individually for
three groups across all the features.

model the relationship between perceived loudness and inten-
sity. Finally, the algorithm calculates the mean across all 28
filters to obtain the speech stimulus envelope. A 20-bin mel
spectrogram is extracted using Librosa’s[24] built-in function
with a 25 ms window. The choice of 20 bins is to match it
along the reduced 20-dimensional space of deep representa-
tions. Both the features are downsampled to 64 Hz and nor-
malized for AAD.

3.4. Model Training and Cross Validation

To train the linear decoder, we harnessed the regularized
TimeDelayingRidge toolbox available in MNE Python [21].
The multivariate approach employed in this article shares
similarities with the mTRF method outlined in the [4]. The
primary objective is to establish a linear relationship between
the EEG data and the target audio features over an integra-
tion window. Ridge regression introduces a regularization
term to the standard mean squared error, controlled by the
hyperparameter λ. The final solution is obtained by minimiz-
ing the MSE loss between the reconstructed feature and the
target feature with a given hyperparameter λ. We employed
models for each subject, implementing a 90-10 train-test
split for each subject’s data. For hyperparameter tuning, we
conducted cross-validation on each subject, utilizing leave-
one-out cross-validation on the training dataset to determine
the optimal λ. We choose a time-delayed window of 500ms
for model training similar to [16] accounting for the delay in
EEG response to the audio stimuli.

4. EXPERIMENTAL RESULTS

4.1. Main Results

AAD performance was measured using accuracy on the sub-
ject’s test trials over non-overlapping windows. In Table 3,
our results across various experiments and datasets demon-
strate that shallow features are better when decoding atten-
tion using the attended decoder. However, when using the
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Table 3. Comparison of Attended and Unattended Decoders’ accuracy across varying datasets and features.

Feature Attended Decoder Unattended Decoder
FU 18 ET 22 ZH 20 Avg FU 18 ET 22 ZH 20 Avg

Envelope 0.65± 0.36 0.94± 0.23 0.55± 0.25 0.69± 0.34 0.48± 0.34 0.55± 0.51 0.48± 0.25 0.49± 0.36
Spectrogram 0.70± 0.32 0.89± 0.32 0.60± 0.27 0.71± 0.33 0.53± 0.36 0.56± 0.51 0.46± 0.26 0.51± 0.37

Albert ll 0.73± 0.30 0.50± 0.51 0.58± 0.27 0.65± 0.35 0.69± 0.34 0.61± 0.50 0.57± 0.21 0.64± 0.35
Mockingjay ll 0.74± 0.35 0.44± 0.51 0.46± 0.30 0.62± 0.39 0.69± 0.36 0.50± 0.51 0.54± 0.27 0.62± 0.38

Tera ll 0.77± 0.32 0.33± 0.49 0.48± 0.26 0.62± 0.38 0.74± 0.30 0.78± 0.43 0.59± 0.23 0.71± 0.32
Hubert ll 0.72± 0.30 0.33± 0.49 0.45± 0.27 0.58± 0.37 0.60± 0.34 0.50± 0.51 0.56± 0.24 0.57± 0.36

Wav2Vec2 ll 0.61± 0.35 0.50± 0.51 0.47± 0.24 0.55± 0.36 0.63± 0.38 0.50± 0.51 0.59± 0.30 0.59± 0.37
WavLM ll 0.57± 0.34 0.50± 0.51 0.43± 0.28 0.52± 0.37 0.61± 0.36 0.33± 0.49 0.53± 0.29 0.53± 0.38

Albert fml 0.68± 0.34 0.39± 0.50 0.50± 0.21 0.58± 0.37 0.69± 0.35 0.67± 0.49 0.59± 0.27 0.66± 0.36
Mockingjay fml 0.68± 0.39 0.39± 0.50 0.55± 0.25 0.59± 0.40 0.62± 0.39 0.50± 0.51 0.54± 0.31 0.57± 0.40

Tera fml 0.68± 0.35 0.39± 0.50 0.55± 0.28 0.59± 0.38 0.73± 0.33 0.67± 0.49 0.60± 0.27 0.69± 0.34
Hubert fml 0.70± 0.33 0.44± 0.51 0.49± 0.26 0.60± 0.37 0.64± 0.37 0.44± 0.51 0.55± 0.24 0.58± 0.38

Wav2Vec2 fml 0.67± 0.32 0.39± 0.50 0.49± 0.20 0.57± 0.35 0.64± 0.36 0.50± 0.51 0.59± 0.26 0.60± 0.37
WavLM fml 0.65± 0.35 0.39± 0.50 0.48± 0.25 0.56± 0.37 0.64± 0.36 0.33± 0.49 0.63± 0.26 0.57± 0.38

unattended decoder the deep representations are better. No-
tably, the TERA [12] model consistently outperforms others
across all datasets. This suggests that deep features have
an advantage in capturing and decoding unattended signals
in the brain, implying potential nonlinear encoding of audi-
tory information in EEG similar to that of the deep features.
Nonetheless, the TERA features stand out as best performer
for the FU 18 dataset. Despite deep features being pre-
trained on English data, our features exhibit no bias towards
English language datasets, indicating their adaptability for
cross-linguistic analysis in brain signal decoding. We do not
observe any consistent improvements in concatenating repre-
sentations from the layers of the model across features when
using linear decoders. Overall, there is no one feature that
works best across the attended and unattended decoders using
linear decoders on EEG data.

4.2. Effect of Window Size

To further explore the factors influencing AAD performance,
we investigated the impact of different window sizes on the
decoding accuracy. We varied the window sizes while keep-
ing the representation type constant and analyzed the result-
ing performance differences. Our analysis revealed that win-
dow size had a significant influence on AAD performance.
Specifically, larger window sizes tended to yield higher de-
coding accuracy, suggesting that a broader temporal context
enhances the ability to isolate desired sound sources (see Fig.
2). In addition, we also observe that the linear decoding ac-
curacy of the unattended decoder for deep features is con-
sistently better across all window sizes. And there exists no
significant improvement in adding information from different
layers of the model across different window sizes.

4.3. Investigating the Model Weights

Examining the normalized energy of linear model weights
across various time delays (0-500ms) in our study revealed
insights into the temporal dynamics of AAD. The energy dis-

Fig. 3. Normalized energy plots of model weights when av-
eraged across channels.

tribution of initial time delays exhibited higher weighting in-
dicating a marker for auditory attention at the start. How-
ever, the weightage decreases from 200 to 300 ms and then
peaks higher indicating the discrimination between attended
and unattended is maximal at a time delay beyond 300ms time
delay. This observation is dominant across many features as
observed in Fig. 3.

5. CONCLUSION

The study offers a meta-analysis of different mapping of au-
dio stimuli on large EEG data. By leveraging a final linear
layer, the analysis provides a controlled comparison across
shallow and deep embeddings and reveals the possible value
of nonlinear mappings in unraveling different mechanisms
of encoding foreground and background information in the
brain. As this technology continues to evolve, these findings
open exciting possibilities for the exploration of new features
learned by large deep neural networks for improving AAD.
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