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ABSTRACT

Sound Event Detection (SED) tackles the challenge of iden-
tifying sound events in an audio recording by delimiting both
their temporal boundaries as well as sound category. With re-
cent advances in deep learning, current systems are able to
leverage availability of large datasets to train sophisticated
and highly effective SED models. Nonetheless, sound sources
and acoustic characteristics of different classes vary greatly in
their prevalence as well as representation in labeled datasets.
The challenge with data imbalance in the case of SED stems
not only from the representation (number of samples) across
classes but also the natural asymmetry in time duration across
different events varying from short transient events such as
the clacking of dishes to more sustained events such as vacu-
uming. This variability results in an inherent disproportional
representation of effective training samples. To address this
compounded imbalance issue, this work proposes a balanced
focal learning function that introduces a novel time-sensitive
classwise weight. The proposed loss is applied to SED in the
context of DCASE2021 challenge, and reports a notable im-
provement over the baseline, particularly in the case of shorter
sound events.

Index Terms— Imbalanced data, focal loss, weighted
loss, sound event detection, DCASE challenge

1. INTRODUCTION

Sound Event Detection (SED) is a critical technique in a num-
ber of applications spanning video analytics, multimedia tag-
ging, baby monitoring, or other surveillance application [1,
2, 3]. In these applications, the SED model aims to iden-
tifying sounds of interest in terms of temporal boundaries as
well as sound category which allow to understand the acoustic
scene. During training, the SED model learns characteristics
of sound events by leveraging labels that indicate the sound
class and temporal boundaries for each sound interval. The
model is then able to detect interesting sounds whenever they
occur. However, this supervised learning causes a laborious
work for assigning appropriate label to each audio sample.

Alternatively, synthetic soundscapes can be used to simu-
late training scenarios in order to alleviate efforts of building

This work was supported by NIH U01AG058532, ONR N00014-19-1-
2014, and N00014-19-1-2689.

Fig. 1. Label of ”Y2KhtV4TsZ3M 120.000 130.000.wav”
from Real:validation of DESED database.

fully-labeled datasets. The SED task of Detection and Clas-
sification of Acoustic Scenes and Events (DCASE) challenge
introduces a training framework incorporating synthetic au-
dios in combination with extensive real audios which are
either partially annotated or un-annotated [4, 5]. With statis-
tics of co-occurrence rate for multiple sounds in real sound-
scapes, the synthetic audios are generated using the Scaper
approach [6]. This technique is effective in mirroring the
natural statistics of soundscapes under study; however it
exacerbates a separate issue in terms of imbalance across
target classes. Specifically, Speech events tend to be over-
represented in many audio sets, which results in natural bias
of trained models towards those events [4]. While this may be
a desirable outcome because of the importance of speech in
everyday communication, it is not a desirable performance in
a general SED system that identifies likelihoods of a variety
of sound events.

Class imbalance is a common issue that is faced by
many classification models that deal with large and realis-
tic datasets. A number of techniques have been proposed
to tackle this imbalance problem [7], with most solutions
proposing some combination of weighted sampling or ad-
justed loss that calibrate for the fact that some targets have
more data samples compared to others in the training set. In
the case of sound events however, this issue is compounded
by the fact that sound classes may not only be represented
differentially in the training set but that sound events them-
selves vary naturally in terms of their acoustic span. For
instance, Fig 1 shows an audio recording of a kitchen scene
where a sound of frying can be heard throughout the 10 sec-
onds clip; while dishes clacking, which is are transient by
nature are only present over a short period of time. This
over-representation (and under-representation, respectively)
of frying and dishes in this example highlights how the net-
work could be biased towards positive or negative predictions
for long-events and short-events.
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The current study alters the training objective to account
for both the imbalance in sample size across classes as well as
variability in event durations by proposing a Time-Balanced
Focal Loss function (TBFL). In experiments under the context
of DCASE challenge 2021, the proposed loss results a notable
improvement over the baseline system.

2. RELATED WORKS

There are a number of approaches that have been proposed to
explore data imbalance in detection and classification tasks.
Of particular interest to the current work are two techniques
that introduced calibration methods in terms of number of
samples in binary and multi-class problems. Lin et al. pro-
posed the concept of a Focal Loss (FL) to tackle the class-
imbalance in binary classification problems [8]. This work
introduced a cost-sensitive learning for binary classification
where α-balanced FL is denoted as

αFL(p, y) =− αy(1− p)γ log(p)
− (1− α)(1− y)pγ log(1− p)

(1)

where p is a network prediction while y is a true label. γ is
a preset parameter as a positive integer. And α ∈ (0, 1) is
an weight to adjust balance in between target and non-target.
The αFL is the same with Binary Cross-Entropy (BCE) if
it is given an equal weight as α = 0.5 and γ = 0. When
the network produces a high posterior nearly 1.0 due to over-
training toward a major class, the prediction makes a small
weight in the loss by means of (1− p)γ .

For a class-balanced loss, Cui et al. introduced the idea of
effective number of samples [9]. Intuitively, additional benefit
of a newly added data sample will diminish if many samples
are already available for network training. With this assump-
tion, the authors formulate the effective number of samples εc
as

εc =
1− βcnc

1− βc
(2)

where nc is the number of samples for class c and βc ∈ [0, 1)
is a hyper-parameter defined as βc = Vc−1

Vc
with data volume

in class c, Vc. Note that the data volume is proportional to
the number of data samples that are never overlaid with any
others. With an assumption that all data samples are isolated
from each other, the data volumes in each class are practically
decided to total number of data N for all classes. Then, a
Class-Balanced FL (CBFL) is defined as

CBFL(p, y) =

−
∑
c

1

εc
{(1−pc)γyclog(pc) + pγc (1− yc)log(1− pc)},

(3)
where yc is a true label on class c.

3. PROPOSED METHOD

This paper proposes a Time Balanced Focal Loss (TBFL) to
extend the idea of class-balanced focal loss for SED. This ap-

Table 1. Statistics of target sounds in terms of the number of
sound events and average duration

Resource Strong labeled set

class Vc
1)Avg. leng.

(sec.)
rc

2)Avg. dur.
(sec.)

A 190 1.58 0.0368 1.45
B 98 7.40 0.0526 4.14
C 88 1.22 0.0322 1.35
Di 109 0.55 0.0388 0.66
Do 136 1.01 0.0334 1.13
E 56 22.04 0.1165 8.67
F 64 21.09 0.1551 9.38
R 68 11.28 0.1002 6.66
S 128 1.26 0.3130 1.54
V 72 27.34 0.1212 9.46

1)Average length of audio clips
2)Average duration of sound events

proach broadens the idea of a focal loss by incorporating both
number of samples per class as well as event durations in a
time-sensitive loss function. TBFL is denoted as

TBFL(p, y) =−
∑
c

wc{yc(1− pc)γ log(pc)

+ (1− yc)pγc log(1− pc)},

wc ∝
1− βc

1− βcbk×rcc
,

∑
c

wc = C,

(4)

where C is the number of target classes, rc = mc∑
cmc

is a
ratio of the number of frames, mc in class c, and k is a hyper-
parameter to convert from the ratio to the number of samples.

In scenario using synthetic audios for labeled data, data
volume can be defined as the number of sound sources used
in the generation. Although a simulator is able to generate
an infinite number of audios, the synthetic audios result in a
high redundancy representation of sound events because they
are sampled from a finite sound source. Thus, the quantity
of informative sound event would be limited to the number
of sound sources with an assumption that the original sounds
are different to each other. With this background, data vol-
ume is defined as the number of audio clips in the resource
as in Table 1, hence resulting in a new definition of βc. This
consideration differs from the way the class-balanced loss in
CBFL accounts for variability across classes [9].

In addition to class-sensitive definition of the cost func-
tion, we also consider variability across event durations by in-
troducing an exponent of the parameter βc because loss func-
tion during training is calculated on predictions of each time
frame. If the number of frames is directly used for the ex-
ponent, the factor is ignored due to a very large number of
frames in each class. Mathematically, limδ→∞

1−β
1−βδ = 1−β

because of β < 1. Instead, the exponent is designed with a
ratio of the number of frames across the targets rc as in Ta-
ble 1, then it is controlled by a hyper-parameter k. The effect
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Fig. 2. Class averaging event based f-score on different pa-
rameter in (a) k (γ = 2.0) (b) γ (k = 1000 for TBFL)

of k will be explored in experiment.

4. EXPERIMENT
4.1. Database

The proposed method is demonstrated with DESED database
that contains 10-sound events as the target: Alarm/bell/ringing
(A), Blender (B), Cat (C), Dishes (Di), Dog (Do), Electric
shaver/toothbrush (E), Frying (F), Running Water (R), Speech
(S), and Vacuum Cleaner (V) [10]. The training set is com-
posed of strong labeled, weakly labeled, and unlabeled sets.
The strong labeled set consists of 10,000 synthetic audios
produced by the Scaper while the other two subsets are com-
posed of real recordings. Table 1 shows statistics of targets in
the resource for generation and strong labeled set used in net-
work training. Note that sound sources corresponding to long
events are much longer than strong labeled audios because
they are cropped during the generation of the 10 sec audio
segments. The assessment is performed on the validation set.

4.2. Experimental setting

For performance comparison, the baseline of the SED task
in DCASE2021 challenge, which is developed with Binary
Cross-Entropy (BCE) loss, is considered as a counterpart to
the proposed method [5]. In the baseline system, the loss
function is composed of a classification loss for labeled data
and a regularization for all data defined as:

L = Lclsbce(p, y) + λLreg(p, p̂),

Lclsbce(p, y) = BCEx∈S(px, y
s
x) +BCEx∈W (Em[px], y

w
x ),

Lreg(p, y) =MSEx∈S,W,U (px, p̂x),
(5)

where S,W and U are set of strong labeled, weakly la-
beled, and unlabeled set, respectively. BCE(p, y) and Mean
Squared Error, MSE(p, y) result a scalar value by averag-
ing over the classes and frames. ysx and ywx is strong label
and weakly label for input x, respectively. px and p̂x are
network prediction for the x by student and teacher network,
respectively. Em is an expectation operator over the frame.

In the proposed method, the classification BCE loss is
replaced with TBFL as Lclstbfl(p, y) = TBFLx∈S(px, y

s
x) +

Fig. 3. Classwise f-scores of SED models trained with BCE
and TBFL loss, respectively

TBFLx∈W (Em[px], y
w
x ) where TBFL(p, y) yields an av-

erage value over the classes and frames like the BCE(p, y).
Other than this adjustment of the loss function, all settings,
including the structure and training parameters (optimizer,
batch size, and learning rate) are exactly set the same in both
methods.

4.3. Evaluation

In post processing composed of thresholding and smoothing,
multiple thresholds (0.01 to 0.99 with 0.02 step) are applied
to find best performance while a median filter (with 0.45 sec
length) is used for smoothing. Assessment is performed with
event based f-score and Polyphonic Sound Event Detection
Score (PSDS) [11]. For f-score, a detected interval will be de-
cided to true positive if it has matched to truth in time bound-
aries within 200 ms margin as well as sound class. As a mod-
erate metric compared to the f-score, two different criteria are
considered for PSDS. PSDS1 is focusing on time accuracy of
the intervals, on the other hand, PSDS2 is interested in clas-
sification among the targets rather than time accuracy. All
experiments are performed at least 3 times, and the results are
summarized to mean and standard deviation over the iteration.

4.4. Results

4.4.1. Parameter optimization

To explore the effect of hyper-parameter k, the network is
trained using TBFL with different values of k. Also, no
weighted TBFL (wc = 1.0) is considered in this test. With
event based f-score, the results are summarized in Fig. 2(a).
Note that γ is set to 2.0 in this test. When k goes to ∞, the
weight is determined by the data volume of resources only.
However, it is important to note that training loss is calculated
on the synthetic training set not the original resource. In addi-
tion, the data distribution in the training and resource datasets
do vary, and the result with infinite k reflects this effect. As
noted in the results, the case of k = 1000 shows the best
f-score, and outperforms the BCE and no weighted TBFL
as well. For a fixed k = 1000, Fig. 2(b) explores the effect
of the parameter γ; and shows that the best performance is
achieved with k = 1000, γ = 2.0. These parameters are used
for the next investigations.
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Fig. 4. Relative improvement compared to BCE loss: (a) PSDS1 sorted by data volume, (b) PSDS2 sorted by data volume, (c)
PSDS1 sorted by event duration, (d) PSDS2 sorted by event duration

Fig. 5. Histogram of network prediction on each class: Horizontal axis represents the predictions in logit domain (inverse
sigmoid) and the number of frames is onto the vertical axis.

4.4.2. Performance comparison

In classwise f-score, the TBFL leads the improvement in
most of classes (Fig. 3). To investigate the improvement with
a moderate metric, relative PSDS calculated by PSDSTBFL

PSDSBCE
are sorted in two perspectives: data volume (Fig. 4(a-b))
and event duration (Fig. 4(c-d)). In the figure, the gray re-
gion represents standard deviation over the iteration while
the mean is denoted as red point for each class. From the
results, the improvement seems to be related to event dura-
tion rather than data volume, and TBFL is more effective
for short-length events such as Dishes and Dog. In case of
long-events, time accuracy (as in PSDS1) has been improved
in Electric shaver/toothbrush and Vacuum cleaner with a
comparable PSDS2 with the baseline. This is consistent with
the improvement of f-score in those targets.

4.4.3. Effect on posterior distribution

To further investigate the improvement, 10-histograms of the
prediction on each class are built with weakly labeled audio
clips (10 sec length) annotated to each class on pretrained
networks (Fig. 5). Ideally, two clusters: one is in positive
region for target frames and the other is in negative region
for non-target frames can be found in the histogram because
event duration is typically less than whole audio length. For
long events such as Electric shaver/toothbrush, Frying and
Vacuum cleaner, their distributions are likely to be biased to-
ward positive side because their duration is generally longer
than a half of whole length. Similarly, the distribution of
short sounds might be biased toward negative side. In BCE
loss, the distributions are so different to each other. In cases

of Blender, Electric shaver/toothbrush and Vacuum cleaner,
their distributions seem to be biased toward negative side. Be-
sides, the distribution of Dishes show a single cluster in nega-
tive region. On the other hand, the proposed loss shows pretty
similar across the targets in the two categories depending on
duration. For Alarm/bell/ringing and Cat, the distributions
show two clusters for target and non-target. For Blender,
Electric shaver/toothbrush, and Vacuum cleaner, it shows a
cluster in positive region. These effect might be related to the
improvement of those sounds in f-score (Fig. 3). For Dishes
and Dog, both posteriors have been changed, however Dishes
has been significantly improved in f-score while the other is
comparable with the BCE loss. Because of trade-off in be-
tween precision and recall, the TBFL shows a comparable f-
score in Dog while it makes an improvement in both precision
and recall for Dishes.

5. CONCLUSIONS

Imbalance in training set is a general issue in machine learn-
ing. While sample size across data classes is a universal chal-
lenge across classification problems, SED tasks face the ad-
ditional concern of difference in temporal coverage for each
sound class. The current study proposed a time-sensitive loss
function that introduces novel weights to consider both class
and time coverage. Relative to a cross-entropy loss that is
agnostic to class variability, the proposed TBFL results in no-
table improvement in multiple event detection metrics using
f-score as well as PSDS. The approach shows results in more
precise network predictions across classes but reveals marked
benefits for shorter events such as Dishes and Dog which tend
to be under-represented in baseline training methods.
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