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ABSTRACT

Temporal coherence is a feature-binding mechanism that ensures
features that evolve together in time belong to the same object or
event. Coherence has been extensively studied in biological sys-
tems, demonstrating how our brain leverages this mechanism to per-
form complex tasks in real environments and facilitate segregation
of complex sensory signals (or wholes) into individual objects (or
parts), following Gestalt principles. Although intuitive and computa-
tionally tractable, these concepts have rarely been leveraged in audio
technologies. Audio event detection is an application that specif-
ically deals with identifying sound events in an audio recording;
hence is a natural avenue to explore principles of temporal coher-
ence. In this study, we propose coherence-based learning, formu-
lated as a contrastive loss, to train event detection models whereby
embeddings driven by acoustic events are coherently constrained to
maximize discriminability across events. This approach results in
improved detection performance with no additional computational
cost and a very small overhead during the training procedure.

Index Terms— Audio event detection, temporal coherence,
contrastive learning, DCASE challenge.

1. INTRODUCTION

Audio event detection (AED) is an audio processing task of identi-
fying the presence of environmental sound objects with the speci-
fication of precise event boundaries. Audio event detection (AED)
has been gaining traction in the past few years, with numerous
large-scale datasets and community-based workshops accelerating
the progress. AED has found applications in information retrieval
[1], smart homes [2] and smart cities [3] to name a few. The annual
DCASE challenges have ranged from few rare sounds classes to
more general sound classes [4] and recent iterations have addressed
several important challenges with AED for real-life recordings, such
as limited or non-availability of strongly annotated datasets [5, 6].
These efforts have led to the development of methods that lever-
age various big data and deep learning techniques and pushed the
boundaries of event detection.

One of the overlooked aspects in most current AED techniques
is the dynamic nature of soundscapes, where changes in sound
events give rise to variations across acoustic features that inform
the perception of the appearance or disappearance of new sources
in the environment. Specifically, conventional methods employing
a multi-instance classification objective presume temporal indepen-
dence across all time points and rely on supervised labels to assign
correspondences between time frames and class posteriors. This,
in turn, often leads to reasonable classification performances but
less-than-satisfactory event detection performances. In this work,
we focus on distinct information during events vs. event boundaries;
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i.e. specific transition moments where the representation of the
audio signal switches as a new sound source emerges or disappears
from the scene. Here, we propose that learned mappings need to
differentially favor event boundaries where embedding spaces need
to transition across different event loci (or ’states’). Specifically,
we leverage the concept of temporal coherence [7, 8] which posits
that features that belong to the same event tend to co-vary together
over time, a concept that forms a basic mechanism described by
Gestalt psychology as a guiding principle as to how the brain orga-
nizes complex auditory and visual scenes into individual objects or
events [9]. This principle has been shown to provide computation-
ally tractable solutions to problems of sound separation and scene
analysis [10, 11]. In the present work, we explore this principle
for audio event detection and propose an extension of training ob-
jectives whereby embedding features of the system are constrained
differently within and across event boundaries hence formulating a
time-dependent loss function that modulates learned mappings from
the data.

The coherence formulation proposed in this work is adapted
from temporal coherence for video applications [12], where the
video representations are optimized with coherence constraints. This
formulation exploits both samples from the same class and different
classes similar to contrastive learning approaches. Contrastive learn-
ing methods such as the triplet-loss [13] have been used for learning
audio representations utilizing object class and temporal proximity
to improve scene classification and event retrieval performance [14].
In this work, we use a similar contrastive-loss function to enforce
temporal coherence, where only consecutive samples are considered
for contrasting each time point. This formulation allows flexibility
for representations for a given object from different scenes while
constraining only within event representations. We hypothesize that
the proposed contrastive-loss helps improve object identification and
tracking and thereby improves boundary identification.

The details of AED problem formulation and the proposed
method are described in Section 2. Experimental validation of the
proposed method and evaluation metrics are detailed in Section 3.
Section 4 gives the particulars of the results of the experiments
followed by conclusions and potential future directions in Section 5
and relevant references in Section 6.

2. SOUND EVENT DETECTION USING TEMPORAL
CONTRASTIVE-LOSS

2.1. Baseline system

One of the most common approaches to audio event detection is
based on multi-instance classification where a classification model
indicates the presence or absence of an audio object at each time-
point. When strongly labeled data is available, this can be formu-
lated as a classification problem. Let (Xi,Yi)

N
i=1 be a dataset of

audio segments, where Xi ∈ RTF ,Yi ∈ {0, 1}T
′C are a pair of in-
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put sequence and label sequence respectively. Here T, T ′ : T ≥ T ′
represent the time samples, F represents the number of input di-
mensions at each time in Xi and C is the number of classes in the
data. Typically Xi is a time-frequency representation such as Mel-

spectrogram. a classification model f : Xi
f−→ p(Yi) ∈ [0, 1]T

′C

can be trained to minimize classification error averaged over all seg-
ments and time-points within each segment.

Lentp =

N∑
i=1

T ′∑
t=1

C∑
c=1

H(yi,t,c, p(yi,t,c)) (1)

H(a, b) = −a log(b)− (1− a) log(1− b) (2)

Here, H is binary cross-entropy which measures the distance be-
tween two Bernoulli distributions. Thus the objective in (1) finds an
optimal map from audio input to the probability of an audio class.
During inference, a threshold and some post-processing can be ap-
plied on columns of p(Yi) to find contiguous segments of the audio
with the presence of different classes.

2.2. Coherence loss

The loss function in (1) considers all time-points as equally impor-
tant or informative. This assumption effectively ignores the particu-
lar relevance of instances near event boundaries which are expected
to facilitate boundary detection; while instances within events are ex-
pected to reflect more stationary or coherent behavior in feature rep-
resentation. By ignoring this temporal sensitivity, the models have
poorer detection performance when the evaluation criteria require
precise event boundaries along with event labels. To overcome this
limitation, we propose a modification to the loss function that en-
forces higher contrast across event boundaries and higher coherence
within event boundaries. Let zi,t be an intermediate representation
within the classification model at time t for an input Xi and yi,t be
a row vector of the label matrix Yi at time t. The loss function is
now defined as:

Lmod = Lcoh + Lentp

Lcoh = −α1

N∑
i=1

T ′∑
t=2

1>0(||yi,t − yi,t−1||1)(||zi,t − zi,t−1||22)

+ α2

N∑
i=1

T ′∑
t=2

1=0(||yi,t − yi,t−1||1)(||zi,t − zi,t−1||22) (3)

Here, 1A(x) is an indicator function and ||.||p is an Lp norm. α1

and α2 are hyperparameters that control the contribution of the ad-
ditional loss terms. The additional loss terms are designed to max-
imize the distance between two consecutive samples that belong to
different classes and minimize the distance when they are from the
same class composition. Note that the addition or removal of a sin-
gle class is considered for maximization, irrespective of changes in
other classes. Figure 1 details the loss mechanisms with an example
input and output.

3. EXPERIMENTAL SETUP

3.1. Dataset

To validate the benefits of the proposed method, partial data from
the audio event detection dataset from DCASE2021 Task4 [6] is
employed. Since the proposed method requires labels along time,
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Fig. 1. Schematic of the model and two loss mechanisms: cross
entropy and coherence loss The output of the CNN is used as the
intermediate representation on which the coherence loss is applied.
The model used in this paper consisted of 5 2D-CNN layers and 2
Bidirectional RNN layers.

only the synthetic dataset is used for training the models. The train-
ing set consists of 10,000 audio segments of 10s each, sampled at
16kHz with mono-channel audio. These segments include data from
10 different sound classes commonly encountered in domestic en-
vironments, such as alarm, speech, cat, blender, etc. This synthetic
training dataset is created using Scaper [15] by mixing foreground
segments of classes of interest with various background mixtures
with randomization in the positioning of the events and duration of
events. For each segment in this training set, class-wise annotations
are determined during the synthesis process.

For evaluation of models, two evaluation datasets, namely vali-
dation and public are adopted from the DCASE2021 Task4 dataset.
While validation set has 1168 audio segments which are chosen from
AudioSet [16] dataset, public set has 692 audio segments which con-
sist of samples from YouTube and Vimeo. Unlike the synthetic
dataset, these evaluation sets are taken from real audio recordings
and the temporally strong labels for these datasets are manually la-
beled by annotators.

For training the event detection models, the Mel-spectrogram
of each audio segment is used as the time-frequency representa-
tions. 128-dimensional Mel-spectrograms are extracted with a win-
dow length of 2048 samples and a hop-size of 160 samples result-
ing in 100Hz frames with Mel filters applied on magnitude spectra.
A global mean-variance normalization of the feature frames is per-
formed with statistics computed on the synthetic dataset.

After validating the coherence based models on the synthetic
dataset, the effectiveness of the coherence loss function was tested
using the DCASE 2021 challenge baseline setup [6]. Since the weak
and unlabel-in-domain parts of the dataset do not have groundtruth
labels, a cross-entropy based objective function with teacher-student
methodology was used as per the DCASE baseline setup. The model
architecture, feature representations, training and evaluation proce-
dures were not modified except for the addition of the coherence loss
function for the synthetic subset.

3.2. Evaluation

For evaluating the performance of the different models, event-based
F-scores [17] is used as the evaluation criteria. The F-score, com-
puted as the harmonic mean of precision and recall, is a balanced
measure of hits and false alarms. The event-based F-scores penalize
errors in event onsets, offset and labels and have been used exten-
sively to evaluate event detection models in the past iterations of
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DCASE challenge [6, 5]. Macro F-score which is average class-
wise F-score, is used as the primary evaluation criterion and micro
F-scores, which ignore class-wise performance, are used as a sec-
ondary metric. F-scores are computed and reported for validation
and public datasets separately. The tolerance parameter for the on-
sets is fixed at 200ms and is chosen as the maximum of 200ms or
20% of the duration of the event.

3.3. Model parameters

Convolutional recurrent neural networks (CRNN) are used as clas-
sification models in this work. The CRNN consists of 5 layers of
2D-CNNs with a kernel size of 3x3 and a stride of 1x1. Number of
filters in the CNNs were [16, 32, 64, 128, 128] and pooling ratios for
the layers are [[2, 2], [2, 2], [2, 2], [1, 4], [1, 4]]. The pooling ratios
for the frequency axis are chosen to result in a single output dimen-
sion for each filter after the 5-layers. Gated linear units (GLU) [18]
were used as the activation for the CNN layers. The downsampling
from pooling in time results in a sampling rate of 12.5Hz. The out-
put of the CNN is fed to two layers of bidirectional GRU (BiGRU)
with 128 units in each layer. A fully connected layer with sigmoid
units is used as the output layer with an output size of 10 to corre-
spond with the 10 classes in the data. A dropout rate of 0.5 is applied
during the training in all the layers. The architecture of the CRNN
is fixed for all the experiments. The models are implemented with
PyTorch toolkit [19], and a fixed manual seed is used to give similar
initialization to all the models.

The CRNN models are trained with segments from the synthetic
dataset using Adam optimizer with minibatch-based gradient de-
scent with a minibatch size of 5 with 50 epochs of training over
the synthetic dataset. A learning rate scheduling is performed with a
decay factor of 0.8 for every 5 epochs. For the baseline model with-
out coherence, the loss function from (1) is minimized. Among the
trained models, the model with the best performance on validation
is chosen as the final model. This model selection is performed to
alleviate mismatch between the synthetic data used for training and
the real data used for evaluation.

For the coherence models, the loss function is replaced with
(3) with coherence loss applied on the output of the CNN layers as
shown in Fig. 1. For stable convergence, the coherence loss is added
to the classification loss with annealing over 5 epochs. To find opti-
mal values for α1 and α2, a grid search for both the hyperparameters
is performed in logarithmic scale with performance on the validation
set as the criteria.

During the evaluation, posteriors from the CRNN models are
thresholded with a cut-off of 0.5, and median filtering of window 5
samples (0.4s) is applied. These parameters are found to give con-
sistently best performance across all models.

4. RESULTS

Table 1 shows macro and micro F-scores for both the baseline and
coherence models for validation and public datasets. Since vali-
dation is utilized for selecting the best model, performance on this
set served as maximum achievable improvement within the training
conditions, and performance on public serves as the generalization
measure of the models to unseen data. As can be seen from the table,
the coherence model improves on both validation and public datasets
with 2% absolute improvement in macro F-score, which indicates
better detection across classes. To test statistical significance of the
improvements, the models were trained for 5 trials with random ini-
tialization. Two-sample t-tests indicated significant improvement for

both the validation (p=0.05) and public (p=0.007) datasets.
Improvement in micro F-score, an average measure on all the

events ignoring imbalances in the number of events across classes,
indicates the coherence model performs better on an average event.
The best performance with the coherence loss is achieved using
α1 = 0.1, α2 = 0.03. The higher value of α1 can be attributed
to the lower number of time points which are event boundaries
compared to time points that belong to within event regions.

Model validation public
Macro Micro Macro Micro

baseline 20.56 27.83 25.06 32.75
coherence 22.54 29.18 27.36 33.12

Table 1. Macro and micro F-scores for the baseline and coherence
model. The coherence model was trained with α1 = 0.1, α2 = 0.03

.

To further analyze the observed improvements from coherence,
the F-score is broken down with classes and presented in Fig. 2.
Alarm, Blender, Cat, and Vacuum classes have significant improve-
ment across both validation and public datasets. Dog, Water, and
Speech classes show a slight degradation in F-scores. Overall, im-
provements are seen for classes that tend to have quasi-stationary
spectral profiles. Classes that have broadband or noise-like profiles
have no improvements or reduction in performance. This difference
could be attributed to the underlying assumption of coherence that,
within event boundaries, the audio object does not change too much.
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Fig. 2. Class-wise breakup of event based F-scores for baseline and
coherence models across validation and public datasets. Horizontal
dashed lines in blue and red indicate the macro F-score for baseline
and coherence models respectively

The benefits of the coherence could come from better identifi-
cation of classes, improved detection, and response to event bound-
aries, or both. To delineate the contribution from these factors, fur-
ther analysis on the classes with improved F-scores (Alarm, Blender,
Cat, Vacuum) is performed and presented in Fig. 3. Segment-based
F-scores shown in Fig. 3a are a measure of accuracy in the classifi-
cation of feature segments from within event boundaries. Looking at
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segment-based F-scores, it can be inferred that the coherence model
identifies these classes better compared to the baseline model.

The segment-based F-scores may not necessarily translate to im-
provements in event-based F-scores as any misses around boundary
segments or any noise in posterior within the event could lead to
penalties in event-based F-scores. A measure of “change within the
event” is computed as the L1-norm of derivative in the representation
z for the select classes. A histogram of the changes shown Fig. 3b,
gives different distributions for the two models, with the coherence
model showing reduced changes both in terms of the variance and
the mean of the distribution when compared to the baseline model,
which can lead to stable posteriors and reduced false alarms.

Fig. 3. (a) Segment based F-scores for select classes. (b) Histogram
of change in representation within event boundaries for different
models.

Event-based F-scores penalize a detection if the predicted
boundaries do not match reference boundaries even if the model
prediction matches the stable event regions. Thus the model poste-
riors must change at reference onsets and offsets for better event-
based F-scores. To analyze this, a subset of events that are reliably
detected within stable event regions are selected for further analy-
sis. For events in this subset, the posteriors from the models from
the samples around the onsets and offsets are collected to check
the average posterior profile curves around event boundaries. Fig.
4a,b compare these average posteriors with reference onsets and
offsets. As can be seen from these plots, the posterior probabilities
for the coherence model have steeper slopes and reach higher/lower
values within 200ms (tolerance used for detection) of the reference
onsets/offsets compared to the baseline model. Thus even when
both models detect the stable regions similarly, the boundaries are
better represented by posteriors from the coherence model. The
effect of such sharper posteriors can be seen in the example shown
in Fig. 4c where the posterior probabilities of the Alarm class are
shown for both baseline and coherence models. For this example,
the coherence-based model has 3 hits, missing only the event from
5.5-6.5s, whereas the baseline model has no hits. This example
demonstrates the benefits of having stable posteriors and sharper
onsets.

Model Macro F-score
DCASE 2021 baseline 41.5 ± 1

coherence 43.5 ± 1

Table 2. F-score for DCASE 2021 baseline and coherence models

Table 2 shows the macro averaged F-scores of the teacher mod-
els for DCASE 2021 baseline and a coherence model trained using
the DCASE baseline setup. The reported results are average F-scores
from 3 trials and their standard deviations. The coherence model,
which modifies the loss function only for the synthetic dataset, was

found to improve F-scores on a standard event detection task.
Thus coherence, formulated as a temporal contrastive loss, is

found to achieve the objectives of finding stable representations
within event regions while enhancing the edges around event bound-
aries. As hypothesized, these additional constraints lead to better
event detection performance as evidenced by both event-based and
segment-based F-scores. While the formulation discussed in this
work requires strong temporal labels, it can be adapted to weakly
labeled data either by using pseudo-labels or some other semi-
supervised approach, which will be explored in the future.

Fig. 4. (a) Average posterior probability anchored around event on-
sets. The shaded region indicates a post-onset event. (b) Average
posterior probability anchored around event offsets. The shaded re-
gion indicates a pre-offset event. Error bars indicate ±1 standard
error. (c) Example of an alarm class posterior probabilities from
baseline and coherence models along with the reference event re-
gions shaded in gray.

5. CONCLUSION

In the present work, we proposed a temporal coherence-based loss
function for audio event detection. The proposed method exploits
strongly labeled data to model event boundaries in a contrastive
learning framework. By utilizing consecutive samples within each
audio as both positive and negative samples, a temporal contrastive-
loss-based objective function is proposed, which can be optimized
using a gradient descent algorithm in a deep learning framework
to train models. When trained using the synthetic subset of the
DCASE2021 Task4 dataset, the coherence loss improved the event-
based F-score of a CRNN model trained only using classifica-
tion loss. By analyzing the representations within events and at
event boundaries, we demonstrated the proposed objective function
achieves both better event identification and sharper event bound-
aries. Given the simplicity of the formulation, the proposed method
can be adapted to other event detection tasks or different model
architectures.
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