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ABSTRACT

Sound event detection (SED) takes on the task of identifying
presence of specific sound events in a complex audio record-
ing. SED has tremendous implications in video analytics,
smart speaker algorithms and audio tagging. Recent advances
in deep learning have afforded remarkable advances in perfor-
mance of SED systems; albeit at the cost of extensive label-
ing efforts to train supervised methods using fully described
sound class labels and timestamps. In order to address lim-
itations in availability of training data, this work proposes a
self-training technique to leverage unlabeled datasets in su-
pervised learning using pseudo label estimation. This ap-
proach proposes a dual-term objective function: a classifi-
cation loss for the original labels and expectation loss for
pseudo labels. The proposed self training technique is ap-
plied to sound event detection in the context of the DCASE
2020 challenge, and reports a notable improvement over the
baseline system for this task. The self-training approach is
particularly effective in extending the labeled database with
concurrent sound events.

Index Terms— Semi-supervised learning, sound event
detection, pseudo label, reliability, DCASE2020

1. INTRODUCTION

Analysis of sound events in audio recordings enables the
detection of presence of different sound classes including
human voice, animal vocalizations, man-made objects, etc.
Identification of such sounds is critical in a number of appli-
cations spanning video analytics, multimedia tagging, baby or
pets monitoring, or other surveillance applications [1, 2, 3].
These applications generally specify the types of events of
interest that a sound event detection (SED) system aims to
identify.

Recent approaches based on deep networks have shown
tremendous improvement in SED task performance [4, 5, 6,
7]. With fully described labels for time boundaries and as-
sociated sound event classes, these models are able to learn
temporal characteristics across target sound events. However,
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as is the case with other deep learning networks, these meth-
ods require a large amount of labeled data to optimize the sys-
tem parameters. As curation of large labeled data is expensive
and time consuming, alternative ideas have been explored par-
ticularly semi-supervised learning which leverages extensive
unlabeled data in combination with small amounts of labeled
data [8, 6, 9]. The Detection and Classification of Acoustic
Scenes and Events (DCASE) task 4 challenge focuses on use
of unlabeled data along with weakly labeled data which in-
cludes the identity of sound event classes without time bound-
ary markings in order to train SED system [10]. In this chal-
lenge, a variety of network architectures have been suggested
for the SED task with some notable improvements over the
baseline [11, 12, 13, 14].

As in the case of DCASE task 4, the problem scenario
in the current work is also to leverage unlabeled and weakly
labeled data. However, this paper focuses on developing a
new semi-supervised learning approach rather than optimiz-
ing the network structure. The novel learning method pro-
posed here is based on pseudo label estimation and a weighted
objective function computed from the pseudo label for self-
training. A pseudo label is estimated based on expectations
of potential labels. A probability for each potential label is
calculated based on a Bernoulli process with class posteri-
ors produced by an averaging network. The proposed objec-
tive function consists of classification loss between true la-
bels and network predictions for labeled data and expectation
loss between the pseudo label and the network prediction for
unlabeled and weakly labeled data. To balance the contribu-
tions of the two loss terms on training, a weight designed by
a cross entropy between true and pseudo labels for labeled
data is multiplied by the expectation loss. To demonstrate
effectiveness of the proposed method, experiments are per-
formed following the protocol for the SED task in the recent
DCASE challenge (DCASE2020). As a result, the proposed
method shows statistically-significant improvement in SED
performance. It also highlights advantages of the proposed
approach when dealing with concurrent sound events.

2. RELATED WORK

There has been a growing body of work exploring use of
unlabeled data in supervised learning [15]. Among the ap-
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proaches worth noting, the MeanTeacher model has been in-
strumental in pushing forth the state of the art in image clas-
sification [16]. The objective function for the MeanTeacher
model consists of a classification loss and a consistency loss
as

fr = BCE(§,y) + aMSE(4,7'), 1)

where the classification loss BCE(, y) is designed by a bi-
nary cross entropy between student network prediction  and
true label y. The consistency loss MSE(j,¢’) is calculated
by mean squared error between two predictions by student
and teacher networks §/. « is a coefficient to adjust con-
tribution of the second term in training. The student net-
work parameters are updated by gradient descent while the
teacher network parameters are updated by exponential mov-
ing average of student network parameters over the training
step (Fig.1(a)). Note that both networks have the same struc-
ture while random perturbations such rotating, shifting, or
adding noise is independently performed on each network’s
mid-layer. The motivation for this configuration is to enable
the student network to produce the same outputs even in pres-
ence of various perturbations. As a result, the model is able to
map any data point within a manifold into similar predictions.

In an alternative approach known as self-training, a net-
work is iteratively trained with both labeled data and un-
labeled data with pseudo label estimated in previous itera-
tions [17]. Thus, the concept is quite similar in nature with
semi-supervised methods by exploiting its ability to gener-
ate pseudo labels for self training. It is, therefore, critically
important to estimate pseudo label accurately to prevent con-
fusion due to the label estimate.

Other approaches fall in the continuum between these
methods, among them is pseudo-label training which is ex-
plored in this paper. The consistency loss in the MeanTeacher
model trains the network to produce the same outputs from
any data point within a manifold. However, the model has no
way to provide any mitigation measures when the outputs are
not accurate. These incorrect outputs may affect the overall
model performance when a large amount of unlabeled data is
used compared to the amount of labeled data [18]. To combat
this issue, we propose a method of pseudo label estimation
and an objective function designed to adjust its influence in
training according to its label estimation accuracy (Fig.1(b)).

3. PROPOSED METHOD

3.1. Pre-processing and Network architecture

Each input audio clip is modified to a 16kHz mono-channel
waveform by resampling and averaging left and right chan-
nels for multi-channel recordings. Then, the waveform is con-
verted to a log mel-spectrogram with 2048 FFT window, 255
hop size, and 128 mel frequency channels.

Since optimizing the network structure is out of focus
in this work, a Convolutional Recurrent Neural Network
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Fig. 1. Diagrams for semi-supervised learning where z is in-
put data. 6 and ' mean parameters for network (Student) and
averaging network (Teacher), respectively; (a) Mean Teacher
model where 7 and 7’ are random perturbations in each net-
work’s mid-layer, (b) Proposed method where ¥ is the pseudo
label.

(CRNN), which is used for SED task in DCASE2020 chal-
lenge as a baseline, is adopted. The network is composed of
two stages: Convolutional Neural Network (CNN) to com-
press acoustic features within the log mel-spectrogram and
Gating Recurrent Units (GRUs) to capture temporal relations
among the compressed codes by the CNN. The core element
of the CNN consists of a convolutional layer, an average pool-
ing layer, and a fully connected layer with a relu activation,
batch normalization, and dropout techniques. A two-layered
bidirectional GRUs is composing for the following stage.
At the final output layer of the network, a sigmoid function
is applied to represent posterior probability for each target
event. More details can be found in [10].

3.2. Objective function

The objective function in the proposed method is designed as
2

The equation is nearly identical to equation (1) except that
we define the expectation loss M SE(§, i) as a mean squared
error between the network prediction and the pseudo label 3
with a reliability v of the pseudo label.

3.3. Pseudo label estimation

I¥ represents a label vector where k is the number of possible
concurrent events in each frame and n is an index to represent
all possible combination of concurrent events under k. The
label vector I¥ can be expressed by a summation of one-hot
vector expressed as delta function as [2, iy = 0i £ 05 for
events ¢ and j (k = 2). Then, a pseudo label can be estimated
by expectation of all possible labels as

§ =3k 3" o ln, (3)
where p¥ is a probability for a label I¥, K is maximum num-
ber of concurrent events, and N, = C!/(k! x (C'—k)!) is the
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number of possible labels under k and total number of target
event categories C'.

Since the averaging network, which is built by exponen-
tial moving average of the network weights over the training
steps, tends to produce more accurate predictions [16], for
a prediction ¢’ by the averaging network, the probability for
each possible label is calculated based on Bernoulli process-
ing. For example, the probabilities are calculated depending
on the k as

k=0, Pogy = %Hq (1= 7g),
=1, Phetsy = x0Tz (1= 35),
k=2, Pragiy = %Qéﬁ}ﬂq#,j (1-g,), @
k=3, Phijn = %Qéyﬂ-%ﬂqﬁ,j,h (1—7,),

ceey

where N is a normalization factor as N = S5 32k pk.

This formulation introduces a heavy computational load
to calculate probabilities for all possible labels in every frame.
To resolve this issue, the number of concurrent events k is
considered up to 3 and the probabilities for multi-event labels
are calculated by a dynamic programming technique (5). In
addition, the computing time can be dramatically reduced by
parallel processing with GPUs.

k=0, P® = log(pgz{}),
k=1, P'=P°+log(g;) — log(1 —§),
_ 2 _ 1 1 0
k=2, P} =P+ P —P°,
_ 3 _ 2 1 0
k=3, P}y =Pl + Py — P°.

®

3.4. Reliability

The outputs by the averaging network are obviously unre-
liable at the beginning of training. Even at later stages of
training, pseudo labels are still generating expectation values
based on predictions. Thus, a weight +y is designed to estimate
the reliability of the pseudo label (6).

3.0 675(17m/M)2
BCE(j,y)

where m is an index for training step and M is the maximum
ramp up value. The reliability consists of exponential ramp
up value and binary cross entropy between the pseudo and
true label. At the beginning of training, the contribution of
expectation loss (2) remains small due to the ramp up, and
is increased as the training progresses. Additionally, the re-
liability is clipped to prevent the expectation value dominat-
ing the loss function over labeled data. Note that reliabil-
ity is calculated with labeled data only. The implementation
of proposed method can be found in http://github.com/JHU-
LCAP/Self-training.

5.0). (6)

~v = min(
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4. EXPERIMENTS

4.1. Database

A database for the SED task in DCASE2020 challenge is used
[19]. Among the subsets in the database, Synthetic:training,
Real:weakly labeled, and Real:unlabeled are used for net-
work training via semi-supervised learning and Real: valida-
tion is used for evaluation. Synthetic:training has strong label
that includes both sound event class and its timestamps when
it happens and terminates and Real:weakly labeled has a truth
for event class only. On the other hand, both event class and
its timestamps are missed in Real:unlabeled.

4.2. Experimental setting

The challenge baseline, which adopts a version of Mean-
Teacher model for semi-supervised learning, is considered
as a counterpart of the proposed method in assessment [10].
Note that all settings such the CRNN structure and train-
ing parameters (optimizer, batch size, and learning rate) are
set exactly the same way in both methods except loss func-
tion. For the proposed method, additional evaluations are
performed depending on the parameter K (the maximum
number of concurrent events) to investigate the effect of
approximation (Eq. (5)).

In both methods, one batch for training consists of 6
weakly labeled data, 12 unlabeled data, and 6 synthetic data
by random sampling on each data pool. To calculate loss (Eq.
(2)), synthetic data are only applied for BCE while weakly la-
beled and unlabeled data are applied for MSE in every frame.
Also, the synthetic data is used to calculate reliability of the
pseudo label (6). Due to the randomness in batch, evalua-
tion of each method is performed 5-times and the results are
summarized by mean and standard deviation for comparison.

Each method is evaluated by event based class averag-
ing F-score with the protocol for SED task in DCASE2020
challenge. Briefly, an event interval is detected by applying
a fixed threshold to event posterior (i.e. network output) over
the time. The interval would be considered as true positive if
its time boundaries are close enough to true timestamps (less
than 200ms) in the same event otherwise it is flagged as false
positive. Then, precision, recall, and F-score are calculated
for each class. More details are described in [20].

4.3. Results

In the baseline, class averaging F-score is 34.04 £+ 1.48%
marked as the black line with grey area for its variation
(Fig. 2). The results for proposed method are represented as
the red line depending on a constraint of maximum number
of concurrent events. With the strict assumption of non-
overlapping sound event detection ()X = 1), the proposed
method flags a single sound for overlaid sound events. Since
sound event usually overlaid with other sounds in practical
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Fig. 2. Class averaging F-scores for baseline method, pro-
posed method, and fusion of both methods. Black line with
gray area represents mean and variation for baseline method.
The proposed method and fusion result are represented as red
and blue line, respectively.

environment, the performance is below the baseline (in t-test,
z = 3.95,p = 0.0042). On the other hand, the performances
of proposed method are notably improved relative to the
baseline when concurrent event scenarios (K = 2 or 3) are
considered in pseudo label estimation. The performance in
F-score is saturated at K = 2. The case, which three or
more sound events among the targets happen at a time, is
unusual in real environments. The proposed method shows
improvement relative to the baseline by about 2.3% in class
averaging f-score (in t-test for K = 2 : z = 3.14,p = 0.0137
and K =3:2=277,p=0.0243).

Fig. 3 shows the breakdown of F-scores for all 10 sound
events to allow a class-wise comparison. As noted in the fig-
ure, the proposed method yields improvement in four classes:
Alarm/bell/ringing, Electrical shaver/toothbrush, Frying, and
Vacuum cleaner. On the other hand, the F-scores are lower in
Dishes, Dog, and Speech, as we will expand on in the follow-
ing section. Additionally, as represented by error bar in each
class, the proposed method shows consistent F-scores over the
repetitions compared to baseline results. The maximum vari-
ance is founded in Electrical shaver/tooth brush as 9.50% for
baseline and Blender as 5.33% for proposed method.

Given the limited improvement on some classes using this
self-training method, we suggest a fusion system by combin-
ing both the self-trained and original baseline based on maxi-
mum performance on a per-class basis. The blue line in Fig 2
and 3 depicts the performance of this fusion system and shows
that the fusion approach results in the best performance across
both systems. In case of (K = 2) fusion, the class averaging
f-score has been reached to 38.97 £ 1.08 %.

S. DISCUSSION AND CONCLUSION

In the recent DCASE challenge, many systems for SED have
been introduced and show a much higher performance than
this proposed method. They used alternative CRNN structure
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Fig. 3. Class-wise f-score in baseline method (black), pro-
posed method (red), and fusion of both methods (blue)

designed by themselves and their networks were trained in the
same manner with the baseline. On the other hand, this work
focuses on training strategy for usage of both weakly labeled
and unlabeled data in network training for the same structure
with the baseline. If alternative structure for CRNN is used
in this work, the performance might be further improved be-
cause pseudo label would be estimated with more accurate
class posterior. However, the baseline CRNN was used in this
work for a fair comparison. The evaluation with alternative
CRNN will be performed in future.

In class-wise comparison, the proposed method shows an
issue in three classes, Dishes, Dog, and Speech. In the base-
line, augmented input by transformations such shifting, rotat-
ing, and adding noise from original input was used in training
so that the baseline network projects any data points within a
manifold into similar predictions. On the other hand, the pro-
posed network performs a point-wise projection since it has
no way for manifold projection like the baseline. It seems that
these classes, especially in Dishes and Dog, show this limita-
tion of the proposed method. Additionally, the best f-score is
represented on Speech class for baseline. It might be related to
unbalancing issue in training data. The Speech has a large por-
tion of the training set: unlabeled as well as weakly labeled
data compared to other classes (about 40 % in Real:validation
set for frequency). In case of supervised learning, this issue
can be resolved by dynamic sampling on training dataset be-
cause all labels are available [21]. However, it is difficult to
apply the method to semi-supervised learning because the fre-
quencies of each class are unknown in unlabeled data. This
issue remains an open question that will be explored in future.

This paper proposes self-training method with pseudo la-
bel and its reliability for supervised learning using unlabeled
and/or partially labeled data in combination with fully labeled
data. The self-training approach has shown effectiveness in
experiments for concurrent sound event detection. In future,
two issues in this approach will be considered: one is perfor-
mance degradation in several classes and the other is the class
unbalancing problem in training data.
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