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ABSTRACT

Synthesis of music content generally leverages the underlying sta-
tistical structure of music to develop generative models, able to cre-
ate new musical expressions within the same genre. In this work,
we explore the statistical structure of a musical corpus and its effect
on modulating the attention of listeners. The study specifically ex-
plores listeners’ engagement to newly synthesized music and tests
the hypothesis that maximizing statistical surprisal would result in
increased auditory salience. The study employs a dynamical statis-
tical model to estimate melodic line surprisal and develops an opti-
mization procedure using parametrized codebooks to synthesize mu-
sical segments that maximize statistical surprisal. A behavioral ex-
periment with a dichotic listening task is designed to probe salience
of the synthesized melodies against original melodies by measuring
listeners’ engagement in a continuous-fashion. Results indicate that
we can control the salience of sounds by manipulating the statistical
surprisal, guided by the complexity of the temporal structure of the
musical corpus. This work suggests that future work in automated
music synthesis could leverage statistical models of music beyond
musical aesthetics to also manipulate the degree of engagement.

Index Terms— Statistical surprisal, auditory attention, music
synthesis, auditory salience, regularity extraction

1. INTRODUCTION

Music is often described as a series of moments of tension and re-
lease, where the music builds expectations over time that create ten-
sion when they are violated and release when they are met. Algo-
rithmic composition and automated synthesis of music content at-
tempt to leverage this underlying statistical structure by developing
computational models to learn complex structures and rhythms that
control the musical composition both at the local and global scales
[1, 2]. Configurations based on generative systems such as adver-
sarial models or recurrent networks have successfully yielded mean-
ingful musical structures that were reasonably aesthetically pleasing
to human listeners [3, 4]. Still, deep learning methods often obscure
the statistical structure of music; hence making interpretation of the
representations formed by these networks rather difficult.

Beyond musical aesthetics, the perceptual experience of listen-
ers is colored by various aspects of the underlying statistics of the
musical structure. In this work, we are interested in the relationship
between the statistical constraints of a musical corpus and its effect
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on engagement of listeners in the musical experience. We specifi-
cally focus on the melodic pitch of monophonic pieces and examine
how the statistical structure manipulates attentional focus of listen-
ers. Evidence from brain responses indicate that perceived degree
of expectedness of a musical piece are closely reflected in neural
responses [5, 6]. Based on these results, we hypothesize that expec-
tation violation makes certain moments of a melody more engaging;
and by increasing these moments of expectation violations, we can
produce more engaging music.

A probability measure for expectation violation is the negative
log-likelihood of a given observation, conditioned on past obser-
vations. In information-theoretic terms, this quantity is referred to
as surprisal and is equivalent to self-information. Surprisal gives a
measure of how unexpected a given observation is under the assumed
statistical model. In [6], surprisal was shown to be a good predictor
of the behavioral judgment of unexpectedness of a particular note.
Based on these results, we formulate our objective as maximizing
surprisal to increase perceived unexpected moments in a melody.

Dynamic models such as Markov chains are often used to model
the statistical structure of music. D-REX[7] and IDyOM[8] are two
such examples of Markov models of music. While IDyOM uses
variable-order Markov chains similar to n-gram language models,
D-REX uses a multiple run-length based Markov model, to capture
different time-scales of dynamics. These models provide a condi-
tional distribution for each observation based on the past, which
makes them convenient for sampling. In the present work, we use
the D-REX model as it can provide robust estimates, even when prior
training data is unavailable.

This study builds on surprisal estimates from the D-REX model
to synthesize new melodies that maximize the violation of expec-
tations of the underlying statistical melody, hence maximizing sur-
prisal. We then verify our hypothesis that such newly synthesized
melodies would engage listeners’ attention more robustly compared
to the original melodies. The study is specifically focused on lis-
tener engagement rather than musical aesthetics, and aspires to con-
vey a clear relationship between statistical structure and estimates
of surprisal based on musical statistics. Naturally, one of the ques-
tions to address in this exploration is the measure of musical engage-
ment. Here, we explore a novel approach based on psychoacoustic
testing using dichotic listening. We present subjects with concur-
rent melodies to each ear and measure which side engages listeners’
attention without specifically alerting listeners to any aspect of the
melodies. This paradigm is employed to test various key parame-
ters in the musical statistical structure and estimates of surprisal and,
ultimately, on attentional engagement of the listener.

This paper presents the methodology of the statistical model and
surprisal maximization algorithm in Section 2. Section 3 presents
the testing paradigm along with the model manipulations. Section 4
describes the main results of listener engagement and analysis of test
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Fig. 1: Block Diagram explaining the synthesis using the statistical
model and codebook based search algorithm

conditions; before presenting an overview of the main conclusions
in section 5.

2. STATISTICAL MODEL OF MUSIC SURPRISAL

The present work probes a statistical model to understand how statis-
tical structure affects salience of music. The methodology involves
(i) inferring a statistical model of an existing musical corpus, (ii)
using the model to guide estimates of expectations (or surprisal es-
timates of the melodic line), (iii) using an optimization algorithm
to select components that maximize surprisal in newly synthesized
pieces. These new melodies are tested to assess degree of engage-
ment of listeners using a novel dichotic listening paradigm. The dif-
ferent elements of the methodology are outlined below.

2.1. Surprisal model

To model statistical structure of music, we use the Dynamic Reg-
ularity EXtraction (D-REX) model1 presented in [7]. This model
is based on a Bayesian inference framework designed to build se-
quential predictions from dynamic stochastic sequences containing
unknown changes in the underlying statistical structure [9, 10].

The input to the model is a sequence of pitches {xt} assumed to
be distributed according to a multivariate Gaussian with dimension
D and unknown parameters θ = {µ,Σ}. The dimensionD specifies
the extent of temporal covariance collected by the model. For exam-
ple, a model with D = 1 only collects marginal statistics (mean and
variance), whereas a model with D = 3 additionally collects joint
dependencies (i.e., covariances) between xt, xt−1, and xt−2.

The model sequentially builds a predictive distribution for the
next tone at time t + 1 given the sufficient statistics estimated from
the context with length c: P(xt+1|xt−c+1:t) = P(xt+1|θ̂c); where

1code available at https://engineering.jhu.edu/lcap/software

θ̂c = {µ̂c, Σ̂c} are the sample mean and sample covariance esti-
mated from the context xt−c+1:t.

The model assumes the parameters θ change at unknown
changepoint times, rendering all observations post-change statisti-
cally independent from those before the change. If the changepoints
were known, the ideal context would exclude observations preced-
ing the last changepoint. Because changepoints must be inferred
from the inputs, the model maintains multiple hypotheses across
different contexts and “integrates out” the unknown context to build
a robust prediction: P(xt+1|x1:t) =

∑
c P(xt+1|c, θ̂c) P(c|x1:t).

This weighted sum contains the predictions given each context c
weighted by the belief in (or, equivalently, the posterior probability
of) context c given the observed sequence. Upon observing the
new input, the sufficient statistics for each context c, as well as the
beliefs, are updated incrementally with xt+1 and used to predict
subsequent inputs.

From the prediction, we derive a measure of surprisal, St, for
each input xt: St = − log(P(xt|x1:t−1)). Surprisal is a continuous
measure of mismatch between the observed input and the prediction,
thus more probable observations have low surprisal and less probable
observations have high surprisal.

2.2. Surprisal optimization algorithm

The D-REX model (described in the previous section) provides
surprisal for any given sequence of pitches. Next, we present an
optimization-based synthesis used to produce music with maximum
surprisal. The optimization uses a simplex search algorithm [11],
which is a gradient-free multidimensional optimization technique.

The synthesized melody is built up sequentially with segments
of lengthK. The choice ofK is constrained by the model parameter
D, which controls the structure of the statistical model of the melody.
To guide the optimization design, we employ codebooks containing
fragments of the musical corpus. A codebook Ck consists of pitch
sequences of length k. Codebooks are used as building blocks of
synthesis in order to confine the range of generated segments within
the same expressive segments of the original corpus since no fully
automated synthesis approach is used yet. The synthesis is shown in
Figure 1 and described in detail below.

1. A sample melody is chosen from the music corpus and the
first half of the melody is used for initialization of priors in
the D-REX model.

2. For this iteration, parameter D is chosen randomly from a
fixed range ΓD . This choice of D controls the statistical
structure used to compute surprisal.

3. The length of the codebook K is sampled from the same
range ΓD . A set of K + 1 candidate samples are picked ran-
domly from the codebook CK and appended to the melody to
form K + 1 candidate melodies.

4. Surprisal is measured using the D-REX model for each of the
candidate melodies.

5. A simplex search is performed to minimize the cost func-
tion of mean surprisal and quickly span the search space of
melodies. The candidate melody from Ck that minimizes
the L2-distance of pitches generated from the optimization
is chosen as the output.

6. Now, the selected melody is used as the initialization for Step
2 and the optimization procedure is repeated until the length
of the synthesized melody is the same as the original melody.



3. EXPERIMENTAL SETUP

3.1. Musical corpus

Monophonic excerpts of music from Bach sonatas and partitas were
used in this study. Melodies were synthesized with either vio-
lin or clarinet sounds sampled from the RWC Musical Instrument
Database [12]. A total of 39 melodies were used with an average
length of 57 notes presented isochronously at approximately 7Hz,
leading to an average duration of about 8 seconds per melody. The
stimuli were adapted from work by Di Liberto et al. [13], and used
with permission of the authors.

3.2. Subjects

A total of 150 subjects were recruited using AWS Mechanical Turks
via a web browser, designed using libraries from jsPsych[14]. Out
of the 150 subjects, 93 were male, 56 female, and 1 non-binary. The
average age was 33 years. Subjects were compensated after par-
ticipating in the study. All procedures were approved by the Johns
Hopkins Institutional Review Board (IRB).

3.3. Behavioral paradigm

To test engagement of the synthesized music, we designed a dichotic
listening task, adapting a procedure previously used to study audi-
tory salience [15]. Subjects were presented with the synthesized
melody in one ear and the corresponding original melody in the other
ear, therefore the presentation to the two ears only diverges in the
second half of the melody. Subjects are asked to report which side
they are focusing on at every moment, hence delivering a continuous
measure of engagement rather than a single binary report at the end
of the melody. Subjects can move the cursor to the side which they
are attending to or keep the cursor in the middle to indicate attending
to both ears or neither.

In dichotic listening tasks, it is often difficult to pay attention
to one of the ears. To facilitate discrimination between the two
melodies playing simultaneously, we use two instruments with dis-
tinct timbres. We chose violin to play one melody and a clarinet to
play the other melody. To compensate for any preference towards
one of the instruments, we conduct two trials for each melody com-
bination such that each melody is presented with both violin and
clarinet. The side playing the synthesized melody (left vs. right ear)
is randomly chosen in each trial.

3.4. Test parameters

One of the open questions is the direct impact of the underlying sta-
tistical structure of the corpus on the optimization procedure for syn-
thesizing new melodies. Specifically, we are interested in the influ-
ence of the extent of temporal structure captured by covariances over
different time windows. The D-REX model controls such structure
via the model parameter D. In this work, we contrasted two degrees
of complexity in the underlying model, a lower-order model with
D ∈ {1, 2, 3} versus a higher-order model with D ∈ {8, 9, 10}.
The former (referred to as short) assumes a more local dependency
between notes as they evolve in the melodic line, while the later (re-
ferred to as long) considers more complex phrasing and temporal
relationships and could arise from presence of patterns like arpeggio
cycles. For the short condition, both variables D and K are sam-
pled from the range {1,2,3}. This corresponds to synthesizing in
shorter steps and smaller D, reducing the time-scales captured by
the D-REX model. In the long condition, we sample D and K from

Fig. 2: Example Bach melody (left panel) and synthesized version
(right panel) showing changes in melodic pitch. Bottom panels show
estimate of statistical surprisal for each melody using the a short
model (D=2) and a long model (D=8).

{8, 9, 10}, incorporating more temporal complexity in the statistical
model.

To ensure any effects observed are due to the statistical model
driving the synthesis, we performed a control experiment where we
chose random notes from the codebook with sizes K ∈ {1, 2, 3}.
In this control case, the procedure for the short condition is repli-
cated but instead of maximizing surprisal, a random segment from
the codebook is selected. This control case serves as a baseline to
examine whether the mere fact of shuffling the melodic line of an ex-
isting Bach melody would in fact attract listeners’ attention beyond
our stated hypothesis that presumes that this attentional engagement
is contingent on maximizing surprisal.

4. RESULTS

Figure 2 shows an example of an original Bach melody (left) along
with a continuous estimate of surprisal for each note using the D-
REX model with an underlying multivariate Gaussian model with
short temporal structure (D=2, dashed line) versus an analysis of the
same melody using a longer temporal structure (D=8, solid line).
The right panel shows the corresponding synthesized melody using
the left melody for initialization. Surprisal estimates (bottom pan-
els) highlight the differences between the underlying statistics that
employ different granularity of sufficient statistics. A given note can
vary widely in terms of how well it fits expectations of a short-term
vs. a long-term model indicating that a choice of such statistics needs
to be carefully considered for a specific musical corpus to capture
the musical phrasing and complexity of melody dynamics. The right
panel also shows how the synthesis procedure (shown after half-way
point) not only changes the local estimates of surprisal of individ-
ual notes; but also results in widely different estimates for different
statistical models.

Next, we examine the effectiveness of the dichotic procedure in
capturing the engagement of listeners with these newly synthesized
melodies. The analysis procedure averages the response of each sub-
ject for each trial, yielding a curve that is scaled between [0,1], where
0 indicates attending to the original Bach melody, 1 indicates attend-
ing to the synthesized stimuli, and 0.5 indicates subjects have no
preference between the original and synthesized melodies. The syn-
thesized stimulus deviates from the original melody at the halfway
point; thus, we refer to responses before this point when melodies
presented to both ears are the same as “pre-onset” and responses af-



Fig. 3: Response profile of listeners showing preference to newly
synthesized melodies (towards 1 on the y-axis) as compared to no
preference (0.5 on the y-axis). Plots show 95% confidence intervals
pooled across subjects and melodies for the short and long synthesis
conditions, as well the control condition.

ter this point as “post-onset”. Our analysis performs statistical tests
by averaging responses 2 seconds before the onset and contrasting
them with average responses 2 seconds after a delay of 0.5 seconds
after the onset. The delay of 0.5 seconds is chosen to account for the
latency in the subjects’ response.

First, we focus on the “pre-onset” phase to validate the exper-
imental paradigm. Before any induced change in melodic line, we
check whether the average preference of listeners hovers around 0.5,
when the two stimuli presented to each ear differ only in instru-
ment. Pooling trials by instrument shows a significant preference
towards the ear playing the violin for the test conditions(unpaired
t-test, p=0.01(short), 5e-4(long)). This preference was not signifi-
cant for control(p=0.16) which could be attributed to differences in
subject inclinations. This result is consistent with reported differ-
ences between timbres of the violin and clarinet suggesting stronger
salience of violin over the clarinet [16]. However, our paradigm
counter-balanced melodies played by each instrument to either ear,
and pooling across all trials regardless of instrument and ear of pre-
sentation confirms that the average pre-onset response is not sig-
nificantly different from 0.5 (p=0.99(short), 0.49(long), 0.69(con-
trol)). Next, we examine subjects’ response to synthesized melodies.
Figure 3 shows the average response profile pooled across subjects
for the original and synthesized melodies using the short and long
temporal structures. A t-test on the post-onset preference averaged
across stimuli shows that the preference for synthesized melodies is
significantly higher than 0.5 for both short (p=4e-7) and long (p=1e-
4) cases indicating that on higher average preference towards synthe-
sized melodies. Moreover, it is clear from the plot that subjects were
more engaged by the melodies synthesized using the local structure
(i.e. short or low D values), as opposed to melodies driven by ex-
pectations over longer-term correlations (i.e. long or highD values).
A comparison of the two cases shows a statistically significant dif-
ference between the two curves (p=2e-8).

Also interesting to note is that the control experiment did not
show any indication of engagement of listeners and revealed prefer-
ences that continued to hover around 0.5. The control paradigm con-
sisted of newly synthesized melodies that were not specifically max-
imizing statistical surprisal but were randomly concatenated seg-
ments from the codebook. Post-onset average preference when aver-
aged across stimuli, was not statistically different from 0.5 (p=0.53).
Thus, listeners did not have a higher preference towards synthesized

Fig. 4: (a) Estimate of average statistical surprisal for each melody
using the short and long-term models. (b) Relationship between
change in surprisal (after synthesis) for the short model and listeners’
engagement as reflected in their average preference of ear of entry.

melodies that were randomly shuffled, suggesting the increase in
average preference post-onset in the short and long conditions was
driven by maximizing statistical surprisal.

We compare the change in average surprisal for original and syn-
thesized melodies. Figure 4a shows the average melodic surprisal
for Bach melodies quantified using the short model(D=2) for the
test and control experiments; and long model(D=8) for long case.
Overall, the original melodies have comparable average surprisals
under both models. After the optimization algorithm, it appears that
the short model is able to generate melodies with higher average sur-
prisal than the long and control algorithms.

To quantify how surprisal affects listener preference, we per-
formed a correlation analysis on the post-onset average preference
and the difference in average surprisal between the synthesized and
original melodies. Figure 4b shows the details of this analysis and
reveals a significant correlation(R2=0.193, p=0.005) for the short
condition. For the long(R2=0.01, p=0.48) and control(R2=0.08,
p=0.08) cases, there was no significant correlation.

5. CONCLUSION

In this paper, we presented a novel methodology to synthesize en-
gaging monophonic melodic music by taking into account the sta-
tistical structure of music and well-known perceptual phenomena of
expectation violation into consideration. By means of well designed
psycho-acoustic experiment, we tested the synthesized melody for
increased engagement compared to an existing melody. Experimen-
tal results show that the proposed methodology can be used to syn-
thesize engaging music. It should be noted that the current study
did not attempt to control for musical aesthetics but was solely con-
cerned with the degree of salience of newly synthesized melodies.
Control experiments confirmed that random selection of new musi-
cal segments is not sufficient to attract attention of listeners to ran-
dom melodic lines. Instead, only melodies that were constrained by
surprisal within an underlying statistical model were considered en-
gaging by listeners. Furthermore, the Bach corpus chosen for this
study appears to favor a rather local temporal structure resulting in
stronger listener responses for synthesized melodies controlled by
the short statistical model. There is an also the possibility that such
favorable outcome with a short model may reflect the dynamics of
the optimization algorithm in terms of timescale of updating samples
from the codebook. Overall, this work sets an initial exploration of
measures of musical engagement and its relationship with underly-
ing statistics of a musical corpus. These aspects of musical expres-
sion can then be incorporated with future work aiming to provide a
richer artistic expression for computer generated music.
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