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ABSTRACT

Attention plays a vital role in helping us navigate our acoustic
surroundings. It guides sensory processing to sift through the
cacophony of sounds in everyday scenes and modulates the
representation of targets sounds relative to distractors. While
its conceptual role is well established, there are competing
theories as to how attentional feedback operates in the brain
and how its mechanistic underpinnings can be incorporated
into computational systems. These interpretations differ in
the manner in which attentional feedback operates as an infor-
mation bottleneck to aid perception. One interpretation is that
attention adapts the sensory mapping itself to encode only the
target cues. An alternative interpretation is that attention be-
haves as a gain modulator that enhances the target cues after
they are encoded. Further, the theory of temporal coherence
states that attention seeks to bind temporally coherent features
relative to anchor features as determined by prior knowledge
of target objects. In this work, we study these competing the-
ories within a deep-network framework for the task of music
source separation. We show that these theories complement
each other, and when employed together, yield state of the art
performance in music source separation. We further show that
systems with attentional mechanisms can be made to scale to
mismatched conditions by retuning only the attentional mod-
ules with minimal data.

Index Terms— Attention, bio-mimetic, music source
separation, coherence, feature tuning

1. INTRODUCTION

Cognitive processes like attention play a significant role in
our ability to navigate everyday acoustic environments. At-
tention essentially operates as an information bottleneck, en-
hancing acoustic cues of target sound objects while suppress-
ing cues representing other competing objects in an auditory
scene. This is borne out in several neurophysiological studies
where selective attention was shown to emphasize the rep-
resentation of target acoustic objects. Recordings of neural
activity from individual neurons in primary auditory cortex
of the mammalian brain have shown that attention to specific
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sounds induces rapid plasticity that adapts the tuning of these
neurons in such a way that enhances the target and inhibits
masker sounds [1, 2, 3]. Brain recordings from human lis-
teners also shows that attending to a specific voice (particular
speaker) in a noisy environment with competing speakers and
reverberation induces enhanced encoding of the speech enve-
lope of the target speaker [4, 5, 6, 7].

While the vital role of attention in accomplishing audi-
tory tasks has been well established, there are several compet-
ing theories as to how these mechanisms can be interpreted
and incorporated into computational audio processing sys-
tems. One interpretation posits that attention to a target acous-
tic object induces retuning of the sensory mapping that en-
codes the acoustic cues of the incoming signal in a manner
that enhances the target sound relative to the maskers, as ev-
idenced by rapid retuning of cortical neurons [8, 9]. Another
interpretation postulates that attentional mechanisms operate
at the perceptual stage, where attention performs a selection
mechanism that modulates the output of the sensory mapping
process, after the acoustic cues are already encoded. Re-
cent work has proposed the concept of temporal coherence
as means by which attention works with acoustic cues after
they have been encoded to enhance perception of a desired
object [10]. The principle of temporal coherence states that
when attention is directed towards a cue of a target object, all
features coherent with temporal activations of target cues be-
come bound together such that the object of interest stands out
[11, 12]. Thereby, attention biases the auditory system toward
a particular grouping of encoded acoustic cues, depending on
the attended object.

In this work, we explore a convolutional neural network
(CNN) to leverage and appraise different interpretations of
attention. This analysis is performed in the context of music
source separation whereby the goal is to segregate different
sources (vocals, instruments) from a single channel recording.
The network is designed to take-in an input musical piece and
output only the sources or acoustic objects towards which at-
tention is being directed is retained. Using a network trained
end-to-end for this particular task, we study the manifesta-
tion of different interpretations of attention. In particular, we
explore two paradigms of attention: (1) using attention to re-
tune the convolutional weights of the network hence shaping
its selectivity; (2) using attention to modulate the output of



the convolutional process using the principle of temporal co-
herence. Across these implementations, we examine the role
of memory which represents the internal model of a target,
which is then deployed to guide processing in the system. In
other words, if one is attending to an acoustic object X, there
is a presumption that one knows something about object X’s
characteristics and relies on their memory of that object to se-
lectively attend to it. The current study explores specific im-
plementations of this internal memory which is then deployed
to facilitate attentional feedback.

It should be noted that the idea of attention has gained
prominence in the deep learning literature across applications
such as document classification [13], image captioning [14]
and audio classification [15, 16, 17]. The manner in which
attention operates across this body of work differs from the
system in this study. Specifically, the machine learning at-
tentional literature typically deploys attention as a soft-search
mechanism for relevant words, pixels or audio events depend-
ing on task, while ignoring the interference. Attention effec-
tively works as a gating operation to modulate embeddings of
the neural network without explicit representations or memo-
ries of the target object. In contrast, the current work explores
attention by explicitly training memories of target objects and
evoking them during inference. A recent work in speech sep-
aration [18] attempted to explicitly train memories of speak-
ers and recalling it to bias the network during inference with
some success, similar to the proposed work. However, with
the use of a long short term memory system for a very spe-
cific task, it is not clear how exactly attention is manifesting
in aiding performance in this speech system.

The proposed system aims to contrast different interpreta-
tions of attention and examines their potentially complemen-
tary roles in aiding source separation. The paper presents a
detailed scheme of different attention implementations within
a CNN framework in section 2. In section 3, we provide de-
tails regarding the datasets used to validate and as well as the
results, and comment on main conclusions in section 4.
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Fig. 1. Schematic for two attention paradigms. A.Retuning-
based attention B.Coherence-based attention

2. DISTRIBUTED CNN WITH ATTENTION

In this work, we propose employing a convolutional neural
network (CNN) equipped with attentional mechanisms de-
ployed for the task of music source separation. The input to
the CNN is the magnitude spectrogram of a piece of music as
well as the identity of an acoustic object that the netwok in-
tends to ’attend to’. The desired output will be the magnitude
spectrogram of of only the acoustic object of interest while all
other objects are suppressed. The output spectrogram of the
network, along with the mixed phase of the musical piece is
finally used to generate the waveform of the attended acoustic
object. Before describing the overall architecture of the CNN,
we look at the implementation of the two different interpreta-
tions of attention.

2.1. Retuning-based Attention

In the first implementation, we interpret attention as modu-
lating the sensory mapping or re-tuning feature selectivity to
enhance encoding of attended targets. In a CNN architecture,
this implies that convolutional filters that map across layers
are retuned by attentional feedback.

To achieve this outcome, we adopt a simple mechanism
illustrated in figure 1A. Block H1, of dimensions m× n× o,
represents the embedding from a particular layer of the CNN.
The dimensions m, n and o represent frequency channels,
time frames and the number of hidden units respectively. WO

signifies a set of CNN filters of dimensions p × p × o × q,
representing the default mapping from embedding H1 to H2.
The dimension p represents the height and width of the con-
volutional filter and q the number of hidden units in the em-
bedding H2. Let us assume that the dataset consists of two
objects X and Y . Then WX and WY in figure 1A, represent
the desired retuning of WO when attending to object X and Y
respectively. IX and IY are indicator variables that can take
on binary values {0, 1} indicating which object the network
is directing its attention towards. If IX = 1 and IY = 1, then
network is attending to the music mixture and not just one of
the acoustic objects.

In this interpretation of attention, WX and WY can be
viewed as a form of static map memories of acoustic objects
X and Y which are employed whenever attention is invoked.
The convolutional filters as well as the retuned weights for
objects of interest are estimated during end-to-end training.
This process can be succinctly represented as:

H2 = f cnv
W0+WMIM (H1) (1)

where f cnv is the convolution operation, with WM and
IM in the subscript representing the map memories and the
indicator variables respectively. WM is of dimensions p ×
p×o× q× s, where s is the number of acoustic objects in the
dataset (s = 2) in the schematic shown in figure 1A.



2.2. Coherence-based Attention

In this paradigm, we employ the principle of temporal co-
herence to modulate the embeddings obtained after the con-
volution process as illustrated in figure 1B. The embeddings
H2 are obtained after convolving with the set of default CNN
filters WO; H2 = f cnv

W0
(H1). The embedding H2 passes

through the coherence block in figure 1B, to derive the mod-
ulated embedding Ĥ2.

In the coherence block, OM denotes the anchor memory
of dimensions m × q × 2. The symbols m and q as defined
in the previous section, denote the frequency channels and
number of hidden units in embedding H2. OX and OY in
figure 1B, represent what we define as anchor memories of
acoustic objects X and Y ; similar to dictionary of basis in
Non-negative matrix factorization techniques [19]. IM of di-
mensions 2× 1 contains the indicator variables.

The coherence block performs the following operation:
Anchor OA = OM ∗ IM is first estimated. It can be anchor
memory of one of the objects or the sum of anchors of mul-
tiple objects, depending the values of the indicator variables
given as input. Next, we determine the activation pattern RA

of the anchor of the attended object OA.

RA[1, t] =

m∑

i=1

n∑

j=1

H2[i, t, j] ∗OA[i, j, 1] ∀t ∈ {1, ..., n}

(2)
we determine the modulated embeddings Ĥ2 using a non-

linear operation:

Ĥ2 = H2 � sigmoid(OA ∗RA) (3)

where � is the element-wise multiplication. The term
OA ∗ RA determines the modulations for each of the dimen-
sions of Ĥ2 as a product of the weights as represented in the
anchor memory of the attended object and its activation at a
particular time instant. The complete coherence operation is
succinctly represented as:

Ĥ2 = f coh
OMIM (H2) (4)

2.3. Distributed CNN

In order to test the proposed attentional mechanisms, we em-
ploy a CNN architecture shown in figure 2. The two interpre-
tations of attentional mechanisms are leveraged at multiple
vantage points of the CNN architecture. The CNN consists
of 4 layers with leaky rectified linear unit (ReLU) activation
and instead of a single hierarchy, there is branching in layer
2, with pooling in one of the sub-networks to capture slower
spectrotemporal modulations. In order to estimate the mag-
nitude spectrogram of the attended object, embeddings from
lower layers are also used by concatenating the embeddings
and using it as input for the final layer.

As indicated in figure 2, the convolutional filters are of di-
mensions 8×8 except for the final layer, with 2×2 max pool-
ing to capture slower modulations at the branching off point

in layer 2. To generate the network outputs, 1×1 convolution
is performed in the final layer. The number of hidden units
from layer 1 to layer 4 is 64, 256, 256 and 256 respectively.
The network input is the magnitude spectrum of dimensions
512 × 64 , estimated using Short-Term Fourier Transform
(STFT) with a window size of 1024 and hop size of 256. The
music signal is downsampled to 8kHz before estimating the
magnitude spectrogram. If X is the input spectrogram and
Y the ground truth of the attended source or object, we em-
ployed the L1,1 norm, ||Y −X||1,1 as the objective function
to train the CNN. We shall train three CNN networks, one
each with one of the interpretation of attentional mechanisms
incorporated (just red or the blue blocks in figure 2) and one
system with both of them.
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where � is the element-wise multiplication. The term
OA ⇤ RA determines the modulations for each of the dimen-
sions of Ĥ2 as a product of the weights as represented in the
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2.3. Distributed CNN

In order to test the proposed attentional mechanisms, we em-
ploy a CNN architecture shown in figure 2. The two inter-
pretations of attentional mechanisms are leveraged at multi-
ple vantage points of the CNN architecture. The CNN con-
sists of 4 layers with rectified linear unit (ReLU) activation
and instead of a single hierarchy, there is branching in layer
2, with pooling in one of the sub-networks to capture slower
spectrotemporal modulations. In order to estimate the final
mask for the attended object, embeddings from lower layers
are also used by concatenating the embeddings and using it as
input for the final layer.

As indicated in figure 2, the convolutional filters are of
dimensions 8 ⇥ 8 except for the final layer, with 2 ⇥ 2 max
pooling to capture slower modulations at the branching off

point in layer 2. To generate the network outputs, 1 ⇥ 1 con-
volution is performed in the final layer. The number of hid-
den units from layer 1 to layer 4 is 64, 256, 256 and 256
respectively. The network input is the magnitude spectrum
of dimensions 512⇥ 64 , estimated using Short-Term Fourier
Transform (STFT) with a window size of 1024 and hop size
of 256. The music signal is downsampled to 8Khz before es-
timating the magnitude spectrogram. If X is the input spec-
trogram, Y the ground truth of the attended source or object
and M the mask generated by the network, we employed the
L1,1 norm, ||Y �X�M ||1,1 as the objective function to train
the CNN. We shall train three CNN networks, one each with
one of the interpretation of attentional mechanisms incorpo-
rated (just red or the blue blocks in figure 2) and one system
with both of them.
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Fig. 2. Schematic of the distributed CNN system. Att-Ret
refers to the retuning-based attention module and Att-Coh
refers to the coherence-based attention module. IM denotes
to the indicator variables directing attention.

Such a distributed CNN architecture has basis in recent
findings from functional magnetic resonance imaging (fMRI)
studies of the human brain, where it was observed that acous-
tic cues are encoded at varying degrees of spectrotemporal
resolutions [20, 21], using a spatially distributed neural net-
work in the cortical regions. This results in multiple redun-
dant views of the input. These multiplexed views are hypoth-
esized to enable segregation of acoustic objects and allow to
discriminatively highlight distinct characteristics of objects of
interest and distractors at multiple vantage points. The con-
cept of employing embeddings at mutiple level of abstrac-
tions has also been found to extremely useful in multiple ma-
chine vision applications [22, 23] as well as audio applica-
tions like singing voice separation [24] , music source sepa-
ration [25, 26, 27] and audio classification [16].

3. EXPERIMENTS AND RESULTS

In order to validate the proposed system, we performed the
task of music source separation on the DSD100 dataset [28].
The dataset consists of 100 songs, divided equally into 50
song training set and 50 testing set. For each song, the
ground truth consisting of four sources (acoustic objects),
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Fig. 2. Schematic of the distributed CNN system. Att-Ret
refers to the retuning-based attention module and Att-Coh
refers to the coherence-based attention module. IM denotes
to the indicator variables directing attention.

Such a distributed CNN architecture has basis in recent
findings from functional magnetic resonance imaging (fMRI)
studies of the human brain, where it was observed that acous-
tic cues are encoded at varying degrees of spectrotemporal
resolutions [20, 21], using a spatially distributed neural net-
work in the cortical regionsxz. This results in multiple redun-
dant views of the input. These multiplexed views are hypoth-
esized to enable segregation of acoustic objects and allow to
discriminatively highlight distinct characteristics of objects of
interest and distractors at multiple vantage points. The con-
cept of employing embeddings at multiple levels of abstrac-
tions has also been found to extremely useful in multiple ma-
chine vision applications [22, 23] as well as audio applica-
tions like singing voice separation [24] , music source sepa-
ration [25, 26, 27] and audio classification [16, 28].

3. EXPERIMENTS AND RESULTS

In order to validate the proposed system, we performed the
task of music source separation on the DSD100 dataset [29].
The dataset consists of 100 songs, divided equally into 50
songs for training and 50 songs for testing. For each song, the
ground truth consists of individual tracks from four sources
(acoustic objects), bass, drums, vocal and other remaining in-



struments. In the context of this work, the network is given the
mixed music as input as well as information regarding which
of these 4 objects the networks is directing its attention to-
wards. The desired output will be the magnitude spectrogram
of just the objects for which the indicator variables (IM ) is
equal to one. In the case where all the indicator variables are
set to one, the systems behaves like an autoencoder, with de-
sired output being the input spectrogram of the musical piece
with all the objects present. The network was trained using
Adam optimizer for 150,000 iterations with a learning rate of
10−4. The training period was 33 hours on a single GPU.

Table 1 shows the results of music source separation in
terms of signal to distortion (SDR) values, based on the BSS-
EVAL metrics [30]. It can be seen that the proposed sys-
tem with both retuning and coherence based attention Att-
Ret+Coh, performs second best among the state of the art sys-
tems in all scenarios. It can also be seen that the Att-Coh (co-
herence based attention) performs better than Att-Ret (retun-
ing based attention) across all conditions. This is understand-
able given that the modulation driven by coherence based at-
tention depends on the stimulus and its coherence with the
anchor memory. Whereas in the retuning based attention, the
CNN filters are modulated with the same map memory of the
attended object, irrespective of the specific input stimulus. It
should also be noted that in the case of MM-DenseNet, the
best performing system, four individual denoising style net-
works are trained for each of the sources, whereas Hourglass
and DeepNMF are single networks, similar to the proposed
work. However, it is significant that the proposed system (Att-
Ret+Coh), a relatively shallow network compared to the other
techniques, is able to perform on par with the state of the art
systems with the attentional mechanisms incorporated.

Further, to show the ability of networks with attention to
rapidly adapt in mismatched conditions, we also trained the
proposed three networks using data from 2 performers, ab-
jones and amy, from the MIR-1K database [31] consisting of
Chinese karaoke songs. In this case, the dataset has just two
acoustic objects vocals and accompaniments. The training
period in this case, run for 15000, iterations was 3 hours. We
then adapted the MIR-1K network for the DSD100 database
by doing a single pass over the 50 training songs. During
the adaptation, only the map memory and the anchor memory
(blue and red blocks in figure 2) were retrained while keep-
ing rest of the network fixed. To attend to the vocal sources of
DSD100, we updated only the vocal memories intially trained
using MIR-1K. In order to attend to the bass, drums and other
sources, we individually retuned the accompaniments mem-
ory of MIR-1K to each of these three objects and then used
the respective retuned memory during testing. This retuning
of the MIR-1K memories using a single run of DSD100 train
set, is accomplished in 2 hours. In order to compare the per-
formance of the adapted systems, we also trained the Hour-
glass system using the MIR-1K data and retuned the complete
network for the DSD100 dataset by similarly doing a single

pass over the training set.
Table 2, shows the results on rapidly adapting the base-

line and the proposed systems trained on the MIR-1K dataset
using minimal training with DSD100 dataset. It can can seen
that especially in the case of the Att-Ret+Coh-Adap system,
which leverages both attentional mechanisms, the perfor-
mance of the adapted system is on par with the other state
of the art systems. For the bass class the Att-Ret+Coh -Adap
performs better than fully trained systems like DeepNMF and
Hourglass. For the remaining classes, the performance is ap-
proximately within 0.5 dB range of the fully trained systems.
It can also be seen that the Att-Ret+Coh-Adap system per-
forms much superior to the Hourglass-Adap, similarly trained
with minimal data, for all classes with the exception of others.
The hypothesis here is that the memories trained as part of the
attention modules using MIR-1K have a reasonable baseline
knowledge of the vocal and non-vocal objects in the space of
music signals. In new conditions, just updating the memories
which serve as informational bottlenecks, while keeping the
underlying mapping fixed, can lead to versatile fast adapting
systems retrained with minimal data.

Table 1. Median SDR values for music source separation on
DSD100 dataset

Method Bass Drums Others Vocals
DeepNMF [32] 1.88 2.11 2.64 2.75
Hourglass [26] 1.77 4.11 2.36 5.16
MM-DenseNet [33] 3.91 5.37 3.81 6.00
Att-Ret 1.60 3.91 1.79 4.20
Att-Coh 2.01 4.23 2.04 4.62
Att-Ret+Coh 2.34 4.48 2.42 5.24

Table 2. Median SDR values for music source separation on
DSD100 dataset on adapting the CNNs trained on MIR-1K

Method Bass Drums Others Vocals
Hourglass-Adap 1.65 2.70 1.90 3.92
Att-Ret-Adap 1.22 2.88 1.10 3.48
Att-Coh-Adap 1.46 2.56 1.08 3.75
Att-Ret+Coh-Adap 1.89 3.72 1.72 4.58

4. CONCLUSION

In this work, we incorporated two bio-mimetic interpretations
of attention into a distributed CNN system, for the task of mu-
sic source separation. We showed that combining the two in-
terpretations enhances the performance of the system, as com-
pared to just using one of the interpretations. We also high-
lighted a significant benefit of incorporating attentional mech-
anisms as information bottlenecks in a data driven system. We
show that a network with attention capabilities trained on a
particular database, can be rapidly adapted to scale to an alto-
gether different mismatched database with minimal data, by
retuning only the object memories in the attention modules.
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