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ABSTRACT

Demands on auditory perception change constantly with natu-
ral changes in everyday acoustic environments. Mechanisms,
such as attentional feedback, direct the brain to adapt process-
ing of the incoming signal to maximize its ability to detect
the presence of a sound of interest or enhance its represen-
tation. These top-down feedback processes induce adaptation
of the spectrotemporal representation of incoming sounds in a
manner that enhances our ability to perform the desired task.
In this work, we propose a computational model to imple-
ment and study sensory mapping adaptation under different

task-demands. We propose a common processing framework
to examine how sensory mapping adaptation manifests un-
der different task-driven conditions like speech enhancement
and robust speech activity detection. Objective measures of
speech enhancement and discrimination are used to quantify
the impact of the adaptation under different contexts and its
impact on performance outcomes.

Index Terms— Auditory Attention, Adaptation, Spec-
trotemporal Filters, Speech in Noise, Genetic Algorithm

1. INTRODUCTION

We live in a rich and complex acoustic world, with multiple
sources of sound active at every instant of time. Humans are
extremely adept at interacting and performing auditory tasks
in such a complex acoustic environment. Neurophysiologi-
cal studies have shed light on some of the processes of the
auditory pathway that render the human auditory system so
effective [1–3]. Studies have shown that the low dimensional
time domain waveform undergoes a series of transformations
to obtain a high dimensional representation; wherein the fre-
quency content and the spectrotemporal modulations of the
stimulus are encoded [4]. Furthermore, studies show that
when performing an auditory task, attentional mechanisms
further complement the sensory mapping process. Through
use of top down feedback, the sensory mapping process is
adapted in a manner that enhances the ability of the auditory
system in performing the required task [5–7]. Numerous stud-
ies have leveraged the high dimensional sensory mapping pro-
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cesses for feature extraction in audio processing applications
[8–10]. Deep belief and convolutional networks inspired by
biology [11, 12] have led to remarkable improvement in the
performance of data driven speech processing systems.

The focus of this work however is towards the the comple-
mentary task-driven top-down attentional mechanisms. There
has been a recent body of work that explores different frame-
works to model and leverage these attentional mechanisms
[13–17]. These attentional models operate on a common un-
derlying principle; an adaptable bio-mimetic sensory map-
ping or feature extraction process, able to adapt its processing
characteristics or tuning properties in a manner that enhances
the performance of the task at hand. The driving source be-
hind this adaptation is feedback guided by attention. Most
approaches that examine the role of this feedback rely on
the same basic principle, but differ in their approach depend-
ing on the goal of the system. For instance, the model in
Mesgarani et al. focuses on discrimination between arbitrary
simple sounds [14] , while work by Carlin, Bellur and col-
leagues is centered around robust speech activity detection
[16, 17]. Patil and Elhilali take a complementary approach
to detect auditory scenes [15] while Kalinli and colleagues
addresses prominent syllable detection [13]. In this diverse
literature, the nature of adaptation varies across frameworks,
and spans the continuum from linear optimization [14–16] to
nonolinear transformations [17]. The lack of common princi-
ples and constraints on these diverse systems makes it chal-
lenging to compare manifestations of top-down attentional
mechanisms in terms of sensory mapping adaptation, across
different tasks.

In this work, we seek to study and compare the outcomes
sensory mapping adaptation under different task-driven set-
tings. Hence we expand the framework developed in [17] to
3 different tasks; speech enhancement, speech detection and
discriminating between speech and nonspeech under noisy
conditions. We develop task relevant feedback to drive the
adaptation of the sensory mapping process for each of these
tasks, within a single framework. We illustrate the outcomes
of adaptation under different task-driven scenarios and show
that the spectrotemporal modulation space adapts in distinct
interesting ways in order to enhance the performance of the
corresponding task. We also compare the performance of
these task-driven systems in achieving speech enhancement
and speech activity detection.
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2. SENSORY MAPPING

The sensory mapping process is divided into 2 stages. In stage
one, the sound signal is transformed into a time-frequency
representation by passing it through a model of the auditory
periphery as developed in [4]. We will refer to the time-
frequency representation as the auditory spectrogram and no-
tate it as y(t, f). Stage two is an adaptable sensory mapping
process based on the processes observed in the cortical re-
gions of the mammalian auditory pathway. A filter bank of
parameterized 2-dimensional Gabor filters is used to model
the spectrotemporal receptive fields of auditory neurons in the
cortical regions [18]. The bank of filters, notated as g =
{g1, . . . , gm}, spans the spectrotemporal modulation space
with individual gk defined as shown in equation 1.

gk(t, f) =
↵k

2⇡�tk�fk

e

� 1
2 (

t21
�2
tk

+
f2
1

�2
fk

)
e
2⇡j(!kt+⌦kf) (1)

where t1 = tcos(✓k) + fsin(✓k) and f1 = �tsin(✓k) +
fcos(✓k). �tk and �fk denote the bandwidths of the Gaus-
sians of the k

th Gabor filter along time and frequency direc-
tion respectively. ✓k represents the orientation of the main
lobe of the Gabor filter and ↵k is a gain term. !k and ⌦k are
the rate and scale of the k

th Gabor filter.
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Fig. 1. Task-driven adaptation framework

The bank of filters is convolved with the auditory spectro-
gram over both time and frequency to encode the frequency
and spectrotemporal modulation information in the spectro-
gram. The response is the collapsed over time to obtain the
rate-scale-frequency (RSF) representation of the signal; with
each of the individual Gabor filter gk encoding a particular
rate !k and scale ⌦k. Temporal information is still retained
as slow temporal modulations encoded by filters of varying
rates. The response to each filter is obtained as shown in
equation 2. The ensemble response to the bank of filters is
defined as E = [T1, T2; . . . , Tm] 2 Rm⇤nf , a stacked rep-
resentation of the response to the m filters, where channels
nf refers to the number of frequency channels in the auditory
spectrogram.

Tk(f) =

Z
|y(t, f) ⇤tf gk(t, f)|dt (2)

3. TASK-DRIVEN ADAPTATION

Sensory mapping adaptation in this framework is achieved
by retuning the Gabor parameters. Given a bank of fil-
ters with the default set of parameters, notated as g

0 =
{g01 , g02 , . . . , g0m}, the goal of the top-down feedback process
is to estimate a set of retuned filters gA = {gA1 , gA2 , . . . , gAm},
as determined by the task at hand. The framework is as
shown in figure 1. In order to perform the adaptation (g0 to
g
A), we use the genetic algorithm as proposed in [17]. Ge-

netic algorithm presents an elegant way to search the Gabor
filter bank parameter space for the optimal set of parameters.
The algorithm is initialized with the default parameter set as
a member of the first generation. The algorithm then prop-
agates through multiple generations, with each generation
having fitter members than the previous generation; members
in this context being parameter sets (g) within a prescribed
range. The fittest member of the final generation is the de-
sired set of filters g

A. The manner in which the algorithm
propagates from generation to generation is as detailed in
[17]. The fitness measure is key here and is defined on the
basis of the task being performed.
3.1. Speech enhancement

Given stimuli from the clean speech class (Cs), ensemble re-
sponses with default filters are estimated. Next, given noisy
speech stimuli, distorted versions of the clean speech stim-
uli, we seek to enhance the speech representation in the RSF
space. In order to achieve this, the fitness measure is defined
as shown in equation 3. Fitness measure fENH is the mean
euclidean distance between the clean speech response and the
corresponding noisy speech representation in the RSF space,
using the default and the adapted filters respectively. E0

sj
rep-

resents the RSF representation for the j
thclean speech stim-

ulus estimated using the original filters. E
A

nsj
represents the

RSF representation for the corresponding noisy speech stim-
ulus obtained using the adapted filters. It was shown in [19],
that such a metric in the RSF closely matches error rates of
human listeners in various noisy conditions.

fENH =
1
J

JX

j=1

(E0
sj

� EA

nsj
)2 (3)

3.2. Speech detection

While in the previous case, we used the clean speech stimulus
as a template to enhance speech in noisy conditions, for the
detection task we use a statistical representation, a Gaussian
mixture model (GMM) to represent clean speech in the spec-
trotemporal modulation space. Given a set of clean speech
stimulus, the rate-scale-frequency response is first estimated
(E). Then the tensor singular value decomposition (TSVD) is
used to reduce the number of dimensions of the RSF represen-
tation while ensuring that certain percentage of the variance is
retained [20]. Gaussian mixture model is then estimated using
this reduced-dimensioned representation (notated as V ).
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The task in this case is to detect presence of speech even
in noisy conditions. This is formulated using the fitness mea-
sure defined in equation 4. The purpose of using such a fitness
measure is to obtain a retuned set of filters gA that maximizes
the average likelihood of the noisy speech samples with re-
spect to the clean model. M0

s
represents the GMM estimated

using clean speech with the default filters g0. P (V A

nsj
|M0

s
) is

the likelihood value of the adapted representation of the noisy
speech stimulus with respect to the clean speech GMM M

0
s

.

fDET =
1
J

JX

j=1

P (V A

nsj
|M0

s ) (4)

3.3. Speech and nonspeech discrimination

Under this task setting, we are seeking to enhance discrim-
inability between low SNR speech and nonspeech classes
through sensory mapping adaptation. First we estimate
GMMs for clean speech and nonspeech classes as described
above. Next, we define the loglikelihood ratio (LLR) as
shown in equation 5. V

A

c
is the feature extracted from a

stimulus belonging to either noisy speech or nonspeech class
using the adapted filters. M

0
s

and M
0
n

denote clean speech
and nonspeech GMMs estimated using the default sensory
mapping procedure.

LLR = log

✓
P (V A

c |M0
s )

P (V A
c |M0

n)

◆
(5)

The goal in this task is to adapt the sensory mapping pro-
cess in a manner that allows the clean speech and nonspeech
GMMs to discriminate between low SNR speech and non-
speech, even in mismatched conditions. In order to do so,
d-prime as defined in equation 6 is used as the fitness mea-
sure.

fDIS =
µns � µnq

( 12 (�
2
ns + �2

n))
(6)

Symbols µc and �c denote the mean and standard devia-
tion respectively of the LLR values. c = ns denotes noisy
speech samples and c = n denotes samples from the non-
speech class.

4. EXPERIMENTS AND RESULTS

The outcomes of the adaptation under task-driven settings
were studied using a variety of clean speech, noisy speech
and nonspeech classes. Data from the TIMIT database [21]
was used as clean speech data. Cafe noise from QUT-Noise
database [22], and sounds belonging to emergency class from
the BBC sound effects database [23] were used as the non-
speech classes and as sources of additive noise. Along with
additive noise, 2 nonlinear distortions of speech, reverberated
speech and speech with phase jitter [19] were also used to
study task-driven adaptation. The genetic algorithm was run
separately for each of the noise cases. For example, in order

to study the cafe-noise scenario, noisy speech data for adap-
tation is created using cafe-noise as additive noise and cafe-
noise GMM model is used as the nonspeech model for the dis-
crimination task. For the nonlinear distortions, random sam-
pling of sounds from the BBC sound effects database were
used to create the nonspeech GMMs. A separate held out
dataset from these databases were used in all cases to study
and test the proposed systems.

Gabor filter bank g
0 were estimated at rates ranging

from 2 Hz to 32 Hz and scales ranging from 0.25 to 8
cycles/octave. The default parameters were initialized as fol-
lows 8!,⌦:
�t!⌦ = 1

2! , �f!⌦ = 1
2⌦ , ✓!⌦ = 0 and ↵!⌦ = 1

A range of values in vicinity of the default values of
the parameters were used as the parameter space. �t =
[ 1
1.5!

1
2.5! ], �f = [ 1

1.5⌦
1

2.5⌦ ], ✓ = [�3 3] (in degrees),
↵ = [0.5 1.5]. The genetic algorithm then operates within
the limited search space to determine g

A under the different
task-driven settings. We obtain a task specific adapted sen-
sory mapping process using the prescribed fitness measures
for each of the different tasks as described in section 3.

4.1. Cosine similarity

Figure 2 shows the average cosine similarity between the
clean speech RSF representation and the noisy speech RSF
representation before (g0) and after adaptation (gA). As can
be seen in figure 2, the adapted representation g

A

ENH
, esti-

mated under the enhancement setting, performs best and is
closest to the clean speech RSF representation across all noise
cases, with marked improvement under low SNR conditions.
The gA

DET
filters though, obtained under the speech detection

framework, performs well in low SNR conditions for cafe-
noise (babble like noise) and reverberation conditions, with
deterioration in performance for the emergency noise class
and phase jitter. gA

DIS
performs similar to the default sensory

mapping process (g0) except for the reverberation case. It is
evident that the adaptation manifests very differently under
different task-driven conditions. Enhanced ability in detect-
ing speech or discriminating between speech and noise, does
not necessarily lead to improved enhancement of speech.

4.2. Equal error rate

Table 1 shows the equal error rates (EER) estimated using
noisy speech and nonspeech stimuli under different task-
driven settings. The EERs were obtained using the LLR
values estimated as defined in equation 5 for a held out set
of noisy speech and nonspeech data using the GMM models.
As can be seen, the discriminatory filters gA

DIS
perform best

across all 4 noise conditions, with considerable improvement
over the default setup g

0. The adapted processes obtained
under the enhancement task g

A

ENH
and the detection task

g
A

DET
are not consistent in their performance across different

noise conditions.
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Fig. 2. Average cosine similarity between clean speech and the corresponding noisy counterpart.
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Fig. 3. Reconstructed auditory spectrograms on the left and rate-
scale representation on the right. Row 1 and 2 show the clean speech
and noisy speech representations respectively, using g0. Row 3, 4
and 5 show the difference between the adapted and original noisy
speech representations.

Table 1. Equal Error Rate
Noise condition g0 gAENH gADET gADIS

Emergency 14.74 12.35 18.33 10.05

Cafe 26.05 25.95 22.67 21.12

Reverb 9.40 4.60 4.55 2.40

Jitter 28.81 30.05 31.23 14.41

4.3. Rate-scale analysis

In order to understand the results obtained, we analyze the
reconstructed auditory spectrograms (using the Gabor filter
bank and its responses) and the corresponding rate scale rep-
resentations under different task-driven settings in figure 3.
The rate-scale (RS) representations are obtained by averag-
ing the RSF representation in equation 2 over frequency and
reshaping them such that the x-axis denotes rates and y-axis
scales. Row 1 is the reconstructed clean speech spectrogram
using g

0 and the corresponding rate-scale energy spread. Row
2 is the noisy speech representation using g

0 with additive
noise from the cafe-noise class. Rows 3 to 5 show the differ-

ence between reconstructed spectrograms and the rate-scale
energy spread, on using task specific filters gA and the default
filters g0. Red areas indicate enhancement and blue areas in-
dicate suppression. Under the speech enhancement setting
(gA

ENH
), it can be seen in the RS space that the spectrotempo-

ral modulations pertaining to speech are emphasized (regions
within the dotted black lines in row 3). While this leads to bet-
ter similarity measures, this implies areas where speech and
nonspeech overlap are also retained, hence impeding its abil-
ity to discriminate between speech and nonspeech. Under the
detection setting (gA

DET
), adaptation leads to a sparser repre-

sentation of the auditory spectrogram with focus on few key
speech modulations as indicated by the dotted black lines in
row 4. While this sharp focus improves the ability to detect
speech, it does not necessarily result in enhanced perception
of speech in all conditions. Hence the drop in the similarity
measures under high SNR conditions where sparsity results
in poorer representation of speech in the RSF space. In the
discrimination case (gA

DIS
, row 5), dotted black regions in the

RS representation highlight the non-overlapping speech and
nonspeech regions that are emphasized. While this leads to
improved EERs, it does not lead to consistent improvement
in similarity measures, as even the distinct nonspeech regions
are retained, while the overlapping regions are suppressed.
Only in cases with speech like noise conditions, does it lead
to improvement in similarity measures.

5. CONCLUSION

In this work, within one single framework, we studied task-
specific sensory mapping adaptation for representation of
speech in noisy settings. Using a feedback driven nonlin-
ear adaptation framework we showed that depending on the
task, very distinct and specific regions of the spectrotemporal
modulation space is adapted. In the speech enhancement task
the focus was on preserving and emphasizing speech regions.
Whereas in the detection and discrimination task, very spe-
cific sparse regions of the spectrotemporal modulation space
was enhanced while the rest was suppressed. Characteristic
nature of the adaptation under different task-driven condi-
tions was further illustrated by estimating objective measures
of enhancement (similarity to clean speech) and speech dis-
crimination (equal error rates).
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