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ABSTRACT

Detection of anomalous sound events in audio surveillance

is a challenging task when applied to realistic settings. Part

of the difficulty stems from properly defining the ’normal’

behavior of a crowd or an environment (e.g. airport, train

station, sport field). By successfully capturing the hetero-

geneous nature of sound events in an acoustic environment,

we can use it as a reference against which anomalous be-

havior can be detected in continuous audio recordings. The

current study proposes a methodology for representing sound

classes using a hierarchical network of convolutional features

and mixture of temporal trajectories (MTT). The framework

couples unsupervised and supervised learning and provides

a robust scheme for detection of abnormal sound events in

a subway station. The results reveal the strength of the pro-

posed representation in capturing non-trivial commonalities

within a single sound class and variabilities across different

sound classes as well as high degree of robustness in noise.

Index Terms— Anomalous sound events, Hierarchical

network, Convolutional feature representation, Mixture of

temporal trajectory models

1. INTRODUCTION

Defining ’abnormal’ behavior in an audio recording is a chal-

lenging task. First of all, there is no universal definition

of what abnormality means. Second, even what is normal
cannot be easily defined given the complex nature of sound

sources in realistic scenarios. To date, most research efforts

in anomaly detection have mainly focused on detection of

isolated events in continuous recordings such as shouts [1],

screams [2], laughs [3], gunshots and explosions [5] etc.

However, for setting up a surveillance system in an environ-

ment like a train or subway station, detecting abnormalities

based on examining isolated events becomes highly ineffi-

cient since collections of such isolated events can overlay

normal behavior. Instead, we consider the problem of obtain-

ing a good model representation of normal behavior in the

environment. We are particularly interested in models that

can capture non-trivial commonalities across various sound

events as well as their interactions in the context of a complex

scene.

Modeling acoustic scene behavior ultimately reduces to a

choice of feature representation and learning model that can

best characterize the myriad events that can be encountered

in acoustic scenes. Mel-Frequency Cepstral Coefficients

(MFCC) are the most widely used representation in acoustic

event detection tasks. They provide a compact and effi-

cient mapping of the spectral characteristics of simple scenes

[6, 7, 8]. Unfortunately, their performance does not general-

ize to real world environments which are inherently dynamic

and often corrupted by noise. In order to accurately report the

intricacies of such realistic scenarios, it is imperative that any

modeling of acoustic characteristics captures both spectral

and temporal nuances of the signal over multiple resolutions

and time-constants [9, 10]. Work in this direction has often

employed two-dimensional time-frequency filter-banks us-

ing Gabor filters, localized Fourier bases or even biomimetic

spectro-temporal receptive fields [11]. In [12], Lee et al.
reported a localized and rich tiling of the spectro-temporal

space of sound classes derived from unsupervised learning

of unlabeled data in the context of Restricted Boltzmann Ma-
chines (RBM) [13]. In the current work, we build on this rich

basis set; and extend applicability of unsupervised learning

using RBMs to the problem of anomaly detection in audio

recordings.

Operating on this feature analysis often comes a robust back-

end classifier whose role is to capture variability across dif-

ferent instances of the sound class. Unsupervised classifiers

like Support vector machines (SVM) and Gaussian mixture

models (GMM) have proved to be very efficient in model-

ing the mean statistics of analytical audio features in tasks

of scream, laughter and gunshot detection [14, 15]. These

models do provide well defined average representation of

isolated events but fail to capture the information contained

in the temporal dynamics of these events. In contrast, HMM

based models are capable of capturing such temporal trajec-

tories [15]. However, because of their markovian constraint,

they become inefficient in modeling the long term temporal

dependencies across events essential to obtain a global con-

text of an acoustic scene. Recent work started using more

representationally powerful generative models based on dis-



Fig. 1. Block diagram of MTT based abnormal sound event detection

tributed hidden states, such as Conditional RBMs [16] to

learn representation of temporal dynamics from data rather

than explicitly modeling them under hard wired assumptions.

In the current study, we develop a hybrid RBM-CRBM

scheme for modeling normal acoustic behavior in a subway

station. An “event” such as normal conversation among rid-

ers is typically comprised of multiple sub-events like speech,

laugh, cheerful banter etc., each having its own set of spectral

and temporal dynamics. In order to capture these different

modes of temporal dynamics as well as their interactions

and transitions across each other, we propose a mixture of
dynamic trajectories that can decompose the global tempo-

ral space of a normal event into multiple trajectories, each

of which belongs to a semantically different sub-event. We

develop an integrated framework of learning the localized

spectro-temporal attributes in an unsupervised fashion as well

as capturing their different modes of temporal trajectories by

using a set of mixtures of temporal trajectories (MTTs). The

framework flags as ‘abnormal’ events that don’t fall within

the span of learned trajectories.

The organization of this paper is as follows: Section 2 pro-

vides a detailed description of the proposed methodology

using a hybrid RBM-MTT framework. Section 3 outlies the

experimental setup and event detection results, while section

4 provides conclusion and discussion of the results.

2. METHOD

Our proposed framework for abnormal sound event detection

comprises 3 main processing blocks; acoustic modeling us-

ing RBM, dynamic modeling using MTT and finally using

these models for abnormal sound event detection as shown in

Figure 1. The proposed system operates on time frequency

representation of acoustic signal. A time-frequency auditory

spectrogram y(t, f) is extracted from each audio file based on

a model of peripheral processing in the mammalian auditory

system [17]. The spectrogram representation y(t, f) is sam-

pled with frame size of 10 ms. 10 consecutive frames are then

grouped together to form a one dimensional vector x in a pro-

cess of shingling [18]. A dataset of n sampled patches given

by X = x1, x2, . . . , xn is formed, where x(i) ∈ RN and N =

1280 in our case.

2.1. Acoustic modeling using RBM

We use Sparse restricted Boltzmann machine (RBM) as the

unsupervised learning algorithm to discover features from the

unlabeled dataset X . Sparse RBMs are undirected graphical

models with K binary hidden variables [19]. We train the first

layer RBM representations comprised of 400 hidden units us-

ing the contrastive divergence (CD) approximation with same

type of hyper-parameters and sparsity penalty as used in [20].

The training produces the weights Wk for k = 1, 2, . . . , 400
which are a representation of localized spectro-temporal at-

tributes. In order to get a representation similar to localized

2D filters, we transform these one dimensional weights Wk

into hk(t, f) where t = 10 and f = 128. We apply these 2D

filters over the time-frequency patch y(t, f) extracted from

the labeled dataset of normal conversations to obtain filter re-

sponses rk(t) given by:

rk(t) =
∑
f

∫
yl(τ, f)h(t− τ, f)dτ (1)

Filter responses rk(t) are used as our feature representation

for the next processing block.

2.2. Dynamic modeling using MTT

Next, a mixture of CRBMs (mCRBM) [21] is proposed as a

dynamical mixture model to decompose the global temporal

space of a normal event into multiple trajectories, where each

such trajectory belongs to a particular sub-event. A dynam-
ical mixture model can be created by introducing a mixture

component variable, q, with M possible states [21]. The dy-

namical model is defined by a joint distribution:

p(γt, zt, qt|γN ) = exp(−E(γt, zt, qt|γN ))/Z(γN ) (2)

where γt is real valued representation of current filter re-

sponse, zt is a collection of binary hidden units such that

z ∈ (0, 1), and γN contains the history of past N filter re-

sponses to provide a way for capturing the long term temporal



dependencies across the responses. The energy function E is

given by:

E(γt, zt, qt|γN ) =
1

2

∑
i

(γit − ĉit)
2 −

∑
j

zjtd̂jt

−
∑
m

qmt

∑
i,j

W̄ijγitzjt

(3)

where W̄ captures the interactions between the filter re-

sponses and hidden variables and the dynamical terms ĉit and

d̂jt are linear functions of previous N filter responses γN ,

given by:

ĉit =
∑
m

qmt

(
Cim +

∑
l

AilmγlN

)

d̂jt =
∑
m

qmt

(
Djm +

∑
l

BilmγlN

) (4)

where C and D are static biases and A and B are au-

toregressive model parameters. The parameter set θ =
(W̄ ,A,B,C,D) of mCRBM are learned using contrastive

divergence (CD) approximation. We refer the reader to [21]

for details of learning mCRBM by CD. This learned param-

eter set θ becomes our representation of mixture of temporal

trajectories (MTT) models. We use M=10 assuming a mix-

ture of 10 components can span the entire temporal trajectory

space of a single event and use 200 hidden units in our

mCRBM architecture.

2.3. Abnormal Sound Event Detection

In the detection stage, we use the measure of log-likelihood

score of a given test frame under our learned MTT model to

decide whether the frame under consideration belongs to an

abnormal event or normal conversation [21]. A test audio sig-

nal is processed through the learned RBM weights to obtain

feature representation rk(t) as per equation 1. On applying

the parameter set θ over rk(t), we obtain a log likelihood

score L given by:

L = log(p(rt|rN ; θ)) = log(
∑
zt,qt

p(rt, zt, qt|rN )) (5)

We compare this likelihood score L with a threshold value ob-

tained from development set and we label the frame as ‘nor-

mal’ if L > threshold or ‘abnormal’ if L < threshold.

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Data

We prepare an unlabeled training dataset by randomly mixing

the recordings from both TIMIT [22] and BBC sound effects

library [23] to train our first layer RBM bases. BBC sound ef-

fects library contain classes like Ambience, Animals, Office,

Transportation and Musical etc. Because of such heterogene-

ity across the scenes, RBM weights are not biased towards

one particular kind of scene. The dataset used for abnormal

sound events detection contains recordings of audio events in

a metro station [24]; the duration of each file ranging from

1 minute to about 6 minutes. We resample each recording

in the dataset to 8 KHz and preprocess them through a pre-

emphasis filter with coefficients [1 − 0.97] in order to boost

the high frequencies. The recordings contain events like nor-

mal speech, laughter, cheerful banter etc. annotated as normal
conversation. The frames belonging to normal events are split

randomly into 80 % for training the MTT models and rest 20

% as development and test set. The recordings also contain

events like train passing by, shout, scream, fights, aggressive

behavior etc. which we consider as ‘abnormal’ in our analysis

and include them in the test set for detection.

3.2. System variants

The performance of an abnormal sound event detection sys-

tem depends on how good our model representation is. The

key aspect of our model representation is based on a set of

mixtures of temporal trajectories capturing the interactions

and transitions across multiple events in a complex acoustic

scene. In order to quantify its importance and effect on sys-

tem performance, we contrast our proposed system against 3

system variants based on similar generative framework and

backbone architecture but with variabilities in mixture com-

ponents and trajectory representations. In one case, we train

our MTT model using M = 1 to see how the performance of

the detection system changes when a single mixture compo-

nent is used to model different modes of temporal trajectories

existing within a single event. Secondly, in order to quan-

tify the importance of temporal trajectories based representa-

tion, we build a detection system by replacing mCRBM block

with a regular RBM that models only the localized spectro-

temporal modulations without any information of long term

temporal dependencies. Our final system is based on learning

first layer RBM bases only from normal conversation and use

these learned bases for detecting the abnormal events.

3.3. Results and Analysis

Figure 2 shows the ROC for each of the detection systems

by including/excluding the MTT stage as well as varying the

number of mixtures capturing the temporal trajectories. The

figure shows that our proposed system using MTT model with

M = 10 performs the best in terms of true positive rate.

When MTT is replaced by a RBM layer in the framework, we

see that the detection performance of the system degrades be-

cause of incapability of RBM based representation in captur-

ing the long term temporal dependencies. Single layer RBMs
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Fig. 2. ROC curves for 4 systems regarding to detection of
abnormal sound events

trained only on normal conversations gives the worst perfor-

mance in terms of true positives; the main reason being the

first layer RBM bases trained on a small set of data are not

able to capture a good representation of localized spectro-

temporal attributes. As a result of this poor characterization,

we get a lot more false negatives for this system compared to

other systems. For MTT model with M = 1, the observa-

tion gets interesting. We see that its detection performance

is better than RBM based systems, thus illustrating the im-

portance of long term temporal dependencies over short term

temporal structure for better characterization of sound events.

However, the true positive rate for this system decreases when

compared to MTT model with M = 10. This observation is

mainly accounted for by the fact that due to presence of differ-

ent modes of temporal trajectories within an event of normal

conversation, MTT with M = 1 fails to span the entire tem-

poral trajectory space of such a broader class. As a result,

when an event like laughter occurs in a continuous audio, the

system detects it as an abnormal event even though it is la-

beled as normal conversation.

To provide more insight into the idea of MTTs capturing

different modes of temporal trajectories, we apply our MTT

model to a sample recording of normal conversation among

riders in a subway station. At several points during the con-

versation, other than normal speech, there are instances of

laugh, excitement etc. which are non stationary events hav-

ing their own set of dynamics. In our experimental analysis,

we find that frames belonging to the instances of laugh and

excitement are assigned to components 1, 4 and 7 with an

average probability of 0.9572; while component 9 captures

the temporal trajectories of normal speech in the conversation

with an average probability of 0.9851. This probabilistic as-

signment of frames to different components of MTT confirms

our intuition that MTT with desired number of components

is able to segment an event with different modes of temporal

trajectories into statistically salient sub-events.

We further test the robustness of the proposed system by

adding noise from NOISEX-92 database [25] to the test set

F-measure (%) for 4 detection systems

SNR

(dB)

MTT

(M=10)

MTT

(M=1)

2 layer

RBM

Single

layer

RBM

Clean 93.11 89.12 86.55 78.77

20 dB 92.03 85.41 79.66 71.82

10 dB 88.85 80.15 72.99 64.88

0 dB 65.77 59.87 51.66 43.77

-5 dB 50.76 43.28 34.88 25.75

-10 dB 42.36 34.88 25.77 10.99

Table 1. Abnormal sound events detection results for 4 sys-

tems at different SNR levels

at different SNR levels of 20, 10, 0, -5 and -10 dB. The per-

formance of the systems are measured in terms of percentage

F-measure. We see from Table 1 that MTT (M=10) based

detection system not only outperforms the other three sys-

tem variants in clean scenario but exhibits robustness in pres-

ence of noise as well. When noise level increases, the de-

tection performance of our MTT based system degrades at

a much lower rate compared to the other three system vari-

ants. We also observe that for upto 10 dB SNR, our pro-

posed system gives a very satisfactory performance in detect-

ing the abnormal sound events. Another interesting point to

note from Table 1 is that even MTT models with M = 1 per-

forms better than RBM based models for all noise cases. This

clearly shows the importance of incorporating the information

of temporal trajectories along with localized spectro-temporal

attributes in the model representation of sound events for a ro-

bust characterization..

4. CONCLUSION

In this work, we develop a hybrid RBM-MTT framework for

abnormal sound event detection in subway station by using

a joint representation of localized spectro-temporal attributes

with mixtures of temporal trajectories. Such a joint represen-

tation is very effective in capturing the intricate details and

commonalities across a broader sound class spanned by multi-

ple events. We show that MTT as a dynamical mixture model

spans the complete temporal trajectory space of a complex

acoustic scene by decomposing it into multiple trajectories,

each of which belongs to a particular sub-event. In abnormal

sound event detection task, the detection accuracy improves

by an absolute 7 % over RBM class of models when infor-

mation of different modes of temporal dynamics is incorpo-

rated in model representation of sound objects via our pro-

posed MTT. We also find that our MTT based representation

augments the detection system with high degree of noise ro-

bustness at low SNR levels, thus illustrating the fact that the

joint representation provides a much robust characterization

of broader sound classes.
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