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ABSTRACT

How do humans attend to and pick out relevant auditory ob-
jects amongst all other sounds in the environment? Based on
neurophysiological findings we propose two task oriented at-
tentional mechanisms acting as Bayesian priors which act on
two separate levels of processing: a sensory mapping stage
and object representation stage. The former sensory stage is
modeled as a high dimensional mapping which captures the
spectrotemporal nuances and cues of auditory objects. The
latter object representation stage then captures the statistical
distribution of the different classes of acoustic scenes. This
scheme shows a relative improvement in performance by 81%
compared to a baseline system.

Index Terms— Auditory Attention, Acoustic Scene
Analysis, Sensory Processing, Object based attention.

1. INTRODUCTION

An auditory object is often equated to the sound produced
by a single source [1]. While the correspondence between
the two is not always a one-to-one mapping, the soundscape
incident on a listener generally consists of multiple auditory
objects that constitute the acoustic scene. Identifying an au-
ditory object is not a trivial task, especially since each object
can present itself in a multitude of variations. For example,
the blast of a car horn can differ depending on the make, the
speed of the vehicle, and also the distance of the vehicle from
the listener. Subsequently, this makes the identification of a
collection of auditory objects (i.e. the acoustic scene) signifi-
cantly harder. To add to this complexity, the nature and num-
ber of acoustic objects in a typical scene change over time.
In a street, the sounds coming from passing cars can blend
every now and then with speech from pedestrians or music
from street artists. Changing scenarios add a new dimension
of difficulty to the task of acoustic scene classification.

Attempts at automatic acoustic event and scene classifi-
cation have typically followed the path of extracting short
term features from waveforms and learning the statistics of
these features to later classify an unknown example. Mel
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Frequency Cepstral Coefficients (MFCC), filterbank energies
or Perceptual Linear Prediction coefficients (PLP) have been
popularly used as features for this task [2, 3, 4]. They are
often complimented with other low level features like zero
crossing rate, short time energy, spectral flux, pitch, bright-
ness and bandwidth [3, 5, 6] or are transformed to account
for long term statistics [7]. Though short term spectral at-
tributes coupled with low-level features have been quite suc-
cessful in a number of applications, studies have also shown
that they are limited in capturing the full range of informa-
tion relevant for acoustic scene recognition; and that joint lo-
cal modulations in energy along both time and frequency are
able to better capture the qualities of acoustic scenes [8]. This
rich modulation space builds on neurophysiological studies
in the mammalian auditory system indicating that neurons
at the level of auditory cortex respond to local joint spectral
and temporal modulation in the signal [9]. This biological
analysis can be viewed as mapping sound onto a high dimen-
sional feature space which captures the detailed variations of
the spectral profile and its temporal variations, as a basis for
representing acoustic events.

This sensory mapping is complemented with cognitive
mechanisms, most notably task-driven attention, which al-
lows us to isolate and recognize objects of interest amidst
other competing sound events [10]. Neurophysiological and
brain imaging studies have shown that task-driven attention
modulates the gain of sensory cortex responses to highlight
features of interest [11, 12]. Attention has been argued to act
as a Bayesian prior representing distribution of beliefs act-
ing as gating mechanism to reduce uncertainty, to increase
signal-to-noise ratio or to refine perceptual inference around
some goal-specific point in sensory space [13]. In addition,
attention is also believed to modulate cognitive and decision-
making frontal areas of the brain, most notably prefrontal cor-
tex [14]. Psychoacoustic evidence also supports the premise
that attention operates at multiple levels, be it feature-based
or object-based levels of representation [15, 16, 17, 18]. Mo-
tivated by these observations, the current study attempts to
develop a scheme that incorporates attentional mechanisms in
a model for scene recognition for multi-source environments.
The model focuses on attentional processes operating at the
level of both sensory representation and cognitive decisions.
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Fig. 1. Schematic of the proposed model used for the task of scene classification. Attention could be applied both at the sensory
stage and the object recognition stage.

2. METHODS

The proposed model is divided into Sensory Processing, Ob-
ject Representation and Adaptation modules as shown in
Fig1. Each of these modules and the experimental setup is
described below.

2.1. Sensory Processing

The incoming sound is processed to extract informative fea-
tures using techniques that mimic the behavior of the mam-
malian auditory system. This can be further divided into two
steps - the subcortical stage and the cortical processing stage.
In the subcortical stage, the waveform is passed through a
set of 128 asymmetric filters h(t; f) placed uniformly on a
logarithmic axis covering 5.3 octaves starting from 180Hz.
This is similar to the frequency-space transformation of the
cochlear membrane. This is followed by a spectral derivative
and a half wave rectification stage, which models the lateral
inhibition networks in the cochlear nucleus, sharpening the
frequency resolution of these filters. The mid brain process-
ing is implemented as a short term integration with window
µ(t; τ) = e−t/τu(t) and τ = 2ms followed by cubic root
compression. These subcortical transformations can be col-
lectively written as in Eq. 1 and the details of implementation
can be found in [19].

y(t, f) = (max(∂f (s(t)⊗t h(t; f)), 0)⊗t µ(t; τ))
1

3 (1)

where ⊗t represents convolution with respect to time.
This resulting time-frequency representation is referred to

as the auditory spectrogram. In the cortical stage, this spec-
trogram is analyzed locally for joint spectrotemporal modula-
tions using a bank of modulation tuned filters. These filters as
defined in Eq. 2, are shaped like 2D Gabors, which are known
to be a linear approximation to the receptive field shapes of
auditory cortex neurons [20, 21]. The temporal modulation
rate and spectral modulation rate are denoted by r and s re-
spectively. The filtering operation can then be written as sim-
ple two dimensional convolution as in Eq. 3 which yields a

four dimensional tensor representation.

MF (f, t; s, r) =
1

2πσtσf
e
−

1

2

(

t2

σ2
t

+ f2

σ2

f

)

e2πi(rt+sf) (2)

R(f, t; s, r) = |y(f, t)⊗f,t MF (f, t; s, r)| (3)

The MF filters are tuned to 10 upward rates and 10 downward
rates {r = 2, 3.4, 5.7, 9.5, 16, 26.9, 45.3, 76.1, 128, 215.3 Hz}
and 11 scales {s = 0.25, 0.35, 0.5, 0.71, 1, 1.41, 2, 2.83, 4,
5.66, 8 cycles/octave}, resulting in a total of 220 filters.

2.2. Object Representation

Each audio recording is windowed into non-overlapping 1s
segments. We integrate the cortical representation R over the
time duration of each window. To facilitate the machine learn-
ing module we reduce the number of dimensions via Tensor
Singular Value Decomposition [22] to keep 99% of the vari-
ance resulting in a 336 dimensional feature vector. We learn
the distribution of these feature vectors for each class using
a Gaussian Mixture Model (GMM) with 128 mixtures. We
use diagonal covariance for the mixtures and choose the best
fit among three random starts. To classify an unknown test
recording, we again extract features for non overlapping win-
dows of 1s duration and the class with the highest overall pos-
terior likelihood is chosen as the label.

2.3. Adaptation

We refer to adaptation as the changes in the system that take
place upon a given task. In the auditory system, top-down at-
tention mechanisms modulate the gain of neurons at the sen-
sory representation stage [11, 12], and are also known to op-
erate at the object representation stage[15, 17, 18].

2.3.1. Sensory Adaptation

We implement sensory adaptation similar to a Bayesian
framework where the class posterior is modulated by the
both the sensory mapping as well as priors about the class,
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representing the general knowledge about the attended class;
here captured by R̄(f, s, r), the average sensory representa-
tion for the target class across the training data. Here, it is
applied in a multiplicative fashion, affecting the gains of the
modulation filters, as given in Eq. 4. α controls the degree
to which the representation is changed, and can be varied
between 0 (no change) and 1 (maximum change).

R(f, t; s, r) =

(

1− α+ α
R̄(.)

max R̄

)

× |y(f, t)⊗MF | (4)

2.3.2. Object Adaptation

To adapt the object representation stage we assume we have
some training examples drawn from the current scenario (i.e.
same target, same signal to noise ratio etc.). We then use these
examples X to adapt the trained GMM of the target class to
the new condition. This is done using the MAP adaptation
technique which has been proven useful for speaker verifi-
cation [23], image segmentation [24], EEG verification [25],
etc. The new model parameters θ̂ are chosen as in Eq. 5.

θ̂ = argmax
θ

P (X |θ)1−γ · p(θ)γ (5)

where γ = (1 + r)−1 and r is the relevance parameter
which controls the amount of adaptation. Increasing values
of r leads to more reliance of the new data. We adapt only the
means and the probabilities of each mixture. The specifics of
MAP adaptation can be found in [23].
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Fig. 2. Performance (d′) of the baseline MFCC and proposed
model with and without attention mechanism.

2.4. Experimental Setup

The task of auditory scene classification is done on the BBC
Sound Effects Database [26]. We chose 12 scene classes
containing 1954 recordings amounting to 46 hours of data.
These wavefiles are first downsampled to 16 kHz and pre-
emphasized with filter coefficients [1 -0.97]. The recordings
are then randomly divided into training and test according
to a 9:1 ratio. To simulate a multisource scenario, we mix
each scene of interest with other recordings randomly chosen
from a different scene class, at varying target to masker ra-
tios (TMR) ranging from -20 dB to 20 dB in steps of 5 dB.

Furthermore, we generate a set of priors for each scene at
each TMR level to be used for object adaptation (Sec. 2.3.2),
which consists of 180 randomly chosen 1 second segments
from train data mixed with other scene classes.

Performance is measured using the dprime(d′) metric. It
is defined as d′=Z(hit rate)-Z(false alarm rate) where Z is the
inverse cumulative distribution function of a standard normal
distribution. We calculate d′ for each target class at each con-
sidered TMR and report the overall average. This measure
has the advantage over classification accuracy of incorporat-
ing not only the hit rate, but also false alarm rate.

The proposed system is compared to a system where
MFCC representation [2, 8] is used instead of the sensory
representation stage. 13 dimensional MFCC coefficients are
calculated using a Hamming window of length 25ms with an
overlap of 15 ms. The C0 energy coefficient is ignored as
our analysis suggested that it is not useful. The mean, stan-
dard deviation and skew of these 12 coefficients is calculated
over the duration of the segment considered and concatenated
resulting in a 36 dimensional feature representation.

3. RESULTS

The proposed system is designed to attend to a target class in a
mixed class scenario. When the sensory adaptation parameter
α is set to 0 and object adaptation parameter r is set to ∞, the
system is denied any adaptation to the task. The performance
of such a system is d′ =0.53. When MFCC features are used
instead, the performance is 0.36 (Fig. 2). This relative im-
provement of 45% shows that the sensory representation by
itself is able to better capture relevant characteristics of indi-
vidual scene classes.

Next, we test the system with only sensory adaptation by
varying α over a range of values and setting r = ∞. When
the task is to attend to a particular target, we adapt the sensory
representation using prior knowledge of the target class as ex-
plained in Sec. 2.3.1. This system is tested against the entire
test set at each TMR value. This results in a classification con-
fusion matrix for each TMR and target class. The average d′

over all TMRs and target classes is considered, which yields
a small improvement in performance to 0.54 or 49% relative
when α = 0.2. This is consistent with physiological studies
which show the effect of task related attention on the gain of
neurons in terms of α to be in the range of 0.1 to 0.35 [27].
Similarly, we also test the performance of the system with
only object adaptation by varying r and setting α = 0. In
this case, given a particular target, we adapt the object repre-
sentation stage to that target class as explained in Sec. 2.3.2.
This system shows a marked improvement in d′ to 0.6 (See
Fig. 2) when r = 0.13 which is a relative improvement of
67% . This suggests that object adaptation is more effective
in enhancing the performance of the system as compared to
sensory adaptation. This is not surprising as we assume the
additional knowledge of TMR during object adaptation.

We then consider the situation where both sensory and
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r
α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.03 62 78 71 62 51 79 38 21 1 -31 -53
0.06 64 63 77 74 43 77 32 27 -4 -36 -69
0.13 67 70 70 81 56 58 50 9 8 -42 -73
0.25 61 64 71 79 56 29 40 39 7 -34 -60
0.5 62 55 53 40 32 36 20 50 32 -0 -47
1 47 50 62 44 2 -1 4 39 32 23 -3
2 46 49 56 43 -22 -26 -9 -6 21 17 -1
∞ 45 46 49 30 -2 -24 -32 -45 -37 -50 -53

Table 1. Relative improvement (%) in performance, compared to MFCC, as a function of the adaptation parameters r and α.

object adaptation are applied. We vary both α and r over a
range of values and the results are shown in Table 1. The best
performance of 0.65 is obtained when α = 0.3 and r = 0.13.
This relative improvement of 81% in performance shows that
the two different adaptation techniques can indeed be applied
simultaneously to improve the performance further. The
choice of α is again consistent with physiological findings.

A comparison of performance for various classes, be-
tween the system without any adaptation and with both sen-
sory and object adaptation, as shown in Table 2, reveals inter-
esting traits. Some classes like Foley, Sports and Water are
helped by the adaptation mechanisms, while the performance
on some classes like Emergency, Household and Weather
is deterred. This could be due to the fact that classes like
Weather and Household are ambiguous classes, for example,
Weather could contain wind sounds and water sounds (rain)
and Household could also contain a wide variety of sounds
present in a house including water sounds (flowing tap water).

4. CONCLUSIONS

The auditory system maps the acoustic signal into a high-
dimensional, redundant mapping which highlights all the rel-
evant spectral and temporal cues in an auditory object. This
rich space allows for tracking sound events along multiple
time constants, thus providing the ability to selectively en-
hance or ignore different components of the acoustic environ-
ment. In contrast, compact representations that many audio
processing approaches strive for (e.g. MFCCs) rather empha-
size tight, statistically independent and reduced features that
are amenable as front-ends to classification techniques. The
current work shows that this high-dimensional mapping out-
performs MFCCs by a relative improvement of 45%. More-
over, such high-dimensional representation facilitates incor-
porating attentional control, which highlights relevant infor-
mation, segregates pertinent auditory objects and provides a
framework to integrate prior knowledge. In this work, at-
tentional feedback is implemented both at the sensory stage
(performance gains of 49%); as well as at the object decision
stage (performance gains of 67%). Both mechanisms work
synergetically. When both are applied, we observe relative
improvement of 81% over the baseline system. Neurophys-

iological evidence does indeed support a role of attentional
feedback both at the feature-level as well as the object-level
[16], with modulatory effects operating at the level of sensory
cortex [11, 12, 27] and frontal decision making cortical areas
[14, 28].

Class
Model

None Both Relative
(d′) (d′) Improvement(%)

Emergency 0.7718 0.5189 -33
Foley 0.581 1.4847 156

Humans 0.5501 0.6914 26
Industry 0.5037 0.5652 12
Sports 0.6728 1.6298 142

Transportation 0.5803 0.5189 -11
Water -0.2152 0.5123 338

Animals 0.8793 0.8042 -9
Household 0.624 -0.0966 -115

SciFi 0.6111 1.0072 65
Technology 0.146 0.3651 150

Weather 0.6035 -0.1415 -123

Table 2. Performance(d′) comparison of models, without and
with both adaptation mechanisms, for each class.

The incorporation of the rich sensory mapping for repre-
senting scenes deviates from prior work in the field of scene
classification and audio event detection; which generally
gravitated towards more compact short-term features [2, 3, 4].
Nevertheless, it is worth noting that a rich (redundant) fea-
ture representation has been employed in more specific sound
technologies, such as automatic speech recognition, speaker
identification and music instrument classification [29, 30]
with notable success. Moreover, the use of top-down atten-
tion has been limited to data-driven training of classifiers and
back-end generative and discriminative systems [23]; and
has seldom been incorporated in manipulating the feature
representation; except in few systems [31], but not in scene
classification. In contrast, the field of visual scene analysis
has had much more success in integrating attentional control
and prior knowledge with processing of visual scenes and
images [32].
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