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ABSTRACT

In the real world, natural conversational speech is an

amalgam of speech segments, silences and environmen-

tal/background and channel effects. Labeling the different

regions of an acoustic signal according to their information
levels would greatly benefit all automatic speech processing

tasks. In the current work, we propose a novel segmentation

approach based on a perception-based measure of speech

intelligibility. Unlike segmentation approaches based on var-

ious forms of voice-activity detection (VAD), the proposed

parsing approach exploits higher-level perceptual information

about signal intelligibility levels. This labeling information

is integrated into a novel multilevel framework for automatic

speaker recognition task. The system processes the input

acoustic signal along independent streams reflecting vari-

ous levels of intelligibility and then fusing the decision scores

from the multiple steams according to their intelligibility con-

tribution. Our results show that the proposed system achieves

significant improvements over standard baseline and VAD-

based approaches, and attains a performance similar to the

one obtained with oracle speech segmentation information.

Index Terms— Speech intelligibility, Voice-activity de-

tection, Speaker recognition, Noise robustness

1. INTRODUCTION

With the advent of E-commerce technology, the importance

of non-intrusive and highly reliable methods for personal au-

thentication has been growing rapidly. Voice prints being

the most natural form of communication, and being already

used widely in spoken dialog systems, have significant ad-

vantage over other biometrics such as retina scans, face, and

finger prints. Voice prints as biometric also have tremen-

dous potential in forensic and military applications. However

This research is partly supported by NSF CAREER grant IIS-0846112,

NIH grant 1R01AG036424 and AFOSR grant FA9550-09-1-0234, and by

the Office of the Director of National Intelligence (ODNI), Intelligence Ad-

vanced Research Projects Activity (IARPA), through the Army Research

Laboratory (ARL). All statements of fact, opinion or conclusions contained

herein are those of the authors and should not be construed as representing

the official views or policies of IARPA, the ODNI, or the U.S. Government.

despite significant advances in Automatic Speaker Verifica-

tion/Recognition (ASV) over the last two decades, the real-

world application of ASV technology still faces tremendous

challenges. The presence of corrupted speech (at various de-

grees and in a variety of ways) as well as non-speech seg-

ments hinders the performance of ASV systems, particularly

in the context of conversational speech biometrics [1].

Efforts into segmenting the signal into its most infor-

mative voice components have largely employed various

forms of voice-activity detection (VAD), speaker segmenta-

tion or end-point detection approaches. Most of the existing

approaches suffer a significant drop in performance in uncon-

trolled/noisy environments and unseen acoustic conditions.

The present study explores a new direction for front-end

pruning of the signal with a perception-based measure of

speech intelligibility. The proposed method offers a new

way of taking advantage of the perceptual quality of the

signal irrespective of its acoustic environment by incorporat-

ing information about the perceptual integrity of the sound.

We propose a multilevel system for speaker recognition that

makes an additional use of the information about speech in-

telligibility levels present in the input acoustic signal. The

labeling information based on time-varying intelligibility es-

timates is integrated into the multilevel system by processing

the test signal along multiple independent streams reflecting

various levels of intelligibility and fusing the scores (log-

likelihood ratios) from the multiple streams according to their

intelligibility contribution. The rest of the paper is organized

as follows. We describe the intelligibility metric used in the

proposed scheme in Section 2, followed by the speaker veri-

fication system augmented with a multistream intelligibility

weighting in Section 3. Results of the proposed multilevel

system are given in Section 4 followed by a discussion of the

relevance of these findings and potential extensions to various

speech processing systems (in Section 5).

2. THE INTELLIGIBILITY LIKELIHOOD MODEL
In any conversational speech biometrics application, it is very

important to identify and make use of the different regions

in the test signal that contain different levels of information.

In this work, we propose to use information based on speech

4393978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



intelligibility levels. Most conventional intelligibility metrics;

including the articulation index -AI- [2, 3], speech intelligibil-

ity index -SII- [4], speech transmission index -STI- [5], and

spectro-temporal modulation index -STMI- [6], often require

a reference comparison signal and compute average intelli-

gibility scores for a given acoustic distortion or listening en-

vironment. A crucial component of the proposed multilevel

system framework is to label any given acoustic signal, with-

out the need for reference signal, at the local-level (short time

windows of the order of 250ms) based on higher-level percep-

tual information about the signal intelligibility levels. In the

current study, we use a variation of the Intelligibility Likeli-

hood (IL) model that was originally proposed in [7] to enable

the assessment of the perceptual integrity of any given signal

over syllable length (250ms) time windows.

A
m

pl
itu

de

Time

�

�

��

Intelligibility likelihood 
score

Fig. 1. Illustration of tracking of transitory changes in sig-

nal intelligibility levels. The speech utterance is an interview

conversation clip taken from the NIST 2008 SRE.

The IL analysis starts with a biologically-inspired audi-

tory model which mimics various stages of the mammalian

auditory pathway. The auditory model contains two ba-

sic stages: an early stage that maps the one-dimensional

acoustic signal to a time-frequency representation (auditory

spectrogram), and a subsequent central stage that analyzes

the auditory spectrogram to estimate its modulation pro-

file along spectral and temporal dimensions using a bank

of modulation-selective filters. The model maps any sound

into a four dimensional cortical representation spanning time,

frequency, temporal modulations (rates), and spectral modu-

lations (scales). Full details of the auditory model are given

in [8]. In the current implementation, 90 frequency chan-

nels placed uniformly over log-frequency scale in the range

of 300-3400 Hz, rate filters selective to [4, 8, 16, 30, 50] Hz,

and scale filters selective to [0.25, 0.5, 1, 2, 4] Cycles/Octave

are used. The cortical features are then processed blockwise

integrating over short 250ms time windows, and reduced in

dimensionality using higher-order singular value decomposi-

tion [9] to 72 dimensions (6 x 4 x 3 in frequency, rate, scale

subspaces, respectively). In this reduced dimensional space,

a Support Vector Machine (SVM) is trained to discriminate

high-intelligible and low-intelligible speech classes. Given

any reduced test cortical feature representation, an IL score

is computed from the distance between the feature vector

and the separating hyperplane in the SVM. Full details about

the implementation of the IL model are provided in [7]. For

the IL model used here, the high-intelligible features are

computed from approximately one hour of TIMIT speech

database [10]. For the low-intelligible speech class, the same

data but with white noise added at -10dB Signal-to-Noise

Ratio (SNR) is used. Given an acoustic signal, a stream of

IL estimates from the model enables local-level tracking of

transitory changes in intelligibility. An example of how the

IL metric tracks changes in the signal intelligibility is shown

in Fig 1.

3. SPEAKER RECOGNITION SETUP

Gaussian Mixture Model (GMM) based speaker verifica-

tion systems form the state-of-the-art and have been shown

to give excellent performance on matched-channel condi-

tion in all the recent NIST speaker recognition evaluations

(SREs). In GMM-based speaker verification setup, a speaker-

independent Universal Background Model (UBM) is first

trained with data gathered from a large number of speakers

[11]. The UBM represents speaker-independent distribution

of the feature vectors. When enrolling new speakers into

the system, models for the target speakers are obtained by

maximum a posteriori (MAP) adaptation of the UBM. In the

verification stage, a match score is computed in the form of

a log likelihood ratio - which essentially is a measure of the

differences between target speaker model and the speaker-

independent UBM in generating the test speaker observations

(feature vectors).

In our UBM-GMM based speaker recognition system, we

trained the UBM with data obtained from a set of 402 speak-

ers. The data is sampled from the NIST 2008 SRE [12] train-

ing corpus. In the UBM training, a total of 1024 mixtures

and 15 expectation-maximization iterations for mixture split

are used. A total of 85 target speaker models are obtained by

MAP adaptation of the UBM. MIT Lincoln Lab GMM toolkit

is used for the UBM-GMM training.

3.1. Multilevel system framework

We propose a multilevel system framework based on speech

intelligibility for the speaker recognition task. A schematic of

the proposed system is shown in Fig 2. During verification,

the test utterance is analyzed using the IL model (described

in Section 2). Based on the perceptual quality of the signal

that has been shown to correlate highly with human speech

intelligibility judgements [7], the input feature stream is seg-

regated into a number of different streams. This is achieved

by (i) computing IL estimates over short time scales for the

entire test utterance; (ii) clustering the array of IL scores in an

unsupervised way into desired number of clusters or feature

streams (k-means clustering is used); (iii) generating multi-

ple feature streams corresponding to the IL score clustering,

e.g., high, medium, and low intelligible level feature streams.

In the current study, for microphone interview recordings, we
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Fig. 2. Schematic of the multilevel system based on speech intelligibility for speaker recognition

found that a choice of 3 streams is optimal. For telephone

channel recordings in the NIST SRE data, we observed that

a choice of 5 streams is optimal (results not presented here).

The IL score clustering results in segregation of the feature

streams in an adaptive manner, for e.g., a larger percentage of

frames are assigned to lower intelligibility streams when the

test signal is relatively noisy or corrupted. In the final stage,

the decision scores or log likelihood ratios are computed inde-

pendently for each of the multiple streams, and stream fusion

at the scores level is performed based on appropriate weight-

ing. This weighting can be directly related to the respective

streams average intelligibility estimates, and is empirically

found to be optimal with the following weight values: [0.75

0.25 0]1. Note that the optimal weight distribution reflects the

higher importance given to high intelligible streams.

4. EXPERIMENTS AND RESULTS

For the verification task, we focus in particular on condition

2 even though there are eight common conditions listed in the

NIST 2008 SRE [12]. In this condition, both the train and

test trials involve interview conversations from the same mi-

crophone. We specifically choose this condition, since the

recognition setup cannot take advantage of factor analysis

techniques [13] that address various channel mismatch sce-

narios present in the standard NIST SREs. A subset of 85

train speakers is chosen to train the target speaker models and

an independent set of 500 test trials (impostor and genuine

trials are 169 and 331, respectively) taken from NIST 2008

SRE is used to evaluate the verification performance. For the

front-end acoustic features, standard 19 Mel Frequency Cep-

stral Coefficients (MFCC) along with their first and second

order temporal derivatives are used. In addition, utterance

level mean and variance normalization is employed.

In the first set of experiments, we evaluate the verification

performance for a baseline system that uses the entire test sig-

nal without the use of intelligibility level information; as well

as for each of the 3 streams with high, medium, and low intel-

ligibility levels in the multilevel system. The results in Equal

Error Rates (EER) are shown in Table 1. It can be seen that the

1It is possible to learn these weights using data driven techniques - Fusion

and Calibration toolkit, http://www.dsp.sun.ac.za/̃ nbrummer/focal

performance of different streams correlates highly with the in-

telligibility level of the individual streams. The multistream

fusion at the decision score level achieved the best verifica-

tion performance of 3.3% EER. Notice that the combination

also improves over the best single stream performance.

Table 1. Speaker verification performance – results are in

Equal Error Rate (EER) in percentage

Stream Intelligibility ASV Performance

Level (in EER)

Baseline 4.5

1 (high) 3.6

2 (medium) 5.3

3 (low) 26.6

Multistream Combination 3.3

In the second set of experiments, we corrupt the test sig-

nal with two different real-world noise types added at Signal-

to-Noise Ratio (SNR) levels of 30dB, 20dB, and 10dB. The

noise types chosen are non-stationary subway and street noise

(taken from Aurora database [14]). Table 2 shows the perfor-

mance obtained with (i) the baseline system (ii) with pruning

using state-of-the-art ETSI VAD [15] (iii) with the proposed

multilevel system based on speech intelligibility information

(iv) with pruning using the segmentation coming from an Or-

acle Automatic Speech Recognition (ASR) system - note that

the oracle ASR system uses clean signal to obtain the seg-

mentation, but in the real world test scenario, the availability

of clean reference signal is not practical2. VAD based prun-

ing improves over baseline performance especially in clean

and high SNR conditions. While VAD based approach gives

marginal improvement over baseline, the multilevel system

performs significantly better in all the conditions - an aver-

age EER reduction of 33% and 29% respectively, over base-

line system and ETSI VAD based pruning3. Note that pro-

posed multilevel system performs comparable to the system

that uses Oracle ASR segmentation information.

2Further, ASR systems suffer a significant drop in performance in mis-

match, noisy, and unseen acoustic conditions
3Other conventional VADs based on energy thresholds, zero crossings,

and spectral/cepstral measures did not improve results over the ETSI VAD

4395



Table 2. Speaker verification performance where the test signal is corrupted by nonstationary additive noise – results are in

Equal Error Rate (EER), in percentage

Noise Type SNR (in dB)
ASV Performance (EER)

Baseline ETSI VAD Multilevel System Oracle ASR

Clean ∞ 4.5 4.1 3.3 3.5

Street

30 4.8 4.2 3.5 3.9

20 7.7 7.0 3.9 4.1

10 13.6 13.4 8.7 8.3

Subway

30 8.9 7.7 3.5 3.6

20 13.4 12.6 8.9 8.7
10 22.1 21.8 18.3 18.3

5. DISCUSSION

We propose a novel approach for labeling any given acous-

tic signal at short time scales with information levels based

on a perception-based measure of speech intelligibility. This

labeling information is integrated into an ASV system by pro-

cessing the test signal along multiple independent streams re-

flecting various levels of intelligibility and fusing the scores

(log-likelihood ratios) from the multiple streams according to

their intelligibility contribution. Using the proposed multi-

level system, we show significant improvements over stan-

dard baseline and VAD based approaches, and achieve per-

formance close to the one obtained with oracle segmentation

information. Note the IL model used for intelligibility anal-

ysis is neither trained on the train/test databases nor on the

noise types being tested. It is an independent measure of in-

telligibility that closely matches human listeners’ judgment of

speech integrity [7]; and assumes no prior knowledge of the

dataset or noise background.

In the multilevel system, we show that the performance

of different streams correlates highly with the intelligibility

level of the individual streams which further validates the pro-

posed labeling and segregation of feature streams. Since the

speech intelligibility level estimates can be looked at as ad-

ditional higher-level knowledge sources and provides com-

plimentary information, we speculate the proposed multilevel

system would be applicable even in the context of complex

large scale ASV systems that include techniques like factor

analysis. Further, a similar multilevel front-end is not limited

to ASV tasks, but can be applied to other speech processing

applications such as speech recognition, speech transmission

over telephony or internet, noise reduction and echo cancella-

tion, and video conferencing.
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