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ABSTRACT

This paper proposes a novel feature extraction technique for
speech recognition based on the principles of sparse coding.
The idea is to express a spectro-temporal pattern of speech as
a linear combination of an overcomplete set of basis functions
such that the weights of the linear combination are sparse.
These weights (features) are subsequently used for acoustic
modeling. We learn a set of overcomplete basis functions
(dictionary) from the training set by adopting a previously
proposed algorithm which iteratively minimizes the recon-
struction error and maximizes the sparsity of weights. Fur-
thermore, features are derived using the learned basis func-
tions by applying the well established principles of compres-
sive sensing. Phoneme recognition experiments show that
the proposed features outperform the conventional features in
both clean and noisy conditions.

Index Terms— sparse coding, feature extraction, com-
pressive sensing, speech recognition.

1. INTRODUCTION

Multilayer perceptron (MLP) classifier based acoustic mod-
eling has been successfully used in state-of-the-art automatic
speech recognition (ASR) systems [1]. It facilitates the cor-
related features with complex density function to be used as
the input acoustic observations. Thus, recent feature extrac-
tion techniques have focused on ways to encode the informa-
tion in the spectro-temporal patterns of speech. Most of the
techniques employ simple projection-based approach for en-
coding information. In other words, features are extracted by
simply projecting an input spectro-temporal pattern on a set
of two-dimensional patterns which characterize various two-
dimensional filters. For instance, a set of two-dimensional
Gabor filters are preselected to form multiple feature streams
in [2]. Furthermore, two-dimensional filter shapes are learned
from the data in a discriminative fashion in [3].

The aforementioned feature extraction techniques bear
a close resemblance to the spectro-temporal receptive field
(STRF) model for predicting the response of a cortical neuron

to the input speech [4]. STRF of a neuron describes the two-
dimensional spectro-temporal pattern to which that neuron is
most responsive, and the response is obtained by projecting
an input pattern on the STRF. However, since it is a linear
model, STRFs cannot explain the non-linear behavior exhib-
ited by most cortical neurons. However, it is suggested in [5]
that sparse coding could be a potential strategy employed by
neurons in the visual cortex to encode images in a non-linear
manner. The sparse coding idea has been successfully applied
for single channel speaker separation [6].

In this work, we demonstrate the usefulness of sparse cod-
ing in deriving features for phoneme recognition. Sparse cod-
ing deals with the problem of how to represent a given input
spectro-temporal pattern as a linear combination of a mini-
mum number of basis functions in an overcomplete dictionary
(i.e., the input dimensionality is typically much less than the
number of basis functions or atoms in the dictionary). The
weights of the linear combination are used as features for
acoustic modeling.

Obtaining features involves two steps:- (i) learning the op-
timal dictionary of basis functions from the training data and
(ii) determining the features from the learned overcomplete
set. We train the dictionary in an iterative way using the
gradient descent algorithm such that it maximizes the spar-
sity of the features and minimizes the reconstruction error of
the spectro-temporal patterns present in the training data [7].
Once the overcomplete set is found, features corresponding to
an input spectro-temporal pattern are obtained by minimizing
the l1 norm of the weights of the linear combination of ba-
sis functions subject to the faithful reconstruction of the input
spectro-temporal pattern by the linear combination. This l1
norm minimization technique is well established in the com-
pressive sampling literature and yields a sparse weight (fea-
ture) vector [8].

2. LEARNING OVERCOMPLETE SET OF BASIS

The goal of sparse coding is to express a given input pat-
tern as a linear combination of an overcomplete1 set of basis

1We drop the term overcomplete for convenience.
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functions such that the weights of the linear combination are
sparse. It is trivial to see that the choice of basis functions
determines how sparse the weight vector is. Therefore, it is
necessary to determine a set of basis functions which capture
structure in the data so that any input pattern can be expressed
using only few basis functions. The set of basis functions are
learned from the training data by solving the following opti-
mization problem, which is adopted from [7], in an iterative
fashion.

Suppose that the input pattern s can be approximated as a
linear combination of the basis functions φi with weights αi,
then the reconstructed pattern ŝ is given by,

ŝ =

m∑
i=1

αiφi (1)

The total number of basis functions is indicated by m. Ideally,
we want to find the basis which minimizes the expected value
of the square error between the input and the reconstructed
patterns and maximizes the expected sparsity measure of the
weight vector subject to the constraint that norm of each basis
function is unity. It can be mathematically formulated as,

φ∗ = arg min
{φi}

E [C∗] ; s.t ‖φi‖2
= 1,∀i ∈ 1, 2, ...,m. (2)

where the expectation E[.] is over the distribution of the input
patterns. The optimal cost C∗ associated with an input pattern
s for a fixed basis {φi} is given by,

C∗ = min
{αi}

C, where

C =

∥∥∥∥∥s −
m∑

i=1

αiφi

∥∥∥∥∥
2

2

+ λ

m∑
i=1

log

(
1 +

(αi

σ

)2
)

(3)

Note that (3) has two terms. Minimizing its first term mini-
mizes the squared error, while that of the second term maxi-
mizes the sparsity of the weight vector. Also, λ is a positive
constant which controls the importance of the second term
relative to the first term. Whereas σ is a constant scaling fac-
tor which is set to the standard deviation of the input patterns.

The learning of basis functions is carried out in two steps.
First, we treat the basis functions as fixed and find the weights
corresponding to an input pattern by solving for C∗. Second,
we update the basis functions to further minimize the cost C

by fixing the weights found in the first step. This procedure
is repeated for all the input patterns in the training set over
several epochs.

2.1. Updating the weights

For a fixed basis set and an input pattern, the optimal weights
are obtained by solving a set of partial derivatives ∂C

∂αi
being

set to zero. This requires finding a solution to a set of non-
linear equations. We use the Newton-Raphson technique to

update the weights,

αk+1

i = αk
i + Δαi, ∀i ∈ 1, 2, ...,m. (4)

In (4), Δαi are obtained by solving the following set of linear
equations2.⎡
⎢⎢⎣

∂f1

∂α1

∂f1

∂α2

. . . ∂f1

∂αm

. . . . . .

. . . . . .
∂fm

∂α1

∂fm

∂α2

. . . ∂fm

∂αm

⎤
⎥⎥⎦
{αk

i
}

⎡
⎢⎢⎣

Δα1

.

.

Δαm

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

f1

.

.

fm

⎤
⎥⎥⎦
{αk

i
}

where fj = − 1

2

∂C
∂αj

, and is given by

fj = 〈s,φj〉 −

m∑
i=1

〈φi,φj〉αi −
λ

σ

(
αj

σ

1 +
(αj

σ

)2

)
,

∀j ∈ 1, 2, ...,m, and 〈.〉 indicates the inner product. Further-
more, the partial differential ∂fj

∂αi
can be expressed as,

∂fj

∂αi

= −〈φi,φj〉 , i �= j.

= −〈φj ,φj〉 −
λ

σ2

⎛
⎜⎝ 1 −

(αj

σ

)2(
1 +

(αj

σ

)2
)2

⎞
⎟⎠ , i = j.

2.2. Updating the basis functions

Gradient descent technique is applied for updating the basis
functions φi. In this step, the weights obtained in section 2.1
are used and considered as fixed for a given input pattern. The
updated basis functions φi

′

are given by,

φi

′

= φi −
η

2

(
∂C

∂φi

)
,

= φi − η

⎛
⎝−αi

⎡
⎣s −

m∑
j=1

αjφj

⎤
⎦

⎞
⎠ ,∀i ∈ 1, 2, ...,m.

Where the learning parameter η is initially kept high, and its
value is gradually decreased as a function of the number of
epochs. The updated basis functions are normalized such that
they are of unit norm.

3. OBTAINING SPARSE FEATURES

Having identified the overcomplete set of basis functions, the
next important question is to how to express a given input
pattern as a linear combination of these basis functions such
that the representation is as sparse as possible. The weights

2The matrix entries ∂fi

∂αj
and fi are evaluated using the weights of the kth

iteration αk
1
, αk

2
, ..., αk

m. The initial estimate of α0

j is set to be |s|
m

〈
s, φj

〉
.

Where |.| indicates the cardinality and 〈.〉 represents the inner product.
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of the linear combination are used as features for representing
the input pattern. Compressive sampling (CS) theory exactly
addresses this problem when reconstructing an input signal
from its partial observations [8, 9].

Let Φ be the the n×m matrix (where input dimensionality
is indicated by n) which represents an overcomplete set of
basis functions or a dictionary learned in section 2 i.e.,

Φ =
[
φ1 φ2 . . . φm

]
.

Then according to CS theory, the problem of determining the
sparse weight vector α, whose elements are αi, correspond-
ing to an input pattern s can be posed as,

arg min
α∈Rm

‖α‖l1 s.t. s = Φα.

This is a linear programming problem which can be efficiently
solved by many existing algorithms. In our experiments, l1-
MAGIC package is used [10].

4. RESULTS

Speaker independent phoneme recognition experiments are
conducted on TIMIT in order to test the effectiveness of the
proposed feature extraction technique. As mentioned earlier,
our approach operates in the spectro-temporal speech domain
(log critical band energies) which is obtained by first perform-
ing a Short Time Fourier Transform (STFT) with an analysis
window of length 25 ms and a frameshift of 10 ms on the
input speech signal. Log critical band energies are subse-
quently obtained by projecting the magnitude square values
of the STFT output on a set of frequency weights, which are
equally spaced on the Bark frequency scale, and then apply-
ing a logarithm on the output projections.

The input spectro-temporal patterns for learning the over-
complete set of basis functions are obtained from the spectro-
temporal representation of the training utterances by taking a
context of about 210 ms centered on each frame. The dimen-
sionality of any such pattern (or s) is 19 x 21 = 399, as there
are 19 critical bands and 21 frames. Four thousand spectro-
temporal patterns are randomly sampled (with uniform den-
sity) from all the patterns present in the train set in order to
learn a set of m = 429 basis functions {φi}. All the ba-
sis functions are initialized with zero mean Gaussian White
Noise (GWN) and normalized to have unit norm. Learning is
accomplished by first determining the weights corresponding
to an input pattern and then updating the basis functions us-
ing found weights as described in Section 2. This procedure
is repeated for all four thousand input patterns and about two
hundred epochs. Once the overcomplete set is identified, the
feature vector corresponding to any spectro-temporal pattern
is obtained by solving the l1 minimization problem described
in Section 3. Fig. 1 shows some examples of the learned
basis functions. The implementation details of the phoneme
recognition system are described below.
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Fig. 1. Examples of sample basis functions corresponding to
m = 429.

Initially, an MLP is trained to estimate the posterior prob-
abilities of the phonemes conditioned on the input features
by minimizing the cross entropy between the input acous-
tic feature vectors and the corresponding phoneme target
classes [11]. The posterior probabilities estimated by MLP
are used as the emission likelihoods (no language model) of
the HMM states as described in the hybrid approach [12].
Each phoneme is modeled using 3 HMM states with equal
self and transition probabilities. Decoding is accomplished
by applying the Viterbi algorithm and the phoneme recogni-
tion accuracy is obtained by comparing the decoded phoneme
sequence against the reference sequence. Additionally, the
phoneme insertion penalty is chosen to be the one that max-
imizes the phoneme recognition accuracy of the CV data.
Note that the silence class is ignored while evaluating the
accuracies. In all of our experiments, MLP with 1000 hid-
den nodes is trained using the features extracted from 3000
utterances (375 speakers) of the training set and 696 utter-
ances (87 speakers) of the cross-validation set of the TIMIT
database. The test set consists of 1344 utterances of speech
from 168 speakers. Furthermore, the 61 hand-labeled sym-
bols of the TIMIT transcription are mapped to a standard
set of 39 phonemes for the purpose of training and decoding
[13].

The phoneme recognition accuracy of the various features
is listed in Table 1. The proposed features, obtained by first
learning a set of basis functions which are initialized using
GWN basis and then expressing a given input pattern as a lin-
ear combination using l1 norm minimization, perform better
than the conventional PLP3 features. It is also evident that
the learning of basis is indeed useful as performance of the l1
features with learning is better than the ones without learning.
Note that the proposed features yield an absolute improve-
ment of 0.8% over the PLP features on the (clean) TIMIT
phoneme recognition task.

3PLP feature vector is obtained by concatenating a set of 9 frames of stan-
dard 13 PLP cepstral coefficients along with its delta and delta-delta features.
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Table 1. Phoneme recognition accuracies (in %) on 16 kHz TIMIT.

Basis functions Features Accuracy
(m = 429)

GWN l1 66.4
learned, GWN init l1 67.7

- PLP 66.9

In order to test the noise robustness of the proposed fea-
tures, we conducted phoneme recognition experiments on part
of the TIMIT test set (300 randomly chosen utterances) cor-
rupted by additive babble noise (taken from NOISEX-92) at
various signal to noise ratios (SNR). The results in noisy con-
ditions, listed in Table 2, show an average absolute improve-
ment of 6.3% over the PLP features.

Table 2. Phoneme recognition accuracies (in %) on 16 kHz TIMIT
corrupted by additive babble noise.

SNR
Features 10 dB 15 dB 20 dB
GWN, l1 28.4 38.4 48.7

learned, GWN init, l1 30.0 41.3 51.2
PLP 23.4 34.0 46.1

5. DISCUSSION AND FUTURE WORK

Given a set of learned basis functions (explained in section 2),
in the proposed approach, features corresponding to an input
pattern are obtained by minimizing the l1 norm of the weights
subject to the reconstruction of the input pattern. However,
it may be interesting to see how different lp norm minimiza-
tions for p ≥ 0 (and their various practical implementations)
perform as compared to the proposed approach.

Once trained, MLP can be viewed as a non-linear function
which maps the input feature vector to the output posterior
probabilities of phonemes. Ideally the posterior probability
space is sparse and it contains only the linguistic (phoneme)
information relevant for the task. Interestingly, the proposed
feature extraction also tries to non-linearly map an input
spectro-temporal pattern to a sparse feature space which pre-
serves most of the input variability. Also by construction, the
proposed features might be robust to various types of signal
distortions. This is the first time the ideas of compressive
sensing are applied to represent spectro-temporal patterns for
speech recognition. Future work includes extensive study of
the noise robustness aspect of the proposed feature extraction
framework.

6. CONCLUSIONS

A novel feature extraction technique has been proposed for
speech recognition based on the principles of sparse coding.

We have shown how to learn the overcomplete set of basis
functions from the spectro-temporal representation of speech,
and how to extract features using these basis functions by
solving the l1 norm minimization problem as in the compres-
sive sampling framework. Phoneme recognition experiments
on TIMIT confirm that the proposed features perform signifi-
cantly better than the conventional PLP features in both clean
and noisy conditions.
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