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ABSTRACT
Performance of speech technologies can benefit greatly

from a deeper appreciation of the nature of the information-
bearing features in continuous speech. To explore these fea-
tures, we focus here on the role of the spectral and tempo-
ral modulations in maintaining the intelligibility of speech as
it becomes severely degraded by low-pass filtering and addi-
tive babble noise. These modulations are estimated using a
biological model of auditory processing which approximates
the representation of sound in the cortex. Intelligibility of
the noisy speech is computed directly from this model via
the Spectro-Temporal Modulation Index (STMI) [1], and the
validity of this metric is confirmed by a detailed compari-
son with results of psychoacoustic tests. Our analysis reveals
quantitatively why certain types of noise are more disruptive
to speech intelligibility than others (e.g., babble vs. white
noise). It also highlights the important contribution of both
spectral and temporal modulations in accurately predicting
the intelligibility of speech under adverse conditions.

Index Terms— Speech intelligibility, STMI, auditory sys-
tem, bandlimited speech, babble noise

1. INTRODUCTION
A ubiquitous operation at the front-end of all speech technolo-
gies (recognition systems, coding schemes, hearing prosthe-
ses, etc) is the extraction of acoustic elements that are most
informative about speech for the task at hand. However, this
process poses a real challenge to all these systems due to the
inherent high redundancy in continuous speech, making it dif-
ficult to delineate which components of the acoustic signal
carry what information about its attributes. This challenge is
made even more strenuous when dealing with speech signals
in the presence of background noise and channel distortions.
Much inspiration about these information-bearing features

of speech can be gained from knowledge of how the brain
processes and perceives sounds. In the current study, we use
a biologically-inspired model of auditory processing to inves-
tigate the contribution of different spectro-temporal elements
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of speech in determining its intelligibility. Within this con-
text, we explore how gracefully do these features degrade un-
der conditions of background babble noise and bandlimiting
distortions, and how informative are these degradations about
the actual intelligibility of speech.

2. APPROACH
Speech in its journey from the eardrum to the cortex under-
goes profound transformations from a simple one dimensional
pressure waveform to an elaborate multidimensional repre-
sentation; thereby robustly encoding specific acoustic features
in different nuclei in the auditory system [2]. To better in-
vestigate the contribution of each of these acoustic elements
to speech perception, we use a biologically-inspired model
which mimics the signal processing taking place along the
pathway from the periphery all the way to the cortex [3]. In
earlier work, we showed the fidelity of this model in encod-
ing speech features, and proposed a metric (STMI, Spectro-
Temporal Modulation Index) which proved to be a robust pre-
dictor of intelligibility under a variety of noise conditions
including severe and nonlinear distortions [1], as well as an
effective framework for developing strategies for directional
microphone modes in hearing-aid circuits [4].
Briefly, the model starts with an early stage, where the

acoustic signal is transformed into an ‘auditory spectrogram’
- a time-frequency representation that is the end-result of fre-
quency analysis in the cochlea, followed by edge detection
and temporal smoothing. A subsequent central stage analyzes
the modulation profile of the signal along the spectral and
temporal dimensions. This analysis is performed via a bank of
‘modulation selective filters’, mimicking the array of feature
selective filters (called Spectro-Temporal Receptive Fields,
STRF) observed at the level of the primary auditory cortex
(A1) [2]. A1 contains a large variety of STRFs, each ‘tuned’
to a particular pattern of spectral peaks, temporal rates, and
tonotopic frequencies. In the model, an ordered bank of such
multi-resolution filters tuned to a range of bandwidths and dy-
namic rates provides a unique characterization of sounds, one
that is sensitive to the spectral shape and temporal dynamics
over the entire stimulus (Fig. 1). Mathematically, this ‘cor-
tical’ mapping is performed via a two-dimensional wavelet
analysis of the spectrogram (see [1, 3] for further details).
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Fig. 1. Schematic of channel distortion followed by model of auditory processing. Each speech signal is contaminated with a
constant level of babble noise, then low-pass filtered at varying cutoff frequencies Fc. The ‘noisy’ signal is then processed via
a model of the auditory periphery, followed by a cortical analysis through an array of modulation-selective “filters”, (STRFs).
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Fig. 2. Distortion of the frequency spectrum (right column), temporal modulations (middle) and spectral modulations (left) un-
der conditions of low-pass filtering, babble noise and both combined. Each curve represents the average profile of 25 sentences.
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3. EXPERIMENTAL METHODS
Speech material: 25 utterances were extracted from the TIMIT
speech corpus, and consisted of spoken sentences by male
and female speakers across different American dialect regions
(sampled at 16 KHz with 16-bit resolution). A masking bab-
ble noise was added to each sentence (at -2 dB), simulating
the effect of a crowded cafeteria or a cocktail party. A further
bandlimiting distortion was applied by passing the noisy sig-
nal through a low-pass, Chebyshev II, 10th order filter with 96
dB stopband attenuation. Six cutoff frequencies were tested:
0.5, 1, 1.5, 2, 3 and 7 KHz.
Psychophysical procedure: Data was provided by the South-
west Research Institute based on speech intelligibility tests
conducted on thirteen subjects under the same bandlimiting
and babble noise conditions mentioned above. Each test in-
cluded a total of eight nonsense sentences of a male speaker,
each constructed from five randomly chosen monosyllabic
words. Each word consisted of three phonemes with approx-
imately balanced presentations of vowels and consonants. A
count of correct phonemes reported was then averaged across
all listeners and all test material for each condition.
Model analysis: Each speech waveform was normalized to an
RMS of one, processed through the distortion channel, then
analyzed through the auditory model (as in [1]) (Fig. 1). The
output was then contrasted (via a linear L2 distance) with a
‘clean’ template constructed by averaging the output of about
60 seconds of clean speech, yielding an STMI value between
0 and 1. Due to the inevitable mismatch between the tested
utterance and the ‘generic’ templates, we mapped the STMI
values through a sigmoidal nonlinearity as discussed in [1].
We then converted the STMI values into percentage scores;
and derived the angle (i.e. inverse tangent) of the slope that
linearly fits the model vs. subject scores. We confirmed the
statistical significance of this correspondence by performing
a bootstrap procedure, which consisted of randomly choosing
13 STMI values (out of the 25 computed for each condition),
and correlating them with the behavioral scores from each
subject (1000 iterations). The across subject slopes were then
combined using circular statistics to yield an angular mean.
Confidence measures were derived from the bootstrap statis-
tics.

4. DEGRADATION OF SPEECH FEATURES
The auditory representation obtained through the model al-
lows us to explore the contribution of different spectro-temporal
elements of speech as viewed through the cortical array of
modulation filters. The resulting feature tensor spans 3 di-
mensions of tonotopic frequency, spectral and temporal mod-
ulations. We investigated the effect of distortions on the ‘mar-
ginals’ of these dimensions in order to gain some insight into
the components of speech that are more prone to degradation
due to babble noise and bandlimiting effects.
Figure 2A shows the effect of low-pass filtering on the av-

erage frequency spectrum, temporal as well as spectral mod-

ulation profiles of 25 speech utterances. Overall, the grad-
ual decrease in bandlimiting cutoff appears to attenuate all
spectro-temporal modulations equally; having effectively a
scaling effect on these distributions. The effect on the spec-
trum is obviously limiting the spectral bandwidth preserved in
the signal. In contrast, adding babble noise with no low-pass
filtering drastically affects the slow spectral modulations (be-
low 1 cycle/octave); effectively reshaping the overall spectral
envelope of the signal (Fig. 2B). No such effect was observed
with additive white noise [1], providing further evidence for
the more detrimental interference of babble over flat noise
with the intelligibility of speech. Fig. 2B(right) reveals that
babble distortions are more localized to the slow modulation
range, while the fast modulations (>1 cycle/octave) appear
merely scaled by a constant factor with increasing levels of
noise. A similar scaling effect is also manifested over the en-
tire range of temporal modulations. Note that the increase in
energy (relative to the clean signal shown with a thick black
line) is due to the addition of the noise to the clean signal.
Finally, combining both additive babble noise (at -2 dB SNR)
with bandlimiting (Fig.2C) maintains the scaling effect on the
temporal modulations (middle panel), and the expected scal-
ing and limitation in bandwidth along the tonotopic frequency
dimension (leftmost panel). In contrast, the spectral modula-
tion (i.e. scale) dimension appears to be severely reshaped at
the low-end for low-pass cutoff frequencies >2 KHz.

5. CONTRIBUTION OF DIFFERENT SPEECH
DIMENSIONS TO INTELLIGIBILITY

5.1. Behavioral intelligibility and the STMI

Figure 3A depicts the results of listeners’ performance under
all 6 conditions tested. The mean recognition rates (averaged
across test sentences and subjects) reveal a smooth increase of
scores over the range between 500 and 7000 Hz. The gray cir-
cles below the curve represent average scores per subject and
reveal the variability in responses across listeners. This re-
sult complements previous findings about the contribution of
different frequency bands to intelligibility, though it is worth
noting that previous work has mostly focused on measure-
ments in quiet [5]. As noted by Pollack back in 1948 [6], the
interaction between frequency bands and speech intelligibil-
ity is different in quiet vs. noisy conditions. The curve in
Fig 3A indicates a roughly linear increase in phoneme recog-
nition with logarithmic frequency up to 2 KHz, qualitatively
conforming with the findings of Pollack [6] under white noise
conditions; though the effects do not closely match due to the
different nature of the background [7].
Next, we use the STMI metric based on all cortical dimen-

sions (frequency, rate and scale) to estimate a predicted score
for each test condition. Figure 3B shows the strong agree-
ment between the model’s predictions and behavioral results,
yielding an R-square value of 0.96. At the inset of Fig. 3B,
we confirm the statistical significance of this correspondence
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Fig. 3. Listeners performance for different low-pass cutoffs
in a perceptual test with nonsense sentences, and the corre-
spondence between the behavioral data and the model’s STMI
predictions for each condition.

between model and behavioral data through a bootstrap pro-
cedure. We quantified the slope (converted into an angle) that
linearly maps the model and human scores on a per subject
basis. The bootstrap analysis confirms that the two data sets
are strongly correlated, with an original mean angle of 33◦,
a bootstrap mean of 30.8◦, and the 5th and 95th confidence
intervals, falling well within the upper right quadrant.

5.2. How informative are the different dimensions about
intelligibility?

Finally, we extend this analysis by using only a subset of the
dimensions present in the cortical feature tensor in order to
perform similar model predictions. The goal of this exercise
is to explore how closely does each of these dimensions match
the listeners’ scores. The results indicate that using scale, rate,
frequency, rate-frequency, scale-frequency, rate-scale as well
as all 3 combined (i.e. the STMI) yield anR-square matching
to the behavior data of 0.32, 0.59, 0.61, 0.63, 0.82, 0.59 and
0.96 respectively. These numbers are very revealing as to the
amount of variance that one can capture using each of these

dimensions.
We particularly focus on the rate-frequency model (R-

square: 0.63) compared to the STMI. Temporal modulations
(i.e. rate) have been classically attributed a major role in the
perception of speech [8], and constitute the backbone of many
successful intelligibility metrics, such as the STI [9]. How-
ever, our analysis indicates that they only offer a partial view
of the information in the speech signal, making them blind to
the distortions of the overall spectral structure of the signal,
hence limiting their applicability to adverse conditions.

6. CONCLUSIONS

Using a biologically-inspired model of auditory processing,
we explored the contribution of different spectro-temporal el-
ements of speech to its intelligibility under conditions of low-
pass filtering and additive babble noise. Our results were
validated against behavioral data from listeners tested using
nonsense words. The analysis highlights the role of temporal
and spectral modulations inherent to speech in its intelligi-
bility. It also suggests that favoring certain dimensions over
others (e.g., temporal over spectral modulations in the classic
STI measurements) can lead to significant loss of informa-
tion about the original speech, potentially yielding erroneous
conclusions regarding the effects of a wide range of spectral
distortions.
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