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Background Pneumonia is a leading 
cause of death in under five year olds 
globally. World Health Organization 
(WHO) pneumonia diagnostic guide-
lines rely on non-specific clinical find-
ings. Lung auscultation could improve 
pneumonia diagnosis, but convention-
al stethoscopes have implementation 
challenges. To address this, we devel-
oped an artificial intelligence (AI)-en-
abled digital auscultation system. We 
evaluated the system’s AI lung sound 
analysis algorithm in children with se-
vere pneumonia in Malawi.

Methods We enrolled children 
aged 2–59 months hospitalised with 
WHO-defined severe pneumonia. A 
study physician recorded lung sounds 
with a digital stethoscope at six chest 
positions. Recordings were de-iden-
tified, filtered, and interpreted by a 
trained and certified physician listen-
ing panel. Interpretable recordings 
were analysed by the AI algorithm. 
We evaluated the agreement of normal 
(absence of adventitial lung sounds) vs. 
abnormal (presence of adventitial lung 
sounds) classifications, by chest posi-
tion and by patient, between the AI al-
gorithm and the listening panel using 
raw percent agreement kappa statis-
tics, both unadjusted and adjusted for 
chance agreement.

Results We enrolled 100 children and 
analysed 95 with interpretable record-
ings. The median age was 12.6 months 
(interquartile range (IQR) = 5.4, 19.0) 
and 54% (51 / 95) were female. Among 

© 2025 The Author(s)

https://creativecommons.org/licenses/by/4.0/legalcode
https://orcid.org/0000-0002-4432-4029
https://orcid.org/0000-0003-4231-4553
https://orcid.org/0000-0003-2926-8724
https://orcid.org/0000-0002-5319-5564
https://orcid.org/0000-0002-1777-8105
https://orcid.org/0000-0002-1756-7068
https://orcid.org/0000-0002-2374-1448
https://orcid.org/0000-0002-6304-2262
https://orcid.org/0000-0003-1380-6620
https://orcid.org/0009-0003-8971-2142
https://orcid.org/0000-0002-7901-4477
https://orcid.org/0000-0002-3083-8563
https://orcid.org/0000-0001-7002-4700
https://orcid.org/0000-0003-2597-738X
https://orcid.org/0000-0002-6775-7919
https://orcid.org/0000-0003-2174-313X
https://orcid.org/0000-0002-1872-5566


Hoekstra et al. 
PA
PE
R
S

2025  •  Vol. 15  •  04264	 2	 www.jogh.org • doi: 10.7189/jogh.15.04264

Pneumonia remains the leading infectious cause of mortality in children under five worldwide 
[1,2]. The World Health Organization (WHO) Integrated Management of Childhood Illnesses 
(IMCI) guidelines provide the current standard for managing paediatric pneumonia in low-in-
come and middle-income countries (LMICs) [3]. Developed in the 1980s, the IMCI algorithm ena-
bles non-physician health care workers (HCWs) to identify children with likely bacterial pneumo-
nia [3]. By increasing antibiotic treatment, IMCI has reduced paediatric pneumonia deaths over 
the past two decades [3,4]. In 2013, the IMCI approach was broadened to include hospitalised chil-
dren and to strengthen diagnosis and treatment protocols [5]. Despite its success, recent studies 
have raised concerns about low diagnostic specificity due to reliance on clinical findings, such 
as chest wall retractions and elevated respiratory rates, which are seen in diseases beyond bacte-
rial pneumonia [6–9]. Overdiagnosis exposes children to antibiotics, interventions, and avoidable 
costs, and delays treatment. This issue is critical given rising antimicrobial resistance and a shift 
towards viral respiratory diseases, largely due to effective vaccines against Haemophilus influ-
enzae type B and Streptococcus pneumoniae [10–12]. These concerns highlight the need to develop 
new diagnostic technologies to improve IMCI’s diagnostic performance.

Stethoscopes are a low-cost, non-invasive tool used in resource-rich settings to listen to and inter-
pret lung sounds, and they have the potential to enhance IMCI’s diagnostic accuracy. However, 
lung auscultation in children by HCWs remains subjective, with only moderate levels of agree-
ment between examiners [13,14]. Lung auscultation in children is particularly challenging due 
to inconsistent patient cooperation, upper airway sound transmission, variable tidal volumes, 
and short respiratory cycles. Successful lung auscultation is challenging in clinical settings in 
LMICs where most paediatric patients are managed by non-physician HCWs [15]. In LMICs, there 
are limited numbers of HCWs who can effectively teach and perform this skill, and background 
noise in high-volume areas hinders auscultation.

Emerging technologies like digital stethoscopes and artificial intelligence (AI)-enabled lung 
sound analysis may overcome these barriers in paediatric auscultation. Digital stethoscopes, 
which transmit, filter, and amplify sounds, may help HCWs in LMICs better auscultate and eval-
uate lung sounds in children [16]. More importantly, AI lung sound analysis can classify lung 
sounds for HCWs with limited training, providing an automated solution to conventional lung 
auscultation challenges. Adventitious lung sounds, such as crackles and wheezes, are abnormal 
breath sounds that may indicate underlying respiratory pathology. These sounds have unique 
acoustic characteristics that can be identified by AI applications [17,18]. These tools could improve 
diagnostic accuracy and reduce the subjectivity associated with conventional stethoscopes. 
Although literature exists regarding AI classification of lung sounds, few studies focus on chil-
dren in LMICs, where the pneumonia burden is highest [2].

To address this gap, in 2012 we embarked on a multi-disciplinary collaboration, involving paedi-
atricians, paediatric pulmonologists, and sound engineers to develop a digital auscultation sys-
tem designed for use in children in LMICs. The system consists of three elements: a prototype 
digital stethoscope, automated ambient noise filtering software, and an AI lung sound analysis 
algorithm. While we have previously reported on this system at various developmental stages, 

interpretable recordings, 59.2% (294 / 497) of chest positions were abnormal per the listening panel com-
pared to 52.7% (262 / 497) per the AI algorithm. The listening panel and AI algorithm agreed on classifi-
cations in 83.1% (413 / 497) of chest positions (unadjusted kappa 0.7; adjusted kappa 0.7) and 91.6% (87/95) 
of patients (unadjusted kappa 0.7; adjusted kappa 0.8). The AI algorithm’s sensitivity and specificity for 
identifying abnormal lung sounds, compared to the listening panel, were 80.3% and 87.2% for chest po-
sitions and 96.3%, and 66.7% for patients.

Conclusions This AI lung sound classification algorithm accurately identified abnormal lung sounds in 
children with severe pneumonia. Next steps include training the algorithm to identify uninterpretable 
recordings and different abnormal sounds.
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we have yet to evaluate the AI lung sound analysis algorithm’s performance on prospectively col-
lected data from children in real-world LMIC contexts. Therefore, we aimed to evaluate the per-
formance of the system’s AI lung sound analysis algorithm, compared to a reference physician 
listening panel, in classifying lung sound recordings from hospitalised Malawian children aged 
2–59 months with WHO-defined severe pneumonia.

METHODS

Study design and setting
This cross-sectional study was conducted at Kamuzu Central Hospital (KCH) in Lilongwe, Malawi. 
KCH is a government tertiary referral hospital for the Central Region of Malawi.

Enrollment and participant eligibility
Children aged two to 59 months admitted to the paediatric ward of KCH and diagnosed with severe 
pneumonia were eligible. A paediatrician and a nurse reviewed all patients admitted to the ward 
daily to determine study eligibility. Eligible children were hospitalised for less than 24 hours and 
met the WHO severe pneumonia definition. Severe pneumonia was defined as the presence of 
cough or difficulty breathing plus any of the following: oxygen saturation <90%, central cyano-
sis, severe respiratory distress with grunting or severe chest indrawing, or a general danger sign 
(inability to feed, lethargy, reduced level of consciousness, or convulsions) [4]. Exclusion criteria 
included wheezing that improved after bronchodilators, chronic lung disease other than asthma 
or reactive airways, medical instability, tracheostomy, or invasive or non-invasive ventilation.

Demographic, clinical and laboratory evaluation
At enrolment, demographic information, medical history, clinical data, and physical examina-
tion findings were obtained. All children received a malaria Rapid Diagnostic Test (RDT) and HIV 
counselling and testing as recommended by the Malawi Ministry of Health guidelines. Malaria 
RDT and HIV results (infected, uninfected, exposed, or unknown) were documented.

Lung sound auscultation and recording
An American Board of Pediatrics-eligible physician used a validated methodology to record lung 
sounds at six sequential anatomic chest positions, for at least 10 seconds per position (Figure S1 
in the Online Supplementary Document), using a prototype digital stethoscope [19] connected to 
a Zoom H4n Pro Portable Recorder®. Each participant’s recording, containing all six chest posi-
tion recordings, was deidentified, uploaded to a secure computer server at the study site, and seg-
mented by chest position using Audacity® audio editing software. Each chest position recording 
captured a minimum of three respiratory cycles. Participant factors during auscultation, such 
as motion and phonation, were documented by the study clinician. Following deidentification 
and segmentation, the recordings were securely transferred to Johns Hopkins University where 
ambient noise filtering was applied. This noise-cancellation software utilises digital stethoscope 
microphones to filter ambient signals from pulmonary sounds [20–22].

Chest position recording classification by a physician listening panel
De-identified, segmented, and denoised chest position recordings were randomised and distrib-
uted to a trained physician listening panel. The panel consisted of three primary panelists and 
two arbitrators, all trained to interpret lung sounds using our validated methodology (Figure 
1) [23]. All panelists were physicians with advanced training in either Paediatrics or Paediatric 
Pulmonology and had passed a certification test prior to interpreting recorded lung sounds. 
Each recording was randomly assigned to two primary panelists for lung sound classification. 
Panelists reviewed lung sounds using Audacity software, classifying recordings as interpretable 
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or uninterpretable. Interpretable 
recordings were then classified as 
normal or abnormal, with abnor-
mal recordings receiving an addi-
tional classification of wheezes, 
crackles, or both wheezes and 
crackles. Classification agreement 
between the two primary pan-
elists resulted in a final classifica-
tion label. Panelists were masked 
to participant clinical data and 
other panelists’ classifications. 
Recordings where primary pan-
elists disagreed were interpreted 
by an initial arbitrator, who was 
also masked to all clinical data and 
other panelists’ classifications. If 
the arbitrator agreed with one of 
the primary panelists, the classi-
fication was finalised. A second 
arbitrator, a pediatric pulmonolo-
gist with extensive experience in 
digital lung auscultation, reviewed 
recordings where disagreement 
persisted between the initial arbi-

trator and both primary panelists. The secondary arbitrator’s classification served as the final 
classification, even if it disagreed with the other panelists.

Chest position recording classification by the AI algorithm
The AI algorithm generated a classification for each denoised, interpretable chest position 
recording. This algorithm consists of two main components: a convolutional neural network 
(CNN) encoder, followed by a recurrent classifier. The CNN encoder applies multiple successive 
layers of filters at varying scales. Each layer captures local and increasingly abstract spectral and 
temporal acoustic features while reducing irrelevant noise or artifacts. The resultant condensed 
representation of the lung sound is passed to the recurrent classifier that examines the temporal 
dynamics of these extracted features, effectively capturing how the identified patterns evolve 
over time. The model’s robustness was ensured through cross-validation, where the model was 
trained on various subsets of physician listening panel annotations. During this process, the data 
were divided into multiple testing sets to ensure robust evaluation of the model’s performance. 
The algorithm was designed to classify interpretable lung sounds with at least one audible breath 
cycle as normal or abnormal. As training annotations were available for interpretable sounds 
only, the algorithm has not been trained or tested on uninterpretable samples. We combined the 
classifications from five algorithm iterations, using the majority output to make a final decision 
about each recording.

Patient lung sound classification
Chest positions classified as interpretable by the physician listening panel were regrouped to 
generate patient-level classifications of normal or abnormal. Specifically, for a given patient, if 
all chest positions were classified as uninterpretable, then the patient classification was unin-
terpretable. Alternatively, if all chest positions were classified as normal, the patient classifica-
tion was normal. If a patient had one or more abnormal chest positions, then the patient classi-
fication was abnormal.

Figure 1. Chest position lung sound recording interpretation schema by the 
physician listening panel.
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Conventional lung sound auscultation
The study clinician performed conventional lung auscultation using a Littman Classic II Infant 
Stethoscope® at the same six chest positions immediately prior to the recording procedure. 
Following the same lung sound interpretation methodology, chest positions were classified in 
real-time by the clinician as interpretable or uninterpretable, with interpretable lung sounds fur-
ther classified as normal or abnormal. Abnormal sounds included wheezes, crackles, or wheezes 
and crackles.

Statistical analysis
The sample size was determined based on the minimum acceptable agreement between the phy-
sician listening panel and the AI algorithm. Assuming an expected agreement rate of 70%, an 
intra-class correlation coefficient of 0.7, and a cluster size of 6 recordings per participant, a total 
of 91 participants was calculated to be sufficient to achieve a precision of 20% with 95% confi-
dence. To accommodate potential data loss due to uninterpretable recordings or technical issues, 
the sample size was increased to 100 participants.

The analytic data set included all children with interpretable lung sound recordings, as clas-
sified by the physician listening panel. Descriptive statistics were used to summarise demo-
graphic information, medical history, and clinical data. Variables with a normal distribution 
were described using the mean and standard deviation (SD), while non-normally distributed var-
iables were summarised using the median and interquartile range (IQR).

As a sensitivity analysis, we compared the demographic information, medical history, and clin-
ical data of participants with no interpretable lung sound recordings to those with interpretable 
lung sound recordings. We used the χ2 test to compare categorical variables and the Wilcoxon 
rank sum test for continuous variables.

The primary outcome was pairwise agreement of normal vs. abnormal chest position classifica-
tions between the AI algorithm and the physician listening panel. The secondary outcome was 
pairwise agreement of normal and abnormal patient classifications between the AI algorithm 
and physician listening panel. As a sensitivity analysis, we evaluated pair-wise agreement of 
patient classifications between the study clinician’s conventional stethoscope interpretations and 
the physician listening panel, and between the study clinician and the AI algorithm.

Agreement was measured by raw percentage, Cohen’s kappa statistic, and the Brennan and 
Prediger statistic, which adjusts for chance agreement [24]. The strength of agreement was 
defined as poor (≤0), slight (0.01, 0.19) fair (0.20, 0.39), moderate (0.40, 0.59), substantial (0.60, 
0.79), or almost perfect (0.80, 1.0) [23,25]. We assessed the AI algorithm’s performance in detect-
ing abnormal lung sounds, considering the physician listening panel as the reference standard, 
for both chest position and patient classifications, by calculating sensitivity, specificity, positive 
and negative predictive values, positive and negative likelihood ratios, and diagnostic odds ratio 
(OR). The diagnostic OR measures a test’s diagnostic performance by calculating the ratio of the 
odds of a positive test among diseased participants to the odds of a positive test among healthy 
participants [26]. We similarly assessed the AI algorithm’s performance when considering the 
clinician as the reference standard.

We used generalised estimating equations with an exchangeable correlation matrix and bino-
mial distribution with logit link function models to evaluate associations between participant 
characteristics and raw percentage agreement vs. disagreement in chest position classifications 
between the AI algorithm and the physician listening panel. Logistic regression was used to 
evaluate associations between participant characteristics and patient classification agreement 
between the AI algorithm and the physician listening panel.
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RESULTS
Of the 100 patients enrolled, 95 (95%) had lung 
sound recordings available and interpretable 
(Figure 2). Of 566 chest position recordings, 497 
(88%) were interpretable (Figure 3). The median 
age of analysed participants was 12.6 months 
(IQR = 5.4, 19.0), with seven (7%) born prema-
turely. Seven (7%) patients were HIV-exposed, 
and 11 (12%) tested malaria positive (Table 1). 
The average WHO weight-for-height Z-score was 
−0.3 with an SD of 1.2. Sensitivity analysis com-
paring participants with no interpretable record-
ings to those with interpretable recordings 
showed no differences in demographic informa-
tion, medical history, or clinical data (Table S1 in 
the Online Supplementary Document).

Figure 2. Artificial intelligence and physician listening panel 
lung sound classifications by patient.

Figure 3. Artificial intelligence and physician listening panel 
lung sound classifications by chest position. Note: 4/570 (0.7%) 
recordings from the 95 participants with interpretable lung 
sound recordings were missing.

Table 1. Characteristics of children with World 
Health Organization-defined severe pneumonia

Characteristics Participants  
(n = 95)

Demographics

Age in months, median (IQR) 12.6  
(5.4, 19.0)

Age categories in months, n (%)
2–11 46 (48)
12–23 32 (34)
24–59 17 (18)
Females, n (%) 51 (54)
Past medical history
Prematurity*, n (%) 7 (7)
Tuberculosis contacts, n (%) 6 (6)
History of tuberculosis, n (%) 1 (1)
Vaccinations up to date†, n (%) 86 (90)
Hospitalisation characteristics
HIV status, n (%)
Infected 0 (0)
Uninfected 77 (81)
Exposed 7 (7)
Unknown 11 (12)
Malaria positive‡, n (%) 11 (12)§
Corticosteroid treatment, n (%) 8 (8)
Bronchodilator treatment 21 (22)
Clinical features
WHO Weight-for-height Z score, mean (SD) −0.3 (1.2)
Axillary temperature in degrees Celsius, 
median (IQR)

36.8  
(36.4, 37.5)

Respiratory rate in breaths/min, mean (SD) 54.4 (14.7)

SpO2 in room air, median (IQR)
95.0  

(92.0, 97.0)

IQR – indicates interquartile range, SD – standard devia-
tion, SpO2 – peripheral arterial oxyhemoglobin saturation, 
WHO – World Health Organization,
*By mother’s verbal report.
†Up-to-date if documented in the child’s health passport or 
verbally confirmed by guardian.
‡Positive rapid diagnostic test.
§27 (28%) with missing data.

Of 497 interpretable chest position recordings, 
294 (59.2%) were classified as abnormal by 
the physician listening panel compared to 262 
(52.7%) by the AI algorithm (Figure 2). The physi-
cian listening panel and the AI algorithm agreed 
on 83.1% (413 / 497) of chest position classifica-
tions (Table 2). The agreement beyond what is 
expected by chance, measured by both Cohen’s 
kappa and adjusted kappa statistics, was substan-
tial for interpretable chest position recordings 
with or without abnormal lung sounds (Table 2).



Artificial intelligence analysis of lung sounds in Malawian children

PA
PE
R
S

www.jogh.org • doi: 10.7189/jogh.15.04264	 7	 2025  •  Vol. 15  •  04264

At the patient level, 80 / 95 patients (84.2%) had an abnormal classification by the listening panel 
compared to 82 / 95 (86.3%) classified by the AI algorithm (Figure 3), resulting in an agreement 
of 91.6% (87/95) (Table 2). Agreement by the adjusted kappa statistic was almost perfect for inter-
pretable patient classifications with or without abnormal lung sounds (Table 2).

The AI algorithm demonstrated a sensitivity of 80.3% (95% CI = 75.3, 84.7) and a specificity of 87.2% 
(95% CI = 81.8, 91.5) in detecting abnormal lung sounds in chest position recordings, compared to 
the physician listening panel. The diagnostic OR of the AI algorithm indicates it was 27.7 times 
more likely to classify chest position recordings as abnormal and 52.3 times more likely to clas-
sify patients as abnormal when the physician listening panel also classified them as abnormal, 
compared to when they classified them as normal (Table 3).

Table 2. Lung sound classification agreement on abnormal vs. normal lung sounds between the artificial 
intelligence algorithm and physician listening panel for chest positions and patients

Normal or abnormal Chest position classification, n = 497 Patient classification, n = 95
Agreement, n (%) 413 (83.1) 87 (91.6)
Kappa Statistic (95% CI) 0.659 (0.592, 0.725) 0.665 (0.447, 0.884)
Adjusted Kappa Statistic* (95% CI) 0.662 (0.596, 0.728) 0.832 (0.718, 0.945)

CI – confidence interval
*Brennan and Prediger statistic.

Table 3. Performance of artificial intelligence algorithm for detecting abnormal lung sounds in children with World 
Health Organization-defined severe pneumonia in Malawi using the physician listening panel as the reference

AI algorithm performance
Abnormal 
classifica-
tion, n/N (%)

Sensitivity, 
% (95% CI)

Specificity, 
% (95% CI)

PPV, %  
(95% CI)

NPV, %  
(95% CI)

LR+  
(95% CI)

LR-  
(95% CI)

Diagnostic 
OR (95% CI)

Chest position 
classification

262/497 ( 
52.7)

80.3  
(75.3, 84.7)

87.2  
(81.8, 91.5)

90.1  
(85.8–93.4)

75.3  
(69.3, 80.7)

6.27  
(4.36, 9.01)

0.23  
(0.18, 0.29)

27.7  
(16.8, 45.7)

Patient 
classification

82/95  
(86.3)

96.3  
(89.4, 99.2)

66.7  
(38.4– 88.2)

93.9  
(86.3, 98.0)

76.9  
(46.2, 65.0)

2.89  
(1.41, 5.91)

0.06  
(0.02, 0.18)

51.3  
(11.2, 234)

AI – artificial intelligence, CI – confidence interval, diagnostic OR – diagnostic odds ratio, LR+ – positive likelihood ratio, LR- – negative 
likelihood ratio, NPV – negative predictive value, PPV – positive predictive value

Predictors of raw percentage agreement between the AI algorithm and the physician listening 
panel for chest position classifications and patient-level classifications are presented in Table 
S3–4 in the Online Supplementary Document. Children who were uncooperative during lung aus-
cultation had 49% lower odds of agreement for chest position classifications compared to cooper-
ative children (Table S3 in the Online Supplementary Document). No factors were significantly 
associated with agreement for patient-level classifications (Table S4 in the Online Supplementary 
Document).

DISCUSSION
We evaluated a novel digital auscultation system, which includes a prototype digital stethoscope, 
filters for ambient noise removal, and an AI algorithm developed to analyse lung sounds in acutely 
ill children in LMIC clinical contexts with dynamic noise environments. Our data demonstrate that 
the AI algorithm can accurately identify abnormal lung sounds in children with severe pneumo-
nia in a paediatric ward in Malawi, showing high discriminatory power and substantial reliability 
compared to a physician listening panel’s reference standard interpretations of the same record-
ings. These results represent an important step forward for the potential application of AI-powered 
digital auscultation systems in identifying abnormal lung sounds in acutely ill children in real-
world clinical contexts where HCWs lack training to effectively perform lung auscultation.
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The performance of our AI algorithm compares favourably with existing paediatric literature 
on automated lung sound analysis. A 2022 systematic review of 10 studies across multiple coun-
tries evaluated the effectiveness of digital auscultation with automated lung sound analysis com-
pared to conventional physician lung auscultation for pneumonia diagnosis in ~ 3000 children 
[27]. The review found a wide range of accuracies for classifying adventitious (abnormal) lung 
sounds, from 66.3 to 100% [27]. Children in the reviewed studies had various clinical conditions, 
including pneumonia and other respiratory conditions. Our AI algorithm achieved an accuracy 
of 83.1% for chest positions and 91.6% for patients in classifying abnormal lung sounds in chil-
dren with severe pneumonia in a challenging environment with high ambient noise levels. To 
our knowledge, few studies have shown that an AI algorithm can achieve high accuracy in clas-
sifying lung sounds in children with pulmonary disease in this type of real-world context [28], 
further supporting the potential usability for our diagnostic platform.

In its current version, the AI algorithm of our digital auscultation system has several limitations. 
First, the algorithm cannot yet classify a recording as uninterpretable, as it maps the signal onto 
one of two possible cases: normal or abnormal. Consequently, the HCW using this system must 
judge the quality of the measurement in real time. The algorithm requires further development 
to instruct the user to repeat the measurement when there are no audible breath sounds, which 
may occur due to background noise or movement artifacts, both common during chest auscul-
tation in sick, agitated children. Second, the AI results are not generated in real-time, which is 
necessary for clinical application. Third, the algorithm cannot yet differentiate between adventi-
tious (abnormal) sounds, such as high or low-pitched wheezes and fine or coarse crackles, which 
may represent different underlying disease processes and require different treatment. Fourth, 
the algorithm is also unable to distinguish upper respiratory sounds (like stridor, stertor, or 
vocalisations) from lower respiratory sounds, potentially leading to misclassification of record-
ings. Lastly, the algorithm may perform less accurately when exposed to new patient data sets. 
To overcome this limitation, it may be necessary to recalibrate the algorithm when introduced 
into new contexts, including other LMIC settings that have different patient demographics or 
ambient noise profiles. Feasible implementation strategies, such as algorithm ‘fine-tuning’ or 
retraining using new data, could be utilised.

The clinical use-case of this digital auscultation system deserves discussion, as its application in 
the management of children with non-severe pneumonia is clearer than in severe pneumonia. 
For patients with non-severe pneumonia, a ‘normal vs. abnormal’ AI algorithm may help deter-
mine which children require immediate antibiotic treatment and which can be safely observed 
without antibiotics. This could help save valuable resources and promote antibiotic steward-
ship in settings with resource limitations. Indeed, the randomised, double-blinded placebo trial 
BLAAAST (Bangladesh Lung Auscultation with Artificial Intelligence for Antibiotic Stewardship) 
seeks to address this important question for children aged 2–59 months in Bangladesh. However, 
in hospitalised patients with WHO-defined severe pneumonia, where the risk of poor outcomes is 
higher and clinicians are more likely to treat empirically with antibiotics, a binary classification 
may have limited impact on clinical decision-making. In such scenarios, an AI algorithm capa-
ble or further differentiating between adventitious sounds such as wheezes and crackles may 
be more beneficial for clinical management. For instance, crackles may be associated with bac-
terial pathogens that require antibiotics, whereas wheezing may indicate viral-induced airway 
inflammation that does not need antibiotics. We previously reported that crackles identified by 
a human listening panel are associated with higher odds of radiographic pneumonia and mor-
tality, while wheezes are associated with lower odds of radiographic pneumonia and mortality, 
consistent with this clinical framework [29–31]. We acknowledge that there can be clinical over-
lap between wheezes and crackles, as some patients with wheezing may also have a secondary 
bacterial infection.
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CONCLUSIONS
In summary, this novel digital auscultation system, which includes a prototype digital stetho-
scope, ambient noise filtering, and an AI lung sound classification algorithm, shows potential 
for accurately identifying abnormal lung sounds in children with pneumonia. The next steps 
include further developing the algorithm to classify lung sounds as uninterpretable and to dis-
tinguish between wheezes, crackles, and upper respiratory sounds. Additionally, it will be impor-
tant to evaluate how the AI algorithm’s lung sound findings relate to the outcomes of children 
with pneumonia in LMICs.
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