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Background Pneumonia is a leading
i cause of death in under five year olds
globally. World Health Organization

(WHO) pneumonia diagnostic guide-

{ lines rely on non-specific clinical find-
ings. Lung auscultation could improve
i pneumonia diagnosis, but convention-
al stethoscopes have implementation
i challenges. To address this, we devel-
i oped an artificial intelligence (AI)-en-
i abled digital auscultation system. We
evaluated the system’s AT lung sound
analysis algorithm in children with se-
vere pneumonia in Malawi.

Methods We enrolled children
i aged 2-59 months hospitalised with :
! WHO-defined severe pneumonia. A |
study physician recorded lung sounds
i with a digital stethoscope at six chest
positions. Recordings were de-iden-
tified, filtered, and interpreted by a
i trained and certified physician listen-
i ing panel. Interpretable recordings
were analysed by the AT algorithm.
We evaluated the agreement of normal

(absence of adventitial lung sounds) vs.

abnormal (presence of adventitial lung
i sounds) classifications, by chest posi-
i tion and by patient, between the AT al-
i gorithm and the listening panel using
! raw percent agreement kappa statis- |
tics, both unadjusted and adjusted for
i chance agreement. :

Results We enrolled 100 children and
i analysed 95 with interpretable record-
i ings. The median age was 12.6 months

(interquartile range (IQR)=5.4, 19.0)

and 54% (51/95) were female. Among
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interpretable recordings, 59.2% (294/497) of chest positions were abnormal per the listening panel com-
pared to 52.7% (262/497) per the AT algorithm. The listening panel and AT algorithm agreed on classifi-
cationsin 83.1% (413/497) of chest positions (unadjusted kappa 0.7; adjusted kappa 0.7) and 91.6% (87/95)
: of patients (unadjusted kappa 0.7; adjusted kappa 0.8). The AT algorithm’s sensitivity and specificity for !
i identifying abnormal lung sounds, compared to the listening panel, were 80.3% and 87.2% for chest po-
sitions and 96.3%, and 66.7% for patients. :

Conclusions This Al lung sound classification algorithm accurately identified abnormal lung sounds in
i children with severe pneumonia. Next steps include training the algorithm to identify uninterpretable :
i recordings and different abnormal sounds. '
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Pneumonia remains the leading infectious cause of mortality in children under five worldwide
[1,2]. The World Health Organization (WHO) Integrated Management of Childhood Illnesses
(IMCI) guidelines provide the current standard for managing paediatric pneumonia in low-in-
come and middle-income countries (LMICs) [3]. Developed in the 1980s, the IMCI algorithm ena-
bles non-physician health care workers (HCWs) to identify children with likely bacterial pneumo-
nia [3]. By increasing antibiotic treatment, IMCI has reduced paediatric pneumonia deaths over
the pasttwo decades [3,4]. In 2013, the IMCI approach was broadened to include hospitalised chil-
dren and to strengthen diagnosis and treatment protocols [5]. Despite its success, recent studies
have raised concerns about low diagnostic specificity due to reliance on clinical findings, such
as chest wall retractions and elevated respiratory rates, which are seen in diseases beyond bacte-
rial pneumonia [6-9]. Overdiagnosis exposes children to antibiotics, interventions, and avoidable
costs, and delays treatment. This issue is critical given rising antimicrobial resistance and a shift
towards viral respiratory diseases, largely due to effective vaccines against Haemophilus influ-
enzae type B and Streptococcus pneumoniae [10-12]. These concerns highlight the need to develop
new diagnostic technologies to improve IMCI’s diagnostic performance.

Stethoscopes are a low-cost, non-invasive tool used in resource-rich settings to listen to and inter-
pret lung sounds, and they have the potential to enhance IMCI’s diagnostic accuracy. However,
lung auscultation in children by HCWs remains subjective, with only moderate levels of agree-
ment between examiners [13,14]. Lung auscultation in children is particularly challenging due
to inconsistent patient cooperation, upper airway sound transmission, variable tidal volumes,
and short respiratory cycles. Successful lung auscultation is challenging in clinical settings in
LMICs where most paediatric patients are managed by non-physician HCWs [15]. In LMICs, there
are limited numbers of HCWs who can effectively teach and perform this skill, and background
noise in high-volume areas hinders auscultation.

Emerging technologies like digital stethoscopes and artificial intelligence (AI)-enabled lung
sound analysis may overcome these barriers in paediatric auscultation. Digital stethoscopes,
which transmit, filter, and amplify sounds, may help HCWs in LMICs better auscultate and eval-
uate lung sounds in children [16]. More importantly, AI lung sound analysis can classify lung
sounds for HCWs with limited training, providing an automated solution to conventional lung
auscultation challenges. Adventitious lung sounds, such as crackles and wheezes, are abnormal
breath sounds that may indicate underlying respiratory pathology. These sounds have unique
acoustic characteristics that can be identified by Al applications [17,18]. These tools could improve
diagnostic accuracy and reduce the subjectivity associated with conventional stethoscopes.
Although literature exists regarding Al classification of lung sounds, few studies focus on chil-
dren in LMICs, where the pneumonia burden is highest [2].

To address this gap, in 2012 we embarked on a multi-disciplinary collaboration, involving paedi-
atricians, paediatric pulmonologists, and sound engineers to develop a digital auscultation sys-
tem designed for use in children in LMICs. The system consists of three elements: a prototype
digital stethoscope, automated ambient noise filtering software, and an AI lung sound analysis
algorithm. While we have previously reported on this system at various developmental stages,
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we have yet to evaluate the Al lung sound analysis algorithm’s performance on prospectively col-
lected data from children in real-world LMIC contexts. Therefore, we aimed to evaluate the per-
formance of the system’s AI lung sound analysis algorithm, compared to a reference physician
listening panel, in classifying lung sound recordings from hospitalised Malawian children aged
2-59 months with WHO-defined severe pneumonia.

METHODS
Study design and setting

This cross-sectional study was conducted at Kamuzu Central Hospital (KCH) in Lilongwe, Malawi.
KCH is a government tertiary referral hospital for the Central Region of Malawi.

PAPERS

Enrollment and participant eligibility

Children aged two to 59 months admitted to the paediatric ward of KCH and diagnosed with severe
pneumonia were eligible. A paediatrician and a nurse reviewed all patients admitted to the ward
daily to determine study eligibility. Eligible children were hospitalised for less than 24 hours and
met the WHO severe pneumonia definition. Severe pneumonia was defined as the presence of
cough or difficulty breathing plus any of the following: oxygen saturation <90%, central cyano-
sis, severe respiratory distress with grunting or severe chestindrawing, or a general danger sign
(inability to feed, lethargy, reduced level of consciousness, or convulsions) [4]. Exclusion criteria
included wheezing that improved after bronchodilators, chronic lung disease other than asthma
or reactive airways, medical instability, tracheostomy, or invasive or non-invasive ventilation.

Demographic, clinical and laboratory evaluation

At enrolment, demographic information, medical history, clinical data, and physical examina-
tion findings were obtained. All children received a malaria Rapid Diagnostic Test (RDT) and HIV
counselling and testing as recommended by the Malawi Ministry of Health guidelines. Malaria
RDT and HIV results (infected, uninfected, exposed, or unknown) were documented.

Lung sound auscultation and recording

An American Board of Pediatrics-eligible physician used a validated methodology to record lung
sounds at six sequential anatomic chest positions, for at least 10 seconds per position (Figure S1
in the Online Supplementary Document), using a prototype digital stethoscope [19] connected to
a Zoom H4n Pro Portable Recorder®. Each participant’s recording, containing all six chest posi-
tion recordings, was deidentified, uploaded to a secure computer server at the study site, and seg-
mented by chest position using Audacity® audio editing software. Each chest position recording
captured a minimum of three respiratory cycles. Participant factors during auscultation, such
as motion and phonation, were documented by the study clinician. Following deidentification
and segmentation, the recordings were securely transferred to Johns Hopkins University where
ambient noise filtering was applied. This noise-cancellation software utilises digital stethoscope
microphones to filter ambient signals from pulmonary sounds [20-22].

Chest position recording classification by a physician listening panel

De-identified, segmented, and denoised chest position recordings were randomised and distrib-
uted to a trained physician listening panel. The panel consisted of three primary panelists and
two arbitrators, all trained to interpret lung sounds using our validated methodology (Figure
1) [23]. All panelists were physicians with advanced training in either Paediatrics or Paediatric
Pulmonology and had passed a certification test prior to interpreting recorded lung sounds.
Each recording was randomly assigned to two primary panelists for lung sound classification.
Panelists reviewed lung sounds using Audacity software, classifying recordings as interpretable
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or uninterpretable. Interpretable
recordings were then classified as
normal or abnormal, with abnor-
l l mal recordings receiving an addi-
Primary panelist 1 classification Primary panelist 2 classification tional classification of wheezes,
| | crackles, or both wheezes and
crackles. Classification agreement
between the two primary pan-
elists resulted in a final classifica-
tion label. Panelists were masked
to participant clinical data and
other panelists’ classifications.
Recordings where primary pan-
v v elists disagreed were interpreted
Agreement Disagreement by an initial arbitrator, who was
also masked to all clinical data and
other panelists’ classifications. If
Final classification Arbitrator 2 classification the arbitrator agreed with one of
the primary panelists, the classi-
fication was finalised. A second
Final classification arbitrator, a pediatric pulmonolo-
gist with extensive experience in
Figure 1. Chest position lung sound recording interpretation schema by the digital lung auscultation, reviewed
physician listening panel. recordings where disagreement
persisted between the initial arbi-
trator and both primary panelists. The secondary arbitrator’s classification served as the final

classification, even if it disagreed with the other panelists.

Chest position recording

v ¥

Agreement Disagreement
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Final classification Arbitrator 1 classification

Chest position recording classification by the AI algorithm

The AI algorithm generated a classification for each denoised, interpretable chest position
recording. This algorithm consists of two main components: a convolutional neural network
(CNN) encoder, followed by a recurrent classifier. The CNN encoder applies multiple successive
layers of filters at varying scales. Each layer captures local and increasingly abstract spectral and
temporal acoustic features while reducing irrelevant noise or artifacts. The resultant condensed
representation of the lung sound is passed to the recurrent classifier that examines the temporal
dynamics of these extracted features, effectively capturing how the identified patterns evolve
over time. The model’s robustness was ensured through cross-validation, where the model was
trained on various subsets of physician listening panel annotations. During this process, the data
were divided into multiple testing sets to ensure robust evaluation of the model’s performance.
The algorithm was designed to classify interpretable lung sounds with at least one audible breath
cycle as normal or abnormal. As training annotations were available for interpretable sounds
only, the algorithm has not been trained or tested on uninterpretable samples. We combined the
classifications from five algorithm iterations, using the majority output to make a final decision
about each recording.

Patient lung sound classification

Chest positions classified as interpretable by the physician listening panel were regrouped to
generate patient-level classifications of normal or abnormal. Specifically, for a given patient, if
all chest positions were classified as uninterpretable, then the patient classification was unin-
terpretable. Alternatively, if all chest positions were classified as normal, the patient classifica-
tion was normal. If a patient had one or more abnormal chest positions, then the patient classi-
fication was abnormal.
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Conventional lung sound auscultation

The study clinician performed conventional lung auscultation using a Littman Classic II Infant
Stethoscope® at the same six chest positions immediately prior to the recording procedure.
Following the same lung sound interpretation methodology, chest positions were classified in
real-time by the clinician as interpretable or uninterpretable, with interpretable lung sounds fur-
ther classified as normal or abnormal. Abnormal sounds included wheezes, crackles, or wheezes
and crackles.

Statistical analysis

The sample size was determined based on the minimum acceptable agreement between the phy-
sician listening panel and the AI algorithm. Assuming an expected agreement rate of 70%, an
intra-class correlation coefficient of 0.7, and a cluster size of 6 recordings per participant, a total
of 91 participants was calculated to be sufficient to achieve a precision of 20% with 95% confi-
dence. To accommodate potential data loss due to uninterpretable recordings or technical issues,
the sample size was increased to 100 participants.

PAPERS

The analytic data set included all children with interpretable lung sound recordings, as clas-
sified by the physician listening panel. Descriptive statistics were used to summarise demo-
graphic information, medical history, and clinical data. Variables with a normal distribution
were described using the mean and standard deviation (SD), while non-normally distributed var-
iables were summarised using the median and interquartile range (IQR).

As a sensitivity analysis, we compared the demographic information, medical history, and clin-
ical data of participants with no interpretable lung sound recordings to those with interpretable
lung sound recordings. We used the ¥ test to compare categorical variables and the Wilcoxon
rank sum test for continuous variables.

The primary outcome was pairwise agreement of normal vs. abnormal chest position classifica-
tions between the Al algorithm and the physician listening panel. The secondary outcome was
pairwise agreement of normal and abnormal patient classifications between the AI algorithm
and physician listening panel. As a sensitivity analysis, we evaluated pair-wise agreement of
patient classifications between the study clinician’s conventional stethoscope interpretations and
the physician listening panel, and between the study clinician and the AI algorithm.

Agreement was measured by raw percentage, Cohen’s kappa statistic, and the Brennan and
Prediger statistic, which adjusts for chance agreement [24]. The strength of agreement was
defined as poor (<0), slight (0.01, 0.19) fair (0.20, 0.39), moderate (0.40, 0.59), substantial (0.60,
0.79), or almost perfect (0.80, 1.0) [23,25]. We assessed the Al algorithm’s performance in detect-
ing abnormal lung sounds, considering the physician listening panel as the reference standard,
for both chest position and patient classifications, by calculating sensitivity, specificity, positive
and negative predictive values, positive and negative likelihood ratios, and diagnostic odds ratio
(OR). The diagnostic OR measures a test’s diagnostic performance by calculating the ratio of the
odds of a positive test among diseased participants to the odds of a positive test among healthy
participants [26]. We similarly assessed the Al algorithm’s performance when considering the
clinician as the reference standard.

We used generalised estimating equations with an exchangeable correlation matrix and bino-
mial distribution with logit link function models to evaluate associations between participant
characteristics and raw percentage agreement vs. disagreement in chest position classifications
between the Al algorithm and the physician listening panel. Logistic regression was used to
evaluate associations between participant characteristics and patient classification agreement
between the Al algorithm and the physician listening panel.
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Patients enrolled
100

RESULTS
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No recording
3

Patients with lung sound recordings

Uninterpretable
2

Patients with interpretable lung sound recordings

Physician listening panel
95

Artificial intelligence algorithm
95

Final classification
15 (15.8%) Normal
80 (84.2%) Abnormal

Final classification
13 (13.7%) Normal
82 (86.3%) Abnormal

Of the 100 patients enrolled, 95 (95%) had lung
sound recordings available and interpretable
(Figure 2). Of 566 chest position recordings, 497
(88%) were interpretable (Figure 3). The median
age of analysed participants was 12.6 months
(IQR=5.4, 19.0), with seven (7%) born prema-
turely. Seven (7%) patients were HIV-exposed,
and 11 (12%) tested malaria positive (Table 1).
The average WHO weight-for-height Z-score was
-0.3 with an SD of 1.2. Sensitivity analysis com-
paring participants with no interpretable record-
ings to those with interpretable recordings
showed no differences in demographic informa-
tion, medical history, or clinical data (Table S1in
the Online Supplementary Document).

Table 1. Characteristics of children with World
Health Organization-defined severe pneumonia

. g1 . T . Characteristics Participants
Figure 2. Artificial intelligence and physician listening panel (n =95)
lung sound classifications by patient. Demographics

. . 12.6
Age in months, median (IQR) (5.4, 19.0)
Chest position lung sound recordings Age categories in months, n (%)
2-11 46 (48)
12-23 32 (34)
24-59 17 (18)
Uninterpretable Females, n (%) 51 (54)
69 (12.1%) Past medical history
Prematurity*, n (%) 7(7)
Tuberculosis contacts, n (%) 6(6)
L | History of tuberculosis, n (%) 1(1)
Physician listening panel Artificial intelligence algorithm . . 0
497 (87.8%) 497 (87.8%) Vacczr‘latl'ons ‘up to datetf, n (‘AJ)‘ 86 (90)
Hospitalisation characteristics
HIV status, n (%)
Final classification Final classification Infected 0(0)
203 (40.8%) Normal 235 (47.3%) Normal Uninfected 77 (81)

294 (59.2%) Abnormal 262 (52.7%) Abnormal Exposed 7(7)

. L . . . . Unknown 11 (12)
Figure 3. ArtlflCliall 1nt.e111gence and thS.ICIaIl listening panel Malaria positivet, n (%) 11128
lung sound classifications by chest position. Note: 4/570 (0.7%) - :

di £ the 95 e ts with int table1 Corticosteroid treatment, n (%) 8(8)
recordings trom the 7o participants with interpretable fung Bronchodilator treatment 21 (22)
sound recordings were missing. —

Clinical features
. . . WHO Weight-for-height Z score, mean (SD)  —0.3 (1.2)
0f 497 interpretable chest position recordings, Axillary temperature in degrees Celsius, 36.8
294 (59.2%) were classified as abnormal by  median (IQR) (36.4, 37.5)
the physician listening panel compared to 262 Respiratory rate in breaths/min, mean (SD)  54.4 (14.7)
(52.7%) by the AT algorithm (Figure 2). The physi-  $po, in room air, median (IQR) 02 905'87 0
.0, 97.

cian listening panel and the Al algorithm agreed — - X :

on 83.1% (413/497) of chest position classifica- IQR - indicates interquartile range, SD - standard devia-
. . tion, SpO, - peripheral arterial oxyhemoglobin saturation,

tions (Table 2). The agreement beyond whatis  wHO - World Health Organization,

expected by chance, measured by both Cohen’s  *By mother’s verbal report.

kappa and adjusted kappa statistics, was substan- tUp-to-date if documented in the child’s health passport or
. . L ) verbally confirmed by guardian.

tial for interpretable chest position recordings  positive rapid diagnostic test.

with or without abnormal lung sounds (Table 2).  §27 (28%) with missing data.
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Table 2. Lung sound classification agreement on abnormal vs. normal lung sounds between the artificial
intelligence algorithm and physician listening panel for chest positions and patients

Normal or abnormal Chest position classification, n = 497 Patient classification, n =95
Agreement, n (%) 413 (83.1) 87 (91.6)

Kappa Statistic (95% CI) 0.659 (0.592, 0.725) 0.665 (0.447, 0.884)
Adjusted Kappa Statistic* (95% CI) 0.662 (0.596, 0.728) 0.832 (0.718, 0.945)

CI - confidence interval
*Brennan and Prediger statistic.

At the patient level, 80/95 patients (84.2%) had an abnormal classification by the listening panel
compared to 82/95 (86.3%) classified by the AI algorithm (Figure 3), resulting in an agreement
0f 91.6% (87/95) (Table 2). Agreement by the adjusted kappa statistic was almost perfect for inter-
pretable patient classifications with or without abnormal lung sounds (Table 2).

The Al algorithm demonstrated a sensitivity of 80.3% (95% CI=75.3, 84.7) and a specificity of 87.2%
(95% CI=81.8,91.5) in detecting abnormal lung sounds in chest position recordings, compared to
the physician listening panel. The diagnostic OR of the Al algorithm indicates it was 27.7 times
more likely to classify chest position recordings as abnormal and 52.3 times more likely to clas-
sify patients as abnormal when the physician listening panel also classified them as abnormal,
compared to when they classified them as normal (Table 3).

Table 3. Performance of artificial intelligence algorithm for detecting abnormal lung sounds in children with World
Health Organization-defined severe pneumonia in Malawi using the physician listening panel as the reference

Al algorithm performance

Abnormal  Sensitivity, Specificity, PPV, % NPV, % LR+ LR- Diagnostic
classifica- % (95% CI) % (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) OR (95% CI)
tion, n/N (%)
Chest position 262/497 ( 80.3 87.2 90.1 75.3 6.27 0.23 27.7
classification 52.7) (75.3,84.7)  (81.8,91.5)  (85.8-93.4)  (69.3,80.7)  (4.36,9.01)  (0.18,0.29)  (16.8,45.7)
Patient 82/95 96.3 66.7 93.9 76.9 2.89 0.06 51.3
classification (86.3) (89.4,99.2)  (38.4-88.2)  (86.3,98.0)  (46.2,65.0)  (1.41,5.91)  (0.02,0.18)  (11.2,234)

AT - artificial intelligence, CI - confidence interval, diagnostic OR - diagnostic odds ratio, LR+ - positive likelihood ratio, LR- - negative
likelihood ratio, NPV - negative predictive value, PPV - positive predictive value

Predictors of raw percentage agreement between the AI algorithm and the physician listening
panel for chest position classifications and patient-level classifications are presented in Table
S3-4inthe Online Supplementary Document. Children who were uncooperative during lung aus-
cultation had 49% lower odds of agreement for chest position classifications compared to cooper-
ative children (Table S3 in the Online Supplementary Document). No factors were significantly
associated with agreement for patient-level classifications (Table S4 in the Online Supplementary
Document).

DISCUSSION

We evaluated a novel digital auscultation system, which includes a prototype digital stethoscope,
filters for ambient noise removal, and an Al algorithm developed to analyse lung sounds in acutely
ill children in LMIC clinical contexts with dynamic noise environments. Our data demonstrate that
the AT algorithm can accurately identify abnormal lung sounds in children with severe pneumo-
niain a paediatric ward in Malawi, showing high discriminatory power and substantial reliability
compared to a physician listening panel’s reference standard interpretations of the same record-
ings. These results represent an important step forward for the potential application of AI-powered
digital auscultation systems in identifying abnormal lung sounds in acutely ill children in real-
world clinical contexts where HCWs lack training to effectively perform lung auscultation.
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The performance of our AI algorithm compares favourably with existing paediatric literature
on automated lung sound analysis. A 2022 systematic review of 10 studies across multiple coun-
tries evaluated the effectiveness of digital auscultation with automated lung sound analysis com-
pared to conventional physician lung auscultation for pneumonia diagnosis in~3000 children
[27]. The review found a wide range of accuracies for classifying adventitious (abnormal) lung
sounds, from 66.3 to 100% [27]. Children in the reviewed studies had various clinical conditions,
including pneumonia and other respiratory conditions. Our Al algorithm achieved an accuracy
of 83.1% for chest positions and 91.6% for patients in classifying abnormal lung sounds in chil-
dren with severe pneumonia in a challenging environment with high ambient noise levels. To
our knowledge, few studies have shown that an Al algorithm can achieve high accuracy in clas-
sifying lung sounds in children with pulmonary disease in this type of real-world context [28],
further supporting the potential usability for our diagnostic platform.

99
o
=
=
A

In its current version, the AI algorithm of our digital auscultation system has several limitations.
First, the algorithm cannot yet classify a recording as uninterpretable, as it maps the signal onto
one of two possible cases: normal or abnormal. Consequently, the HCW using this system must
judge the quality of the measurement in real time. The algorithm requires further development
to instruct the user to repeat the measurement when there are no audible breath sounds, which
may occur due to background noise or movement artifacts, both common during chest auscul-
tation in sick, agitated children. Second, the AI results are not generated in real-time, which is
necessary for clinical application. Third, the algorithm cannot yet differentiate between adventi-
tious (abnormal) sounds, such as high or low-pitched wheezes and fine or coarse crackles, which
may represent different underlying disease processes and require different treatment. Fourth,
the algorithm is also unable to distinguish upper respiratory sounds (like stridor, stertor, or
vocalisations) from lower respiratory sounds, potentially leading to misclassification of record-
ings. Lastly, the algorithm may perform less accurately when exposed to new patient data sets.
To overcome this limitation, it may be necessary to recalibrate the algorithm when introduced
into new contexts, including other LMIC settings that have different patient demographics or
ambient noise profiles. Feasible implementation strategies, such as algorithm ‘fine-tuning’ or
retraining using new data, could be utilised.

The clinical use-case of this digital auscultation system deserves discussion, as its application in
the management of children with non-severe pneumonia is clearer than in severe pneumonia.
For patients with non-severe pneumonia, a ‘normal vs. abnormal’ AT algorithm may help deter-
mine which children require immediate antibiotic treatment and which can be safely observed
without antibiotics. This could help save valuable resources and promote antibiotic steward-
ship in settings with resource limitations. Indeed, the randomised, double-blinded placebo trial
BLAAAST (Bangladesh Lung Auscultation with Artificial Intelligence for Antibiotic Stewardship)
seeks to address this important question for children aged 2-59 months in Bangladesh. However,
in hospitalised patients with WHO-defined severe pneumonia, where the risk of poor outcomes is
higher and clinicians are more likely to treat empirically with antibiotics, a binary classification
may have limited impact on clinical decision-making. In such scenarios, an Al algorithm capa-
ble or further differentiating between adventitious sounds such as wheezes and crackles may
be more beneficial for clinical management. For instance, crackles may be associated with bac-
terial pathogens that require antibiotics, whereas wheezing may indicate viral-induced airway
inflammation that does not need antibiotics. We previously reported that crackles identified by
a human listening panel are associated with higher odds of radiographic pneumonia and mor-
tality, while wheezes are associated with lower odds of radiographic pneumonia and mortality,
consistent with this clinical framework [29-31]. We acknowledge that there can be clinical over-
lap between wheezes and crackles, as some patients with wheezing may also have a secondary
bacterial infection.
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CONCLUSIONS

In summary, this novel digital auscultation system, which includes a prototype digital stetho-
scope, ambient noise filtering, and an AI lung sound classification algorithm, shows potential
for accurately identifying abnormal lung sounds in children with pneumonia. The next steps
include further developing the algorithm to classify lung sounds as uninterpretable and to dis-
tinguish between wheezes, crackles, and upper respiratory sounds. Additionally, it will be impor-
tant to evaluate how the AI algorithm’s lung sound findings relate to the outcomes of children
with pneumonia in LMICs.
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