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Abstract—Stethoscope screening serves as a primary method
for diagnosing pulmonary infections, with medical professionals
actively listening for signs of pathologies in breathing sounds like
wheezing and crackling, which carry different clinical interpreta-
tions. Environmental conditions during auscultation recordings
often share similarities with these abnormal lung sounds, and
can mask or confound their presence making their detection
highly sensitive to surrounding factors. To automate this process,
a robust anomaly detection scheme with resilience to ambient
backgrounds and high precision is essential. In this study, we
propose an unsupervised framework for anomaly detection where
statistics of a deep neural network embeddings are tracked
using a Bayesian belief model in order to flag variations that
are deemed anomalous, hence facilitating detection of adventi-
tious auscultation events. The proposed scheme leverages two
key principles: (1) learning of statistics of normal auscultation
patterns using variational constraints, and (2) tracking changes
in the statistics using Bayesian beliefs that interpret anomalies
as deviations from normal statistics. This approach is shown
to be very effective in detecting adventitious auscultations under
various noise levels hence ensuring its resilience to environmental
conditions.

I. INTRODUCTION

With advances in machine learning, there is increasing
interest in applying computer-aided analytics in a variety of
healthcare applications [1], [2]. In the case of pulmonary dis-
eases, lung auscultations are sounds produced by the lung and
accessed through a stethoscope to provide information on the
underlying pulmonary pathological conditions [3]. Advanced
signal processing and machine learning tools have opened new
frontiers in computer-aided auscultation techniques by analyz-
ing stethoscope recordings to enable automatic identification
of abnormal lung sounds that are indicative of underlying lung
pathologies [4], [5]. Generally, a framework adopted in most
studies is to train classifiers such as Convolutional Neural Net-
works, Support Vector Machines, Gaussian Mixture Models
on different classes of auscultation sounds (normal breathing,
abnormal patterns) and use this framework to analyze any in-
coming signal as normal or abnormal [6], [7], [8]. A recurring
theme across these methodologies is the use of labeled datasets
containing ample recordings of both normal and abnormal
lung sounds. Access to labeled auscultation is not only a
timely and costly endeavor, but it requires human expertise
by trained physicians to carefully curate signals and annotate
abnormal patterns. Furthermore, a challenge with supervised
methods is the scarcity of adventitious lung sounds. This issue
of data imbalance exacerbates the challenges associated with

training deep learning architectures [9], and requires the use of
various strategies, including proper sampling techniques, the
utilization of appropriate evaluation metrics, as well as the use
of data augmentation techniques [10].

An alternative approach to tackle these limitations is the
use of unsupervised techniques, specifically anomaly detection
which is well suited for the task of detection of adventitious
auscultations [11]. Anomaly detection focuses primarily on
identifying patterns in the data that deviate significantly from
the norm. In other words, it is simply the task of identifying
out of distribution examples, hence forgoing the need to label
those examples. As an unsupervised method, it provides a
number of advantages including flexibility and adaptability to
different types of data and domain sets as well as scalability
across different settings. With these advantages, identifying
anomalies can be a challenging task due to variability in
interpreting what is a deviation from the norm. Furthermore,
noise interference or dynamic changes in the data setting or
levels can alter the interpretation of normal patterns leading
them to appear out of distribution and ultimately be flagged as
abnormal. These limitations require careful learning strategies
that leverage domain knowledge of the structure of the data in
order to define meaningful representations of the underlying
statistical distributions, hence yielding more robust behavior
in anomaly detection [12].

The present study develops a framework for anomaly
detection of adventitious auscultation signals that considers
meaningful mappings that capture the characteristics of nor-
mal and abnormal instances. The proposed scheme explores
features that a) best canvas the stochastic space of normal
lung sounds and their underlying statistical distribution, and
b) accurately reflect a change in this distribution at the onset
of an adventitious sound. The proposed scheme uses a deep
neural network with variational constraints in order to control
the mapping of underlying statistics of auscultations. The
network is trained on a dataset of normal lung sounds in
order to learn a good representational space for a reference
statistical distribution of auscultations. Embeddings from this
model are then used as input to a Bayesian tracking model
that generates statistical predictions or beliefs about changes
in the underlying distribution. A simple threshold is then
used to evaluate presence of any abnormality. This framework
is compared against other representations and evaluated in
presence of various noise levels to probe its robustness as well
as timing precision to detect onset of adventitious sounds.20
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Fig. 1: Overview: Proposed pipeline for anomaly detection. A Change signal (top-left) and Control Signal (bottom-left) differ
starting from t0 = 8 when an anomalous sound appears in the change signal. Cepstral coefficients are extracted from lung
sounds and are mapped onto a variational recurrent feature space. A belief change detection algorithm then identifies the
change in this underlying Change auscultation distribution whose peak (if Θ > θ0) marks the onset of the lung sound anomaly
within tolerance. Receiver Operating Characteristics curve considering such True Positive and False Positive values and gives
the final best F1-Score.

II. DATA

The auscultation signals used in this study include record-
ings from the Pneumonia Etiology Research for Child Health
(PERCH) study group [13]. Auscultations were recorded using
a Thinklabs ds32a digital stethoscope at 44.1 KHz. Signals are
then pre-processed using a low pass fourth-order Butterworth
filter with a cutoff at 4kHz, downsampled to 8 kHz, centered
to zero mean and unit variance, and denoised using an aus-
cultation specific ambient noise-cancellation algorithm [7].

Each auscultation recording is annotated by an expert re-
viewer panel indicating the presence/absence of abnormal lung
sounds such as wheezes and crackles [14]. Physicians also
temporally localize the said abnormality by a temporal onset
and offset using Audacity software. The data used in the
present study consists of 13.9 hrs of data from 800 patients
from 8 different chest positions where the listening panel
agrees in the final arbitration of normal, wheeze, crackle or
both annotation as well as their temporal placement within a
chest recordings. We standardize the duration of recordings an-
alyzed to 12 seconds. We define ’change’ signals as recordings
where we insert a 4-second abnormal lung sound (from the
labeled dataset) at time t0 = 8 sec. To evaluate different signal
strengths, the abnormal signal is added at different strengths:
12 dB, 8 dB, 4 dB, and 0 dB defined over RMS (root-mean
square) energy change from normal to abnormal auscultation
at t0 = 8 secover a 500 msec window.

The data is then divided into training and testing sub-
sets as follows: 10.02 hrs of only normal auscultations
(Train) of which 6.82 hrs (TrainAutoencoder) is used to
obtain the data-driven statistical recurrent features and 2.2 hrs
(TrainStatiscalModel) are used to learn the statistical distribu-
tion of the learnt stochastic transitional features. The remaining
1 hr (TrainAnomalyThreshold) of normal auscultations are
held out to compute appropriate threshold statistics across
different feature spaces to perform the final anomaly detection.
The analysis is tested on a test dataset Test comprising
of 500 normal recordings, 530 wheezes, and 160 crackles

of 12 second duration with anomaly onset for abnormal
auscultations at t0 = 8 sec. Note that the model training is
never presented change (or abnormal) signals and as such the
use of a fixed change point if simply to evaluate the accuracy
of the anomaly detection. Furthermore, control signals (normal
with no anomaly) are also 12 sec long.

III. METHODS

The proposed pipeline maps auscultation signals along
different representational spaces, as outlined next.

A. Stochastic Recurrent Feature Mapping

A 12 sec auscultation signal is first analyzed to extract 13-
dimensional Mel Frequency Cepstral Coefficents (MFCCs).
These MFCC features over time M(t) (dim: 1x13) are sequen-
tially analyzed through a recurrent neural network. The input
features are mapped through an embedding layer to obtain en-
coder mean and variance realizations (µenc(t),Σenc(t)) of that
time-step. We impose recurrence by conditioning the encoder
embedding layer on a recurrent hidden state from previous
time step h(t−1). This hidden state is computed by passing the
previous encoder mean µenc(t− 1) through a recurrent neural
network. To obtain stochasticity, we use the reparameterization
trick and sample our stochastic recurrent feature z(t) (dim:
1x8) from a Gaussian distribution N(µenc(t),Σenc(t)). A
decoder layer is then deployed to map back z(t) at each time
step to its corresponding MFCC decoded space by computing
the decoder mean and variance (µdec(t),Σdec(t)).

This Variational Recurrent Neural Network (VRNN) Au-
toencoder is trained solely on normal lung auscultations
(TrainAutoencoder) in an unsupervised fashion. This feature
space captures the stochastic properties of a normal signals.
Such a representation space is learnt by imposing a recon-
struction loss in the form of negative log likelihood between
the input MFCC M(t) and the decoded MFCC µdec(t). We
further employ the timestep wise variational lower bound
objective by backpropagating on the KL-Divergence between
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(a) Input MFCC (b) Stochastic Recurrent Feature (c) Feature Belief Change

Fig. 2: 3D Visualization of F1-Score topology on performing onset detection across MFCC Features, VRNN Features and
Belief Change on VRNN Features considering different tolerance duraitons and Normal-Abnormal Signal Ratios.

the encoder distribution N(µenc(t),Σenc(t)) and decoder dis-
tribution N(µdec(t),Σdec(t)). We perform this optimization
using Adam Optimizer and tune the scaling of KL-Divergence
to obtain ideal loss profile.

B. Statistical Change Point Detection

The output of the VRNN is then analyzed using a Bayesian
Belief model. In this study, we employ the Dynamic Regularity
Extraction (D-Rex) Model [15] that predicts the statistical
distribution of the stochastic recurrent representation of aus-
cultations at current time step (zt) as ψt = P (zt/z1:t−1).
Sufficient statistics of above distribution are then combined
to continuously update the belief about the underlying feature
space distribution Bt. Difference in beliefs over time is noted
as Belief Change δt which should ideally be sensitive to
the anomaly onset which further diverges the underlying
auscultation statistical distribution.

C. Anomaly Onset Identification

Anomaly onset detection is done by identifying temporal
instances with significant spike or amplitude changes over
time δ(t). This evaluation is performed the same way over
all features in the proposed pipeline (MFCC features, VRNN
embeddings, Belief change) in order to compare efficacy of the
different representations. The analysis is done by sweeping
through a range of thresholds Θ over a set of normal and
abnormal auscultation signals. Threshold values are computed
based on the percentile statistics of TrainAnomalyThreshold.

D. Evaluation Metrics & Comparative Monte Carlo Analysis

An onset detection for an anomaly is considered a hit only
if identified within a temporal tolerance τ . In case of normal
recordings, we would expect not identifying an onset as a True
Negative. We compute the Receiver Operating Characteristics
(ROC) curve at each τ and identify the best threshold Θ. The
final evaluation metrics is reported as an F1-score given at the
best Θ.

The performance comparison across different features is
done in a Monte Carlo fashion by computing the best F1-
Score on test data samples of size 200 with equal number of
normal and abnormal auscultations randomly sampled from
Test dataset. To compare the final analysis against the features
themselves, we establish similar percentile thresholding to

identify the onset in both MFCC Feature Space and the VRNN
Feature Space. In this case, we work with absolute amplitude
of the feature envelope. For comparison, we also formulate a
’random’ baseline by working with a random onset detector
on similar test samples.

E. Overall pipeline for Anomaly detection

Fig. 1 shows the proposed pipeline for anomaly detection.
An auscultation signal without anomaly (bottom-left) or with
an anomalous wheezing sound (top-left) is analyzed through
the system. The bottom signal is referred to as a control signal
since we expect the system to generate no detected anomalous
events. Any anomaly detected in a controlled event is flagged
as a false alarm. The top signal is a normal breathing signal
where we introduce a wheezing anomaly at time t0 = 8
sec at SNR= 2 dB (For reference, we evaluate the average
signal-to-noise ratio at the onset of abnormalities (crackle,
wheeze) relative normal breathing patterns in 57.5 minutes
of normal recordings in pneumonia patients from the PERCH
dataset [13]. On average, the presence of these anomalies (as
annotated by expert pulmunologists) is 1.247 dB. A signal is
then analyzed through a first stage to extract cepstral coef-
ficients. The figure shows the first MFCC coefficient for the
acoustic recordings shown on the left. As cepstral coefficients
are mapped directly from the input signals, their variations
reflect closely the overall changes in amplitude in the signal.
The cepstral coefficient from the change signal (top) shows
a deviation near t0 = 8 sec. No such deviation is observed
for the control signal. Next, all MFCC features are analyzed
through a data-driven variational recurrent neural network
(VRNN). In this case, we expect the network embeddings
to yield some degree of alignment with the distribution of
normal auscultations on which the network is trained. The
output of the network is shown for both signals (top and
bottom). Finally, network embeddings are analyzed through
a belief tracking system where changes in their statistical
structure over time are considered a benchmark against which
we flag any deviation, hence leading to anomaly detection. The
belief change in both signals are shown on right side of the
system. The last stage considers output at different stages in
this pipeline and generates a receiver operating characteristic
curve considering both correct detections from change signals
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and false alarms from control signals at different threshold
value at a given tolerance of the original t0.

IV. RESULTS

A. F1-Score topology across Abnormal-Normal Signal Ratio
and Tolerance

In order to examine the contribution of all 3 features in
anomaly detection, we evaluate the system performance (in
terms of F1-score) under different values of abnormal signal
strengths (SNR in dB) and assess the results at different toler-
ance levels (timing precision). Given that each feature space
(MFCC, VRNN and VRNN belief change) spans a number
of dimensions, we evaluate the behavior of the first feature in
each group before aggregating results across all features within
a group. Figure 2 compares the F1-Score topology with onset
detection on the first MFCC dimension, first VRNN feature
dimension and the feature belief change on the first VRNN
feature dimension. In this 3D visualization, we observe that
across all three feature groups, the F1-Score increases with
the increase in the temporal tolerance as expected. In contrast,
we note a different behavior as a function of SNR. In the case
of MFCC (leftmost panel), we note that the F1-score starts
very high (F1=0.91) at 12dB Abnormal-Normal signal ratio,
then followed by a steep decrease as the SNR drops to 0dB.
This behavior is consistent with the fact that the presence of
a very loud abnormal signal pattern (at 12dB) carries a clear
envelope signature which in turn reflects a big change in the
amplitude of the MFCC signal. This amplitude-specific effect
results in a clear drop of F1 as the SNR changes from 12dB
to 0dB. In contrast, the VRNN feature yields an almost flat,
though relatively low, F1-Score across both tolerance duration
and the SNRs. The same flatter trend is observed in the case
of the belief change feature though at a higher F1 baseline.

Fig. 3: Mean and standard deviation of the slope of the 3D
F1-Score analysis against Signal to Noise Ratio to reflect the
robustness of the feature to signal insertion intensity. The
comparative analysis is done amongst the thresholding results
of MFCC features and the feature belief changes of VRNN
Autoencoder features. ∗∗ reflects statistical significance p <
0.01 and ∗ ∗ ∗ reflects statistical significance p < 0.001

While these results focus on one example feature in each
feature group, they reflect a general behavior of these features
in terms of effect of SNR on F1-scores.

B. Comparison of anomaly detection across features

To quantify the robustness of onset detection, we compute
the gradient of each individual F1-Score 3D topology (as
visualized in Fig 2) across the SNR dimension. Calculating
the norm of this derivative gives the slope of F1-Score per-
formance across different Normal-Abnormal Signal Ratios. A
higher slope implies a steeper decline in the performance with
the decrease in SNR and thereby making the onset detection
on that particular feature less robust. The robustness of onset
detection based on a particular feature is represented as the
mean of slope across different dimensions within that feature.
We observe that the slope statistics on the random MC samples
give an average of 0.083 for MFCC based onset detection,
0.049 for the statistical recurrent feature, and 0.035 for feature
belief based onset detection as observed in Fig 3. We further
perform Mann Whitney U Test on these slope random statistic
samples to confirm statistically significance with a p-value
of 1.7420e-65 on comparing MFCC Slope sample with the
Belief Change slope sample and a p-value of 0.032 for the
Feature-Belief change slope comparison. Comparing MFCC
and VRNN features yields a p-value of 4.3e-12.

C. Robustness to signal variation

We analyze the robustness of proposed method by working
the F1-Score at a tolerance of τ=4 seconds across different
features as this reflects an overall soft detection of abnormality,
if any. Here, the analysis considers all features explored in the
current pipeline. Nominally, the dimensionality D of different
features in this comparative analysis is as follows: 1. MFCC
(D = 13), 2. Stochastic Recurrent Feature (D = 8), and
3. Feature Belief Change (D = 8). In Fig 4, the mean F1-
Score is computed across all feature dimensions on different
Abnormal-Normal Signal Ratios. The shaded curves represent
the standard error across dimensions. The results show a
mean of 0.61 F1-Score for the feature belief change at 0 dB
as compared to the 0.431 of MFCC Envelope and 0.30 of
Stochastic features. The average random baseline performs at
an F1-Score 0.156 ± 0.007 and is reported as a red dashed
line to evaluate the performance of a random onset detector on
this task. For reference, the vertical line depicts the ’natural’
Abnormal-Normal Signal RMS ratio at 1.247 dB. This value
is evaluated by assessing abnormal signals in the dataset
and estimating the change in signal strength from a normal
breathing when an adventitious event occurs (see Methods).

V. DISCUSSION

Overall, these results reveal three key trends. First, MFCC
which are data-agnostic features seem to follow more closely
the amplitude of the auscultation signal itself. At high signal
levels, there is a clear intensity change which results in high F1
scores. As the normal-to-abnormal strength decreases, MFCC
features decrease dramatically in performance as reliance on
overall signal strength is not a robust or scalable strategy
for anomaly detection [11]. As such, low-level features such
as MFCC are highly susceptible to signal structure and lack
a true representation of the space of normal lung sounds.
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(a) Input MFCC (b) Stochastic Recurrent Feature (c) Feature Belief Change

Fig. 4: Comparative Robustness Analysis of Mean and Standard Error of F1-Score performance on onset detection across (a)
MFCC, (b) VRNN Feature and (c) Feature Belief Change at tolerance = 4 seconds.

Second, data-drive features like VRNN embeddings present
a general improvement in terms of overall performance across
signal strength and temporal tolerance, though they operate
at lower F1 scores in terms of signal strength (as shown
in Fig. 3). While these features successfully capture the
statistical distribution of normal auscultations, using a direct
thresholding on the features themselves does not accurately
leverage the learned stochastic learning. Finally, a proper
tracking of statistical changes, which is achieved through a
Bayesian tracking model balances both the statistical learning
and temporal predictions leading to more robust anomaly de-
tection. An important aspect of the proposed work is the clear
importance of the feature space used as reference distribution
to identify out of domain samples. As noted earlier, the pro-
posed scheme leverages variational constraints in the recurrent
neural network which impose constraints of Gaussianity on the
learned embeddings. These constraints lend themselves well
to a bayesian tracking framework (DREX) which -at its core-
uses Gaussian statistics to learn past observations and make
predictions about incoming observations [15].

Overall, the proposed system offers a general framework for
anomaly detection for auscultation analysis. The study focuses
on the appropriate choice of feature space for such effort in
order to provide a suitable space to learn normal statistical
behavior of the data, hence leading to robust detection of
abnormal patterns under different signal levels. Such frame-
work could be easily integrated in a clinical workflow to assist
healthcare professionals in diagnosing respiratory conditions.
Future research needs to examine more reliable methods of
detection beyond thresholding.
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