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Abstract—While chest auscultations provide an accessible and
low-cost tool for pediatric pneumonia diagnosis, its subjectivity
and low reliability continues to hinder its inclusion in global
pneumonia guidelines; eventhough more robust tools like chest
radiography also suffer from cost and accessibility issues. Ad-
vances in computer-aided analytics is offering more robust tools
for interpreting digital auscultation signals though little has
been done to explore variations of lung sounds across different
chest positions and the correspondence between auscultations
and specific radiographic findings. The present study explores
interpretation of lung auscultations across chest positions in a
pediatric pneumonia population, using a deep neural network
classification of normal and abnormal breathing patterns. The
results reveal a strong alignment between computer-aided auscul-
tation findings and radiographic interpretation not only in terms
of presence of adventitious lung patterns, but also in terms of
localizing the abnormality along the left or right lung. Though
evaluated in a small clinical population, this research underscores
the potential of computer-aided auscultation analysis as a cost-
effective substitute for radiography in resource-limited settings.

I. INTRODUCTION

Listening to lung sounds or chest auscultations has often
been used to identify pathological acoustic markers that man-
ifest due to the presence of underlying respiratory conditions.
Consequently, stethoscopes emerge as a valuable low-resource
modality for screening pulmonary pathologies compared to
more intricate and costly modalities. However, lung ausculta-
tion is notably absent from current World Health Organization
pneumonia guidelines[1] due to the considerable subjectivity
in sound interpretation. This interpretation is not only hindered
because of the complex nature of normal and abnormal breath-
ing sounds, but also the masking effect of ambient sounds that
are often picked up by stethoscopes and result in distorting
the quality of the auscultation signal. In addition, auscultation
from the left side of the chest often has to contend with mask-
ing by heart sounds, making positioning of the stethoscope an
important factor to access clearer breathing sounds that are not
overshadowed by potentially loud heartbeats.

Chest Radiography on the other hand gives a static image
with a more established ground truth. While the usual issues

of inter-reader variability persists to a certain extent amongst
this modality too, its static nature renders it less susceptible
to subjectivity compared to auscultations. However, acquiring
chest images is generally more challenging and importantly
more costly requiring not only expensive equipment but also
highly trained technicians making wide access to radiographic
modalities a major challenge across the globe [2]. Extensive
datasets of chest radiography have paved the way for the
application of deep learning techniques in Computer Vision for
diagnosing pulmonary diseases [3], [4], [5], [6] . Nevertheless,
this progress has not extended seamlessly to pediatric pop-
ulations [7], highlighting the necessity for population-based
transfer learning [8], [9], [10]. Furthermore, within existing
radiography collections, efforts to automate diagnosis face nu-
merous challenges stemming from the lack of standardization
across devices, technician practices, and reader interpretations
[11], [12]

In recent years, the emergence of computerized ausculta-
tion analysis has spurred numerous endeavors to automate
screening and diagnostics using recorded auscultations [13],
[14], [15]. Important contributions have been made to provide
more nuance in computer-aided interpretation and develop
algorithms that are clinically transparent and explainable [16],
as well as address the issues of domain generalization that
comes with a medical setting [17]. However, the interpretation
of lung sound using mathematical models is often set against
a gold standard of expert listeners, typically in the form of
a panel of physicians providing their assessment and expert
opinion on each auscultation signal. By treating computer-
aided auscultation analysis and chest radiography in silo, a
question remains regarding the alignment of computerized
auscultation models with chest radiography findings. While
early results suggest an association between digital recording
of lung sounds and radiographic pneumonia particularly in
pediatric populations in limited-resource [18], establishing an
association between computer-aided auscultation assessment
and radiographic findings remains an open question.

This study proposes a pipeline to explore association be-
tween data-driven Computer-Aided Auscultation (CAA) mod-20
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els and chest radiography. We conduct a first evaluation
on a small dataset and demonstrate promising outcomes in
terms of association between radiographic pneumonia findings
and uncertainty in CAA outputs as reflected in the posterior
probabilities of auscultation models. These findings are then
extended to assess the localization of lung abnormalities solely
based on digital auscultations. This investigation addresses the
specificity of lung auscultations across various chest positions
and their capacity to provide informative insights into the
presence of localized lung abnormalities within right/left lobes
of the lung. The proposed study examines the variability in
outcomes of auscultation models and establishes a significant
correlation between chest position and radiographic findings
in terms of lobe specificity.

II. DATA

Clinical Setting: The data used in this work has been
collected as part of a study conducted at Projahnmo research
site, Sylhet, Bangladesh to robustly assess the impact of
introduction of 10-valent Pneumococcal Conjugate Vaccine
(PCV10) on Invasive Pneumonical Disease (IPD) in children
0-59 months of age [19]. The goal of this effort was to bench-
mark the population incidence of IPD prior to the introduction
of PCV10 utilizing multiple surveillance modalities such as
lung ultrasound, blood work, digital auscultations, and chest
radiography. For the current study, we analyzed a subset of
407 subjects with verified records of chest radiography and
digital auscultations. All patients analyzed were identified by
study physicians as suspected of IPD.

Digital Auscultation: Each subject had their auscultations
recorded at 44.1 KHz across two left and two right chest
positions using the JHU Stethoscope, a low-cost digital auscul-
tation device that improves lung signal strength by uniformly
distributing highly sensitive microphone arrays across the
stethoscope diaphragm [20]. These sound recordings were
annotated by a panel of expert physicians to indicate the
presence or absence of auscultation abnormalities such as
wheezes, crackles or both. Each individual recording was
randomly assigned to two reviewers, and further assigned to an
arbitrator in case of disagreement. In case of abnormality, the
reviewers further identified the onset and offset of the anomaly
within the recording. Together, the data consisted of 122.83
minutes of normal and 150.52 minutes of abnormal data.

Chest Radiography: Corresponding analogue chest radio-
graphy images from the same subjects were collected using
portable POLYMOBIL Plus (Siemens, Erlangen, Germany)
units and digitised them with CR Fujifilm cassette readers
(Tokyo, Japan). These images were again annotated by two
primary radiography experts, and then further assigned to
a third and fourth reader in case of mismatch [21]. As
per definitions of WHO chest radiography findings [22], the
present study focused on the final readout of Primary Endpoint
Consolidation (PEP) indicating the presence of alveolar con-
solidation or pleural effusion that is associated with any type of
consolidation. Out of the 407 patients, reader panelists agreed
on a left, right, both, and no PEP for 360 patients with XRay

categorizations as listed in TABLE I . They disagreed in their
final annotation on the rest of the 47 patients.

Primary End Point Consolidation Number of Patients
Left 12

Right 46
Both 6
None 296

TABLE I: Patient Count across different XRay Categories with
reader agreement

III. COMPUTER-AIDED AUSCULTATION MODEL

Data processing: All digital auscultations included in this
analysis were resampled at 8 KHz. The signal underwent
noise-cancellation using [23]. Reviewer annotations of aus-
cultation signals varied in length across patients. In order to
standardize the computer-aided analysis, all segments were
unified at 4 seconds in length. For long-enough segments, the 4
seconds were centered relative to the original onset and offset
identified by the expert listeners. For segments that are shorter
than 4 seconds, zero-padding was used.

Auscultation data was then divided into a train and test set
to train classification models. The train set consisted of 80
percent of patients with no Xray PEP as well as all patients
on which the radiography panel disagreed. 20 percent of the
patients with no Xray PEP and all the other patients with
positive PEP were used for evaluating the model performance.
This accounts to 209.83 minutes of training data and 63.52
minutes of testing data.

Classification Models: The study develops a deep learn-
ing model to analyze auscultation signals and automatically
classify normal lung signals from abnormal breathing patterns
such as wheezes and crackles. In this work, we employ an
autoencoder model with Convolutional Neural Network (CNN)
encoder and Long Short Term Memory network (LSTM) de-
coder. Given the limited amount of data available in this study,
we keep the structure of the network relatively light in order
to limit the number of tunable parameters to a manageable
range given the training data. The CNN portion of the neural
network consists of two 1-dimensional convolutional layers
with average pooling after each layer. The first convolutional
layer has a filter length of 32, and the second convolutional
layer has a filter length of 16. Both layers have a stride
of 1 and do not use any additional padding. The output
of these mappings is a set of embedding features that are
processed through a 2-layer LSTM decoder followed by a
fully connected linear layer. The final layer employs a sigmoid
activation function and results in a classification posterior
value. The network is trained using Binary Cross Entropy
loss, and Adam optimizer with a learning rate of .01. All
components of the neural network are implemented using
PyTorch, and a grid search is performed to determine the
optimal set of parameters for the classification task.

The model takes as input a mel-scaled spectrogram of
each audio sample, using the python librosa library [24]. The
spectrogram is derived using a fast Fourier-transform window
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Fig. 1: Overview: In this study, we work with pediatric patients enrolled in a PCV10 incidence study with multiple surveillance
modalities. We specifically focus on their auscultation recordings and chest radiography. The bottom branch depicts the chest
radiography modality. This modality is annotated by an expert reading panel into one of the four Primary Endpoint Consolidation
categories: 1) Left 2) Right 3) Both and 4) None. The top branch visualizes the computerized auscultation analysis. Stethoscope
recordings are collected from two left (orange) and two right (blue) chest positions. We map these acoustic recordings to a
spectro-temporal representation and pass it through an auscultation classifier model that outputs an abnormality probability for
each recording. We establish the correspondence the location specific diagnosis as evaluated by an auscultation based model
with the patient’s corresponding Xray reading.

of 2048 samples and hop length of 512 and then normalize
the data.

Auscultation Site Analysis: The present study explores the
specificity of auscultation across site positions and the ability
to localize lung abnormalities from breath sounds only. In
order to evaluate specificity of chest auscultations from the left
versus the right, we train three classifiers: a first model trained
on audio samples obtained from the right chest positions only,
a second model trained on audio samples from the left chest
positions only, and a third model trained on all audio sam-
ples. Given the limited dataset used for training, particularly
with regards to abnormal sound patterns, we augment the
dataset using Constrained Synthetic Sampling, an extension
to the synthetic minority over-sampling technique [25]. This
technique is used to create additional audio samples that are
statistically indistinguishable from the original data. By using
this augmentation methodology, we are able to increase our
training samples to 1800 normal Samples and 1827 abnormal
samples for left side samples, 792 normal and 795 abnormal
samples for right side samples, and 1990 normal samples and
2104 abnormal samples for the third all-site model. Note that
data augmentation is used only for training the models, while

a held-out test set is used to evaluate the performance of all
models.

IV. RESULTS

A. Agreement between Computer-Aided Auscultation Analysis
and XRay findings

While there have been a number of studies that assessed
the sensitivity and specificity of digital auscultations relative
to a panel of listeners [26], [27], we wanted to evaluate
whether a model trained on these audio recordings agrees with
radiographic findings in terms of normal/abnormal conclusions
regardless of their chest positions. Using the held-out set,
we examine the auscultation model trained on both sites and
derive aggregate average posterior probabilities obtained for
patients flagged as abnormal based on Xray findings versus
those identified as normal. Figure 2 shows that the median of
auscultation recordings for patients with no primary endpoint
consolidation is about 0.336. On the other hand, patients
whose XRay findings show consolidation in either/both of
the lungs have a higher aggregate auscultation abnormality
probability, around 0.803. Given the nonuniform nature of the
posteriors distribution, the non-parametric Mann Whitney U
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Test confirms that the two posterior distributions for positive
and negative end point Consolidation patients is statistically
significant, with a p-value of 2.3e-05.

Fig. 2: Average Abnormal Probability of Auscultation Record-
ings with patients across different Xray Categorizations re-
gardless of chest position. These probability samples of pos-
itive and negative Xray categories are statistically significant
on performing Mann Whitney U test with a p-value of 2.3e-
05.

B. Objective Comparison between Lung Auscultation across
sites

One of the open questions explored in the present work
is whether left and right chest positions carry sufficiently
distinct information about adventitious events in the lung if
the abnormality is emanating from a different position relative
to the position where the signal is recorded. To first address
this question at the signal level, we compare the spectral
profiles of left versus right auscultation signals. This analysis
follows established signal comparison methods [28] where
the average spectral density of left and right auscultations is
evaluated over different 500msec windows. Figure 3 reveal a
very close correspondence of average signal profiles across
both positions. Signal characteristics extracted from these two
signals include maximal peak amplitude of the spectrum,
the frequency of the peak, the peak width as well as the
spectral slope indicating the decay in spectral energy at high
frequencies. Performing a statistical comparison (t-test) across
both left and right auscultations confirm there is no statistically
significant difference between the two (Table II)

Feature p-value Mean (Left) Mean (Right)
Peak Max .3897 25.064 23.179

Peak Frequency .0176 108.0 Hz 108.0 Hz
Peak Width .7834 178.683 Hz 177.882 Hz

Spectral Slope .5183 -61.006 dB/Hz -61.012 dB/Hz

TABLE II: Average spectral values and statistical comparison
(p-value) of left versus right auscultation sites

Fig. 3: Comparison of Spectra of left and right auscultations
averaged over all patients. Shaded area reflects the standard
deviation across all data in each side.

C. Localized Site Specific Analysis between Auscultation and
Chest Radiography

Next, focusing on the actual specificity of chest positions,
we compare the model outputs separately for left and right aus-
cultations and evaluate how well they reflect the radiographic
findings in terms of localized or non-localized consolidation.
Note that the auscultation model is still blind to the location-
specific information of chest positions. The analysis evaluates
the average posterior of left and right chest sites within
each Xray category that indicates consolidation and test their
agreement with positional Xray findings. We observe that the
average posterior abnormal probability of left chest ausculta-
tions (0.678) is higher than the right chest auscultations (0.631)
for patients with primary end point consolidation in left lung
as observed in Fig 4. The same is observed for the patients
with right primary end point consolidation (right: 0.725, left:
0.656). We also report the values aggregate left (0.574) and
right (0.653) posterior values for Xray Category ”Both”. While
the sample distributions are not statistically significant between
left and right chest positions across all three categories, we
would like to note that the right chest positions show a
higher aggregate difference as compared to left chest positions
within their respective categorizations. Moreover, the right
chest positions also show a higher aggregate behaviour when
positive PEP is noted in both the lungs.

We now explore the effect of auscultation models that are
attuned to specific chest positions and see if they can better
correspond with Xray categories. We work with two different
models, one trained only on left auscultations and one trained
on right auscultations. We present our findings in Figure
5. In this analysis, we look at the auscultation abnormality
probabilities of both left and right chest postions of Xray
Left PEP Category patients as inferred by Left Chest Site
Classifier. Similarly, probabilities of both chest positions of
Xray Right PEP Category are inferred by Right Chest Site
Classifier. We now find that the probability samples of left
chest positions (mean: 0.88) are significantly higher than the
right chest postions (mean:0.603) for PEP left patients with
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a p-value of 0.0341. Similarly, for patients with Right PEP
findings, we note a similar significant difference between right
chest samples (mean: 0.74) over left chest samples (0.657)
with a p-value of 0.0242.

Fig. 4: Comparison of Left (orange forward stripes) and Right
(blue backward stripes) Auscultation Abnormal Probabilities
across different localized XRay findings as inferred by clas-
sifier trained on both side auscultation recordings. Abnormal
Probability for the 6 patients with positive XRay findings in
both lungs are also reported in the third bar graph (Both).

Fig. 5: Left and Right Chest Site comparison in Left Xray
Category patients when analyzed by Left-Attuned Auscultation
Classifier (highlighted with orange).Left XRay comparative
analysis is statistically significant with a p-value of 0.0341.
The Chest Site specific comparison in Right Xray Category
patients analyzed by Right-Attuned Classifier (highlighted in
blue) shows the statisitcal significance with a p-value of 0.0242

V. DISCUSSION

Overall, the results indicate an preliminary positive agree-
ment between X-ray findings and Computer-Aided Auscul-
tation (CAA) along two main outcomes. First, overall pre-
dictions of auscultation models reveal a statistically signifi-
cant trend in normal/abnormal decisions that align strongly

with positive and negative readings of an expert radiology
panel where positive readings indicate a Primary Endpoint
Consolidation (PEP) along the left, right or both lung lobes
indicating the presence of alveolar consolidation or pleural
effusion. This result strengthens earlier studies in terms of as-
sociation between digitally recorded lung sounds with WHO-
defined radiographic primary end point pneumonia [18]. While
establishing this link is an important step towards accepting
digital auscultation as a possible tool in child pneumonia care,
the present study takes a step further by using computer-aided
models that standardize the analysis of lung signals all while
maintaining a more nuanced interpretation of the results. This
latter point is a critical one given the general approach in
machine learning to adopt a correct/incorrect or accuracy-
based measure. As discussed in other studies [29], there is
a need for robust computer-aided models in diagnostics, but
importantly a more graded outlook in model output interpre-
tation. In the present work, we focus on model output as a
continuum reflecting a posterior or confidence of evaluating
the incoming signal as normal or abnormal and show that this
confidence statistically fluctuates towards the abnormal class
for patients with positive chest Xray outcomes and fluctuates
towards the normal class for patients with negative chest Xray
outcomes.

Furthermore, when exploring the localization capabilities of
this model, the analysis reveals different outcomes between
lung sounds recorded from left versus right chest positions.
While an initial evaluation using a generic site-agnostic model
was not statistically significant, more refined models trained
specifically on right versus left chest position do reveal a
clear difference. The results in Figure 5 clearly show that left
lung auscultations tend to carry different information about
lung abnornmality compared to right positions for patients
with radiographic findings indicating a left primary endpoint
consolidation; and vice versa. This result is by no means a
trivial outcome given that the recorded lung sound using a
stethoscope is capturing sound waves that are propagating
through the entire chest cavity and as such reflect a much
more global view of the wave patterns within the chest
[30], [31], [32]. While the presence of an abnormality (e.g.
obstruction or closed airways, fluid or secretion) colors the
pattern of the sound emanating from the chest, the nature of
sound propagation and laws of physics cause these patterns to
emanate from all positions. The results in the current study
suggest a more pronounced signature of these abnormalities
closer to the chest position where the abnormality is identified,
though focused primarily on just left versus right positions.

While these results are promising, it is important to em-
phasize that they are very preliminary. One of the challenges
with the current study and studies along this direction is
the limited number of subjects undergoing chest radiography,
particularly which makes it challenging to utilize evaluation
metrics based on strict binary classification. Although the pa-
tient numbers underscore the discrepancy in data curation con-
venience between auscultations and X-rays, especially within
the context of large-scale, diverse data collections, our study
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focuses on analyzing the soft decisions made by computerized
auscultation models across different X-ray categories. This
analysis aims to provide preliminary insights into the corre-
spondence between computerized models trained on a low-
cost, easily collected mode of auscultation surveillance and
the relatively more complex and expensive chest radiography
modality. Additionally, we delve into the location-specific
agreement between the proposed auscultation models and X-
rays, underscoring the potential of these acoustic models to
objectively assess lung sounds from both left and right chest
sites for pathological indicators.
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