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Abstract— Crackles are explosive breathing patterns caused
by lung air sacs filling with fluid and act as an indicator for
a plethora of pulmonary diseases. Clinical studies suggest a
strong correlation between the presence of these adventitious
auscultations and mortality rate, especially in pediatric patients,
underscoring the importance of their pathological indication.
While clinically important, crackles occur rarely in breathing
signals relative to other phases and abnormalities of lung
sounds, imposing a considerable class imbalance in developing
learning methodologies for automated tracking and diagnosis
of lung pathologies. The scarcity and clinical relevance of
crackle sounds compel a need for exploring data augmentation
techniques to enrich the space of crackle signals. Given their
unique nature, the current study proposes a crackle-specific
constrained synthetic sampling (CSS) augmentation that cap-
tures the geometric properties of crackles across different pro-
jected object spaces. We also outline a task-agnostic validation
methodology that evaluates different augmentation techniques
based on their goodness of fit relative to the space of original
crackles. This evaluation considers both the separability of the
manifold space generated by augmented data samples as well
as a statistical distance space of the synthesized data relative to
the original. Compared to a range of augmentation techniques,
the proposed constrained-synthetic sampling of crackle sounds
is shown to generate the most analogous samples relative to
original crackle sounds, highlighting the importance of carefully
considering the statistical constraints of the class under study.

I. INTRODUCTION

Recent advances in deep learning methods have enabled
unprecedented breakthrough in tackling complex problems
from healthcare to autonomous systems and human-computer
interactions. But deep learning is data-hungry [1], [2]. Ac-
cess to large amounts of data enables learning systems to
infer abstractions, semantic rules and generalize to different
scenarios and contexts. Yet, access to data is a continued
challenge due to issues with collection, curation, annotation
as well as data imbalance. Data augmentation has been
adopted as a way to broaden access to more data by including
new artificial data points to the original dataset [3], [4]. This
additional data is either a modified form of the original data
or an artificially-produced data using generative rules.

Healthcare applications are a prime example of chal-
lenging domains where data access and uniformity across
scenarios continue to hamper progress to develop accurate
automated screening and diagnostics [5], [6]. In case of
auscultation data, identifying abnormal sounds from body
organs offer a cheap and non-invasive tool for diagnosis of a
plethora of diseases (pneumonia, asthma, Bronchiolitis, heart
murmurs) [7]. Like other learning systems, Computerized
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Auscultation Analysis (CAA) develops models to leverage
information from auscultation data in order to identify ad-
ventitious patterns in body sounds indicative of abnormal
conditions[8]. Crackle sounds are specific patterns in lung
sounds that are caused by fluid filling lung air sacs and
associated with popping or snapping breathing sounds. A
number of studies have linked presence of crackle sounds
to pneumonia-related mortatility rates, COPD, bronchitis or
even heart failure [9], [10], [11]. Despite their pathophysio-
logical importance, crackles are extremely short bursts that
are infrequent relative to other breathing sounds.

Given their clinical importance yet rare manifestation in
most auscultation datasets, data augmentation for crackles is
an important tool that can hugely benefit CAA. Crackles are
usually discontinuous along the time axis due to their abrupt
nature. The question remains, do existing data augmentation
techniques commonly used for image and speech processing
translate to specialized sounds like crackle breathing sounds.
A number of CAA models have shown promising results with
auscultation augmentation methods using generative models
to attain synthetic samples [12], [13], [14]. However, such
methods are not broadly applicable to the specific case of
crackle sounds given the acute class imbalance issue. More-
over, it is important to consider augmentation techniques
that not only promote future processing using classification,
detection and discrimination methods downstream, but also
maintain a close correspondence to the original crackle
sounds. Access to as authentic representative sounds as
possible enable not only use in learning systems for vari-
ous purposes but also facilitate clinical training of medical
students. A few studies explored adverserial networks that
analyze abnormal auscultation similarity for augmentation
[15]. However, applicability of these methods for the crackle
sound subclass is impractical given their rare occurance.

The present work tackles both these goals: We propose a
novel augmentation method specifically tailored for crackle
sounds and propose an evaluation technique that appraises
the use of different augmentation methods relative to the
statistical space and examplars in the dataset. Specifically,
this study makes two contributions: (1) We propose a new
method based on constrained synthetic sampling (CSS).
The proposed method is an extension of existing Synthetic
Minority Over-Sampling Technique (SMOTE)[16] that is
more faithful to the statistical distribution of crackle sounds,
instead of randomly filling the space of the original data as
adopted by SMOTE. The proposed CSS method is evaluated
against a wide range of augmentation methods and shown
to maintain a close fidelity of the original crackles. (2) We
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Fig. 1: Comparison of Original Crackle spectrogram (panel
a) against various augmentation methods. The proposed CSS
is shown in panel b, panel c shows example from the SMOTE
technique, panel d shows example using spectrogram flip-
ping, panel e shows pitch shifting using 3.5 semitones, panel
f shows time stretching using a rate of 1.2. Panels g and h
show example crackles from two different databases (ICBHI
and Malawi respectively).

propose an evaluation method for augmentation techniques
based on the inherent structure of the newly augmented
dataset in a task-agnostic fashion. The proposed evaluation
appraises the new augmented space both as a statistical
space and based on individual samples within the space. As
such, the method remains impartial to any backend classifier
for discrimination, detection or other tasks, which impose
different constraints based on the learning goal.

II. CRACKLE AUGMENTATION METHODS

A. constrained synthetic sampling (CSS) for crackle sounds

Given the unique nature of crackle sounds, the proposed
method takes into account the geometry of original crackle
spectrogram space. This approach builds on the established
Synthetic Minority Over-sampling Technique (SMOTE) [16]
and imposes constraints on the new data samples to maintain
the fidelity of the original crackle space.

Starting with an original crackle spectrogram A⃗ of di-
mensions 32x64, a synthetic variation A⃗N is obtained using
the SMOTE technique based on neighbor sampling. The
methodology uses K nearest neighbors of A⃗ amongst original
crackles and introduces perturbation in each time-frequency
bin of A⃗ proportional to the gap from the corresponding bin
of a random kth nearest neighbor A⃗K (Eq. 1).

A⃗N (t, f) = A⃗(t, f)+U(0, 1)∗
(

A⃗(t, f)− A⃗K [k](t, f)
)

(1)

The new constrained synthetic sampling (CSS) method
takes into account the fact that crackle sounds tend to be
very transient, resulting in a rather discrete time axis. A
synthetic variation A⃗N generated using the classic SMOTE
method averages the distance of K nearest neighbors induc-
ing unwanted time frequency content across the spectrogram
(as observed in 1(c)). Instead, the proposed CSS method
implements a Principal Component Analysis on the original
crackle spectrograms and further constraints the new crackle
sample by projecting the synthetic sample along the principle
components of the original space.

Specifically, we formulate a matrix A with vectorized
original crackle spectrograms as columns. A new projected

matrix Ap is then derived using the eigenvectors of the
covariance matrix Cov [A]. Any new synthetic sample gen-
erated is projected onto the columns of Ap to achieve a con-
strained synthetic sample that is more faithful to the structure
of original crackles to obtain the final CSS augmented sample
A⃗S . Equation 2 summarizes this operation.

A⃗S = ApAT
p A⃗N (2)

B. Alternative Augmentation Methods

We compare the proposed crackle augmentation A⃗S with
alternative augmentation techniques that have been adopted
in many audio learning systems including auscultation
sounds [17]. We present an example spectrogram for each
of these augmentation techniques in Fig 1.

1) Sound Flip: A commonly used auscultation augmen-
tation technique is to flip the spectrogram along time axis
and consider the time reversal version.

2) Pitch Shifting: The pitch of auscultation recordings are
shifted by a nominal number of semitones. Pitch shifts of
scale −3.5,−2.5, 2.5, 3.5 are considered in this study.

3) Time Stretching: The audio data is scaled horizontally
by stretching the time at different rates 0.5, 0.7, 1.2, 1.5. The
final spectrogram is either truncated or padded to ensure the
spectrogram is 2 seconds long.

C. Alternative Datasets

One of the common augmentation considerations in case
of data scarcity is to combine data across different datasets
in order to increase the sample size as well as diversify
the examplars of a particular class. In the case of health-
care data, this approach of data augmentation using dataset
merging can raise its own sets of challenges. For auscultation
signals, different datasets introduce very large uncontrolled
variability that can be induced by sensors differences (dif-
ferent auscultation devices reflect different sensitivities and
transfer functions [18], [19], surround conditions, clinical
populations, in addition to annotation standards. To further
examine this issue, we compare our proposed augmentation
technique with crackle data from two other datasets.

1) ICBHI Dataset: This publicly available dataset [20]
contains 1864 crackles collected from across 179 patients
whose demographics cover a wide range across age, gender,
and BMI. The data collection is done using three different
stethoscopes. The subjects are diagnosed for COPD, lower
and upper respiratory tract infections.

2) Malawi Dataset: A second smaller dataset [21] is
collected following a similar protocol as the PERCH study
[22] with a focus on severe pneumonia in 100 children
in Lilongwe, Malawi under non-ideal clinical conditions in
a low-resource setting. Data was collected using a Feelix
stethoscope [23] and data annotation and crackle identifica-
tion followed similar procedures as the PERCH study.

III. AUGMENTATION EVALUATION METHODS

The paper proposes a method to evaluate data generated
using any augmentation method (Fig. 2). The evaluation
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Fig. 2: Methods - Proposed augmentation method is evalu-
ated by a two-level validation analysis at manifold level and
sample level as depicted in the figure. This methodology
is upper bounded when the analyses are performed on two
Original Data Subsets and lower bounded on comparing
original data subset against another randomly shuffled subset

follows two prongs: (i) the geometric properties of the
Original and Augmented Dataset in a separable manifold
space and (ii) statistical analysis on pair-wise distances on
the optimally flattened spectrograms.

Both evaluation metrics are obtained by comparing a sub-
set of the original crackle data against a corresponding aug-
mentation technique. To better calibrate the metrics obtained
from these comparisons, we define an upper and lower bound
for each of the metrics. The upper bound is defined as an
ideal case where the ‘new’ augmented data is identical to the
original crackle data. This is achieved by comparing different
subsets of the original crackle data against each other in a
five-fold cross-validation. The lower bound is defined using
an arbitrary augmentation technique whereby the augmented
spectrogram is obtained by randomly shuffling the time-
frequency content of the original crackle hence completely
shattering the time-frequency signature of what a crackle is.
These random samples are then compared to original crackles
also in a cross-fold validation to determine a lower bound of
what an augmentation technique can achieve.

A. Manifold Analysis

To capture the geometric similarity of different sub-
populations of discrete representations (crackle spectro-
grams), we analyse the stochastic geometric properties of
their separable manifolds. Mean Field Theoretic Manifold
Analysis (MFTMA) [24], [25] implemented in the neuronal
population of deep networks is used for this purpose. This
is done by first projecting crackle spectrogram samples and
corresponding crackle augmentation samples onto a low
dimensional subspace where both the classes are linearly
separable. Multiple random realizations of such separable
subspaces are taken into consideration. Each such subspace
mapping realization generates two anchor points, i.e vec-
tors from the center of each class in the low-dimensional
subspace to the classifying plane in that subspace. The
stochastic properties of these anchor points capture the
geometric separability characteristics of the manifolds. For
an augmentation technique to be ideal, we want both samples
in the comparison to be as non-separable as possible and
increasing separability indicates a step away from the desired
properties of the original crackle population. The following
three properties from the MFTMA are considered as our
augmentation validation metrics.

1) Capacity (ϕ): This capacity quantizes the linear sep-
arability of the two samples in the manifold subspace. This
quantity serves as a measure of the linearly decodable infor-
mation per time-frequency mapping about object separability.

2) Manifold Radius (ρ): The variance of random anchor
points indicate the compactness of the object manifold in
this separable space. The smaller the radius, higher is the
compactness when the spectrogram comparison samples are
mapped onto this space with maximum discrimination indi-
cating better separability.

3) Manifold Dimension (δ): The angular spread of the
anchor points gives the Dimension of the pairwise compari-
son of crackle and augmentation sample pair in the manifold
subspace. A narrower spread indicates the presence of a
stable subspace where the comparing pair are separable while
a broader spread indicates lower separability.

For this analysis, original crackles are divided into 5 sub-
sets and manifold parameters are generated for each original
& augmented subset. Mean values of obtained geometric
properties across different subsets are reported in the results.

B. Sample Analysis
To emphasize the differences between Constrained Syn-

thetic Sample augmentation and a basic SMOTE augmen-
tation, we analyse the surface properties of spectral content
across time-frequency bins. This distance measure is adapted
from a feature engineering technique used for auscultation
classification [26]. The 2-dimensional spectrogram is first
re-visualized as a 3-dimensional mesh with time-frequency-
spectral content as the three axes. This 3D mesh is sampled
and triangulated by Delaunay triangulation [27]. Given the
sparse nature of the original spectrogram mesh, there is a
need for transforming the original mesh space to a flattened
mesh space constraining the properties of the non-sparse
triangles from the original triangulated mesh. This is done
by Adaptive Block Coordinate Descent Algorithm[28]. Each
spectrogram mesh has to be separately optimized to reach
an ideal representation in the flattened mesh space over a
constraint. We analyze the L2-Distance Measures between
random sample pairs of Original and Augmented crackle in
the optimally flattened space.

To ensure that the randomness in the optimization is
accounted for, we perform L2-distance analysis in the flat-
tened mesh space on 500 Monte-Carlo random sample pairs
(sample size = 100) of original crackle and the augmentation
method in the flattened space.

IV. AUSCULTATION DATA

The recordings collected by the Pneumonia Etiology Re-
search for Child Health (PERCH) study group [9] are used
in the current study. A diverse set of 742 interpretable
patient recordings from subjects of age 1-59 months across
7 different countries were collected with a Thinklabs digital
stethoscope. 7-8 second recordings were collected from two
frontal, two back and two axial body positions. All signals
were originally sampled at 44.1KHz, pre-processed by apply-
ing a low-pass filtered with a fourth-order Butterworth filter
at 4 kHz cutoff, downsampled to 8 kHz, and normalized.
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Augmentation Category. Comparison ϕ (x10−3) ρ δ

Upper Bound Original 2.89 2.32 410.2

Synthetic Sampling CSS 4.44 1.66 305.1
SMOTE 4.45 1.65 302.3

Spectrogram Variation Flip 9.79 1.17 174.9

Pitch Shift

Scale = -2.5 9.29 1.21 180.6
Scale = -1.5 8.15 1.24 201.3
Scale =1.5 8.69 1.19 196.0
Scale =2.5 8.91 1.72 192.8

Time Stretch

Rate = 0.5 7.92 1.27 203.22
Rate = 0.7 11.5 1.15 154.1
Rate = 1.2 12.5 1.13 142.8
Rate = 1.5 13.2 1.10 136.3

Alterative Datasets Malawi 7.36 1.43 191.0
ICBHI 12.31 1.35 129.3

Lower Bound Random 16.49 1.15 117.5

TABLE I: Manifold Analysis Geometric Properties Capacity
(ϕ), Radius (ρ), and Dimension (δ) across different Crackle
Augmentation Techniques.

The data collected in the PERCH study was annotated
by 9 expert reviewers (pediatricians or pediatric-experienced
physicians). They indicated the presence of adventitious
breathing patterns like wheezes and crackles. In this study,
we focus on the recordings in which at least two review-
ers agree with confidence that they observe a presence of
crackle. Out of 13.3 hours of collected data, only 48 minutes
of recordings indicate the presence of crackles. Moreover,
within each recording, crackles occur very briefly. In this
study, we identify the peak of crackles within the onset and
offset given by the expert reviewers and center a truncating
window of 2 seconds around it obtaining 1607 samples.

V. RESULTS

1) Manifold Analysis: In this analysis, we mapped pair-
wise subsets of two crackle representations into a manifold
space such that they are optimally separable. If the data
augmentation technique achieves its objective of being a
good representative of a crackle sound , it will not be differ-
entiable from an actual crackle even in this separable space.
Based on this intuition, we look at the geometric properties
in the manifold space that depict good separability. Having
high classification capacity, as it nominally suggests, indicate
good separability. Additionally, smaller radius and dimension
of individual manifolds imply compact representations in the
classifying space. As noted in the methods section, we also
consider an upper-bound and lower bound of each metric by
considering an Original-Original comparison (best case) and
Original-Random (worst case). The overall evaluation of all
augmentation methods is reported in TABLE I.

The results show that the proposed CSS results in the
lowest classification capacity (ϕ) and highest radius (ρ) &
dimension (δ) only next to the best case scenario. The clas-
sic SMOTE augmentation also yields reasonable manifold
parameters though individual samples tend to be a bit noisier
in time-frequency bins where little energy is expected in
a crackle (see example in Fig 1, panel c). The manifold
measure is rather insensitive to these minor variations in
the spectrogram space, hence the need for a more refined
sample-based comparison - as outlined next-.

In contrast, we note that basic spectrogram manipulations
(flip, shift, stretch), often successful in a number of fields
such as computer vision and speech systems yield quite
drastically different spaces relative to original crackles, oc-
casionally an order of magnitude away from the best case
scenario.

Interestingly, we note that using crackles from two dif-
ferent datasets also result in drastically different statistical
space than crackles from the PERCH dataset. The ICBHI
dataset comprises of crackles that are drastically different
from the PERCH signals. Fig 1, panel g shows this drastic
contrast which can be due to a number of factors including
sensing technology (which greatly shapes the signal profile)
as well as patient population and clinical conditions. This
contrast is confirmed in the manifold analysis whereby the
radius, dimension and capacity are closer to the worse case
scenario than they are to the original crackle data. In addition,
crackles from the Malawi dataset are also quite different
from the PERCH original despite a greater overlap in clinical
protocol and patient population. Nevertheless, differences in
auscultation devices as well as clinical settings appear to also
cause a drastic contrast in the crackle samples between the
originl PERCH and Malawi datasets.

2) Sample Analysis: While the CSS Augmentation results
are the closest match when compared to the upper bound
(based on the original crackle space), it is not dramatically
different than SMOTE augmentation in terms of manifold
parameters. However, we can clearly observe the presence
of random artifacts all across the SMOTE crackle in Fig 1
(c) when compared against the Original Crackle 1 (a) and
CSS Crackle 1 (b).

To better quantize the likeness of the augmentation tech-
niques at a signal level, we perform a statistical analysis on
random pairwise L2-distances of original crackle and each of
the synthetic augmentation techniques. As L2-distance does
not weigh each time-frequency bin differently, it is not a
best fit to capture the distance on crackle spectrograms that
are ususally discrete along time axis. We instead work with
an optimally flattened new space to compute our pairwise
difference samples.

The results of this analysis are presented in Fig 3. We
notice that on looking at 500 Monte Carlo runs of pair wise
distance measures obtained from original-original, original-
CSS, and original-SMOTE, the population means of the new
space L2-differences are 1.45, 1.55, and 1.73 respectively.
Moreover, on performing pairwise t-tests, we observe that the
Original-Original L2 distance sample in the flattened space is
statistically similar to the Original-CSS L2 distance sample
with a p-value of 0.09. However, the Original-CSS and the
Original-SMOTE distance samples are statistically different
with a p-value of 0.0099. This analysis further underscores
the conceptual understanding and the visual representations
(Fig 1 (a)-(b)-(c)) that the proposed CSS augmentation
achieves the best ’similarity measure’ to original crackle
when compared against all the stated alternatives including
SMOTE. While the lower bound of this distance measure is
obtained by the best case scenario, we have also presented
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Fig. 3: Monte Carlo L2 Distances on Constrained Flattened
Mesh Space

the the results for upper bound with a mean if 75.9.

VI. CONCLUSION

We propose a synthetic sampling based constrained
augmentation for crackles, crucial pathological indicators
amongst high-risk infants suffering from pulmonary diseases
and a minority subclass of adventitious auscultations. Con-
sidering the discrete nature of crackle spectrograms along
time axis, we propose two task-independent measures of
augmentation validity: (i) Geometric properties of the object
manifolds in a two-class (original crackle - comparison
method) separable space, (ii) Statistical analysis on random
pairwise distances from the original crackle on optimally
flattened spectrograms. The proposed CSS augmentation
performs significantly better than all the other methods
analysed in this work and it is also statistically indistin-
guishable from original crackles across certain measures.
Further analysis could be done by extending the evaluation of
augmentation performance across different CAA downstream
tasks to cross-verify the task agnosticism of the proposed
augmentation across any extreme crackle class-imbalance
setting.
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