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Abstract— Thanks to recent advances in digital stethoscopes
and rapid adoption of deep learning techniques, there has been
tremendous progress in the field of Computerized Auscultation
Analysis (CAA). Despite these promising leaps, the deploy-
ment of these technologies in real-world applications remains
limited due to inherent challenges with properly interpreting
clinical data, particularly auscultations. One of the limiting
factors is the inherent ambiguity that comes with variability
in clinical opinion, even from highly trained experts. The
lack of unanimity in expert opinions is often ignored in
developing machine learning techniques to automatically screen
normal from abnormal lung signals, with most algorithms
being developed and tested on highly curated datasets. To
better understand the potential pitfalls this selective analysis
could cause in deployment, the current work explores the
impact of clinical opinion variability on algorithms to detect
adventitious patterns in lung sounds when trained on gold-
standard data. The study shows that uncertainty in clinical
opinion introduces far more variability and performance drop
than dissidence in expert judgments. The study also explores the
feasibility of automatically flagging auscultation signals based
on their estimated uncertainty, thereby recommending further
reassessment as well as improving computer-aided analysis.

I. INTRODUCTION

While deep learning techniques are rapidly progressing
with successful use-cases in speech recognition and com-
puter vision, their advances in the medical domain are still
challenging due to the limitations of data collected, the
need of precise clinical assessments and the complexity
of the phenomena with a much higher real-world cost
associated with the task. In the case of pulmonary infec-
tions, breathing sounds have been used for centuries as
an accessible medium to evaluate lung abnormalities. More
recently, computer-aided auscultation analysis has become
popular with the advancement in digital stethoscopes. Several
studies in the recent literature have tackled the problem
of detecting pulmonary pathological indicators posing the
task as a classification problem to distinguish healthy from
abnormal cases [1], [2]. Despite notable successes in this
area, the problem of computer-aided auscultation diagnosis is
far from resolved. Applications of machine learning and clas-
sification techniques are faced with major hurdles pertaining
to clinical variability and label noise. Specifically, pulmonary
screening is often prone to disagreements and expert-opinion

1Johns Hopkins University, Department of Electrical and Computer
Engineering

2Johns Hopkins School of Medicine, Global Program of Pediatric Res-
piratory Sciences,
Eudowood Division of Pediatric Respiratory Sciences, Department of Pedi-
atrics

variability. This in turn creates a notable degree of inter-
reviewer confusion in auscultation signals both in terms of
soft and hard labels, i.e the type of lung sound present
in the signal and its temporal location in case of adventi-
tious patterns [3]. Moreover, lung sounds, especially those
acquired in non-ideal clinical environments, are themselves
prone to a great degree of noise and ambient maskers. The
similarities in the time-frequency patterns between ambient
noise and adventitious lung sounds create a second level of
ambiguity that further complicates the problem of computer-
aided auscultation diagnosis.

These obstacles remain a major hurdle for wider de-
ployment of automated auscultation diagnosis techniques.
Unfortunately, there is little effort in the literature to explore
the true impact of these clinical variability barriers. The
current state-of-the-art techniques with notable success in
lung sound classification take advantage of methodologies
previously developed and well-established in speech and
image technologies. MFCCs (Mel-Frequency Cepstral Co-
efficients), features designed for Automatic Speech Recog-
nition inspired by human auditory perception, are used in
[4] for wheeze detection. Multi-resolution methods based on
wavelet transform [5] were deployed for detecting abnormal
lung sounds. A convolutional neural network was used as
a classifier of normal and abnormal lung sounds with the
auditory spectrogram as inputs which performed on par with
support vector machine algorithm on MFCC features in [6].
A denoising autoencoder was used to extract unsupervised
features and best suited among these for crackle and wheeze
were selected correspondingly in [7]. Further, two different
support vector machines were trained for the classification of
wheezes and crackles from normal lung sounds separately.

In recent years, several machine learning techniques have
achieved great performance metrics in terms of abnormal
lung sound detection. [8] reported an accuracy of 98.62
% proposing a multi-level strategy for classifying wheezes.
They positioned the breathing cycle as a preprocessing
and enhancing the wheezing features within the estimated
breathing cycle before passing it to a classifier. Along similar
lines, [9] extracted orthogonal non-negative matrix factor-
ization bases discriminating normal-wheeze and emphasized
wheezing frames in a recursive fashion before deciding
on the presence or absence of wheeze. They reported an
accuracy of 98.2%. Another work [10] employed a CNN
architecture for a 7-class classification of lung sounds and
compared its performance with Support Vector Machine,
Gaussian Mixture Models and K-Nearest Neighbour clas-
sifiers on MFCCs statistics-based hand-picked features and
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Local Binary Pattern(LBP) features extracted from the visual
representation of the audio files. This work reported 100%
monophonic wheezing sensitivity. [11] reported a crackle
sensitivity of 95.7% designing a hilbert energy envelope al-
gorithm without using any machine learning techniques. But
the dataset validated comprised of both real and simulated
crackles.

While these performance reports are extremely encour-
aging, there are some glaring blind spots one must be
aware of in deploying any of these algorithms for real-world
applications. The datasets employed for both training and
testing these algorithms are often highly curated, with high
quality auscultation signals that reflect unanimous clinical
labels from expert reviewers. The selective composition of
these datasets hugely under-simplifies the complexities of
medical diagnostics, especially for pulmonary infections [3].
Even when models are trained on a gold-standard high-
quality data, there is a need to broaden the diversity in test
set to identify possible limitations of existing methodologies
in order to identify deployment hurdles and tackle drawbacks
of current classification techniques. The current work tests
the hypothesis that variability in clinical assessment will
have a strong impact on the performance of computer-aided
auscultation diagnosis.

II. AUSCULTATION DATA

The signals used in this study were collected by the
Pneumonia Etiology Research for Child Health (PERCH)
study group [12]. A diverse set of 742 interpretable patient
recordings from subjects of age 1-59 months across seven
different countries were collected as a part of this study. A
Thinklabs digital stethoscope was used for collecting lung
sounds approximately 7-10 seconds long. All signals were
originally sampled at 44.1KHz, pre-processed by applying
a low-pass filtered with a fourth-order Butterworth filter
at 4 kHz cutoff, downsampled to 8 kHz, and centered
to zero mean and unit variance. The signals were further
enhanced to deal with clipping distortions, mechanical or
sensor artifacts, heart sound’s interference, subject’s intense
crying and ambient noise use a noise-cancellation algorithm
[13].

The data collected in this study was annotated by nine ex-
pert reviewers (pediatricians or pediatric-experienced physi-
cians) who evaluated the signals through a listening eval-
uation blinded to other clinical factors pertaining to each
case. The expert reviewers indicated whether the recording
is a normal auscultation signal or an adventitious pattern
including a wheeze or crackle. Each signal was assigned to
two reviewers and further arbitrated by a third in case of
disagreement. Further, each reviewer was asked to indicate
a level of confidence in her/his evaluation by rating their
level of certainty in the label as sure or unsure. It was noted
that the inter-reviewer case disagreement w.r.t the presence
or absence of abnormal lung sounds, crackles, and wheezes
were 25.1%, 29.4 %, and 27.4 % respectively [14]. The data
comprised of 4500 Normal, 1100 Abnormal, and 1150 non-
conclusive 2 second samples . To obtain fixed duration for

sample, we passed a sliding window over variable length
overlapping hand-given annotations by multiple reviewers. It
was ensured that the range included three degrees of agree-
ment: complete agreement (when all reviewers agreed on the
clinical assessment), partial agreement (when the majority
of reviewer agreed on the clinical assessment but a minority
presented an opposite opinion), and complete disagreement
(where no consensus emerged among reviewers). Further,
there were different levels of certainty considering how sure
the reviewers were with the label they assigned. In the current
study, the data with complete agreement (perfect consensus)
and high reviewer surety is considered as ”High Certainty”
Data(HC), whereas all other cases are considered ”Variable
Certainty” Data(VC), which include unsure opinions and
levels of disagreements among reviewers. The evaluation
metrics reported consider a single true label in case of
consensus and the common label given by majority of
reviewers in case of partial agreement (ro minority dissent).
There was no sense of a true label in case of no agreement
and just the confidence values outputted by the classifier were
reported.

III. AUTOMATED AUSCULTATION
CLASSIFICATION

Abnormal lung sounds such as wheezes (long whistling
sounds) and crackles(series of short explosive sounds) are
considered a hallmark of presence of pulmonary infections
and used as indicators of respiratory diseases [15]. Given
the sequential nature of auscultation signals as they unfold
over time as well as the temporal variability of lung sounds,
the current work explores a convolutional feature extractor
followed by a Long Short-term Memory network (LSTM)
which is known to operate efficiently on sequential data and
does not suffer from the vanishing gradient problem typical
of Recurrent Neural Networks.

Auscultation audio signals were converted to mel-
frequency spectrograms of dimensions 32x64 using librosa,
a python library. It essentially transforms the temporal sig-
nal to a spectrogram mapped onto a bank of log-scaled
asymmetrical cochlear filters. A two layer CNN was used
as an feature extractor on the spectrograms of two second
audio segments. A convolutional neural network when learnt
on auditory spectrogram learns filters that activate when
they encounter a certain auditory cue thereby producing
2-dimensional activation map. These convolutional features
were then processed through a two layer Long short term
memory network with 50 hidden cells followed by a fully
connected layer. Finally, a sigmoid activation gave out the
confidence values of predicted labels. The network was
trained as a fully-supervised architecture with label ”0” given
to normal lung sounds and ”1” given to abnormal lung
sounds, including both wheezes and crackles. This two class
classifier was optimized for Cross Entropy Loss using Adam
optimizer in a pytorch framework. A learning rate of 0.001
was set for around 50 epochs with specified feature size.
All evaluations of the classifier were performed in a 5-fold
cross-validation.
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IV. CLASSIFICATION AND UNCERTAINTY
RESULTS

A. Classification performance
The classifier had a sigmoid activation as the last layer

thereby outputting confidence values between 0 and 1, with
0 being the true label for Normal and 1 being the true
label for Abnormal lung sounds. The means of specificity,
sensitivity, f1 score, gmean(geometric mean of specificity
and sensitivity) and area under Receiver Operating Char-
acteristic(ROC) curve across 5-fold cross-validation along
with their standard errors were reported in TABLE I. Since
there is a high class imbalance between normal and abnormal
lung sounds, we included the gmean metric to ensure a fair
evaluation of the model across classes. The performance of
the classifier trained and tested on the High-Certainty(HC)
dataset across 5-folds(HC|HC) gives a reasonable geometric
mean of 0.82±0.015. On evaluating the average performance
of these 5-instances of HC trained model on Varied Certainty
subset(HC|VC), there is a stark drop in the geometric mean
to 0.67. Next, we verify whether this degradation is due to
mismatch in data distributions across both datasets or size
limitations of the HC subset. If these reasons were valid,
retraining the classifier with the larger dataset should be able
to address the data mismatch issue. To do so, we retrained the
classifier with HC+VC data (with appropriate allocation of
non-overlapping training and test data). As noted in TABLE
I rows 3 and 4, testing on the high quality (HC) data results
in a stable performance (gmean of 0.81 ±0.014), whereas
evaluating on the VC dataset results in only a slight improve-
ment of gmean to 0.68. These results suggest that testing the
classifier with clinical uncertainty does introduce a great deal
of variability in classifier predictions, hence raising concerns
as to whether such classifier can be deployed blindly without
carefully considering test cases where clinical uncertainty
renders the prediction of the classifier invalid. To better
understand the impact of clinical uncertainty, we further
analyzed the impact of various degrees of variability in expert
opinions.

B. Clinical Variability
The clinical certainty was examined over two dimensions:

Agreement in the true labels by different reviewers and the
surety of the annotation they assigned to the auscultation
signal. TABLE II reports the classifier results, where we note
a steady increase in performance of the classifier as we move
along agreement from partial to complete across different
surety levels (0.69 to 0.82 for Sure and 0.53 to 0.64 for
Unsure in geometric mean). In a similar fashion, annotations
with more confidence from the reviewers had better perfor-
mance than uncertain annotations across different agreement.
It can be noted that the confidence of reviewers for same
agreement level causes a larger drop in performance than
lack of agreement. In case of complete disagreement between
reviewers, there was no ground truth true label, therefore it
was not possible to evaluate the accuracy of the classifier.

While the results reported in TABLE II reflect the classifier
final outcome, we also explored the model predictions as

reflected in the classification posteriors for both normal
and abnormal classes. Based on the training constraints,
we expect the normal class posterior probabilities to be
concentrated around 0 and the abnormal class around 1.
The empirical probability density distribution of the posterior
probabilities of the normal and abnormal recordings were
visualized across the two clinical certainty factors in Fig.
1. The first column, first row and third column, first row
posterior distributions reflect the output of the classifier when
tested on curated data with highest confidence and highest
agreement among reviewers. Similar to the performance
metrics reported, the most discriminable density functions
were observed for the complete consensus and highly certain
data (upper left panel) with posterior means of 0.21 and 0.74
for normal and abnormal respectively. The second column
along the first row represents data with complete agreement
and lower confidence from reviewers. Despite the agreement,
there was higher overlap in the posterior densities with the
mean distribution of normal and abnormal classes being 0.44,
0.64, respectively.

In the second row, the leftmost panel depicts data where
majority of reviewers agreed despite some dissenting opin-
ions for a minority, though all reviewers were highly confi-
dent of their assessment. The distribution means of normal
and abnormal posteriors in this case were 0.36 and 0.72
respectively; while the case where there is only partial
agreement with less certainty (second row, rightmost panel)
showed far greater overlap between distributions with density
means of 0.49 and 0.56, respectively. Finally, the third row
shows the posterior probabilities of recordings that were not
conclusively normal or abnormal (no clinical consensus) with
a 0.5 posterior mean for surer data and 0.535 for unsure data.

C. Classifier Certainty

Given the fact that the classifier does reflect a degree of
uncertainty based on its prediction label probability, we next
explored the use of these posteriors as automatic flags of
clinical uncertainty. Irrespective of the true label of each
data point, if the posterior value given by the classifier is
farther away from 0.5, it is more confident in its prediction.
Interestingly, it was noted that at each agreement level
including completely disagree, there was an increase in the
density around 0.5 indicating decrease in the confidence
of the classifier with the decrease in clinical certainty of
each reviewer. Based on this observation, we formulated
Classifier Certainty(CC) between 0 to 1 as follows where ϕ
was the Auscultation soft classifier estimating the posterior
probability on a test lung sound sample xn:

CC(xn) = 2 ∗ |0.5− ϕ(xn)|

The motivation behind estimating the certainty of the
test sample is not to artificially improve the classification
performance, but rather to propose a quantitative way to flag
cases that require additional evaluation, either by collecting
a new auscultation sample or by exploring other clinical
markers(X-rays, blood work) in case the auscultation sig-
nals are inconclusive. To verify this particular thresholding

4423

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 16,2022 at 19:19:29 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Classifier performance trained and tested on different data subsets (mean and standard error, 5-fold cross-validation)

Train∥Test Specificity Sensitivity F1 Score GMean Area under
ROC

HC∥HC 84.27±0.64 79.23±2.97 0.65±0.014 0.82±0.015 0.89±0.01
HC∥VC 62.75±1.92 72.24±2.14 0.55±0.009 0.67±0.001 0.73±0.01

HC+VC∥HC 86.13±0.88 77.34±2.11 0.66±0.021 0.81±0.014 0.89±0.001
HC+VC∥VC 65.63±0.79 71.59±1.09 0.56±0.012 0.68±0.008 0.75±0.01

TABLE II: Classifier performance tested on data subsets† with different levels of clinical variability when trained on HC
† Note that percentage of data does not sum to 100% because the classifier performance cannot be evaluated for data with no-consensus.

Agreement. Confidence Specificity Sensitivity F1 Score GMean Area under
ROC

HC+VC
Data

Agree Sure 84.27±0.64 79.23±2.97 0.652±0.014 0.82±0.015 0.89±0.01 58.4%
Unsure 57.29±1.65 72.17±5.2 0.512±0.013 0.64±0.02 0.68±0.02 28%

Disagree Sure 63.47±1.78 76.39±2.74 0.62±0.03 0.69±0.017 0.79±0.02 8.4%
Unsure 48.21±4.78 60.70±3.01 0.47±0.02 0.53±0.017 0.55±0.03 5%

Fig. 1: Confidence Values outputted by the classifier for
different clinical certainty levels

technique based on the estimation of classifier uncertainty
is not trivial, we analyzed the performance of the classifier
by gradually increasing the clinical certainty in Fig. 2 and
compared it with a random exclusion criterion. With the
increase in the minimum classifier certainty criterion, the
proportion of data held out for reassessment increased in
a cumulative fashion from 0% to 0.41%. This is validated
by the gradual increase of gmean performance metric from
0.75 to 0.845 with the threshold. The blue marker at each
threshold has a radius proportional to the percentage of
data excluded. Further, mean of a 100 point gmean sample
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Fig. 2: GMean evaluated after refraining from misclassifying
test

obtained by randomly excluding an equal percentage of test
population at each threshold point is represented in gray.
This random performance across different proportions of data
clearly shows that exclusion of any amount of data does not
inherently increase the performance on the rest of the test
set. This further emphasizes the conclusion that the Classifier
Certainty Thresholding technique is reassessing questionable
cases and is not haphazard.

V. CONCLUSIONS

In order to make the necessary strides towards real-world
deployment of any of the existing computerized auscultation
analysis algorithms, we must address the potential bottle-
necks which are not being accounted for in our drive to
achieve better results on gold-standard data. Like with any
medical application, there is bound to be an inherent bias
even with expert clinical reviewers thereby giving rise to
inter-reviewer variability and noisy labels. [14] established
the former with the significant percentages of disagreements
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reported for each abnormality. This further underscores that
auscultation abnormality detection is not a traditional binary
classification task, but rather a softer abnormality confidence
indication. When a machine is expected to diagnose signals
with very low inter-reviewer agreement or intra-reviewer
certainty, one can expect it to misdiagnose. In this work,
we first verified how learning the noisy labels does not
necessarily solve this problem. And then proceeded to anal-
yse the clinical interpretation dependent factors which have
an impact on the performance of these CAA algorithms.
We noted how the confidence with which each reviewer
annotates might have a bigger impact on the predictions
than ensuring if there is inter-reviewer agreement. A need for
robust CAA techniques with a more comprehensive outlook
in data curation especially when testing is to be realized.
Despite the clinical variability or self-uncertainty in clinical
assessment, each reviewer reaches some final conclusion
with a certain degree of confidence. We noted how clas-
sifier tested on lung sounds annotated with low confidence
from reviewers also tend have low confidence(nearer to 0.5)
from the classifier. Based on this idea, a more appropriate
softer diagnosis from the classifier mimicking the annotation
process by the expert reviewers is proposed.
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