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Abstract— A stethoscope is a ubiquitous tool used to ’listen’
to sounds from the chest in order to assess lung and heart
conditions. With advances in health technologies including
digital devices and new wearable sensors, access to these sounds
is becoming easier and abundant; yet proper measures of signal
quality do not exist. In this work, we develop an objective
quality metric of lung sounds based on low-level and high-
level features in order to independently assess the integrity
of the signal in presence of interference from ambient sounds
and other distortions. The proposed metric outlines a mapping
of auscultation signals onto rich low-level features extracted
directly from the signal which capture spectral and tempo-
ral characteristics of the signal. Complementing these signal-
derived attributes, we propose high-level learnt embedding
features extracted from a generative auto-encoder trained to
map auscultation signals onto a representative space that best
captures the inherent statistics of lung sounds. Integrating both
low-level (signal-derived) and high-level (embedding) features
yields a robust correlation of 0.85 to infer the signal-to-noise
ratio of recordings with varying quality levels. The method
is validated on a large dataset of lung auscultation recorded
in various clinical settings with controlled varying degrees of
noise interference. The proposed metric is also validated against
opinions of expert physicians in a blind listening test to further
corroborate the efficacy of this method for quality assessment.

I. INTRODUCTION

A stethoscope is considered the most basic tool for the
detection of pulmonary diseases since the 1800s. However,
it remains a limited tool despite numerous attempts at rein-
venting the technology, due to major shortcomings including
the need for a highly trained physician or medical worker
to properly position it and interpret the auscultation signal
as well as masking effects by ambient noise particularly in
unusual clinical settings such as rural and community clinics.

With advances in digital technologies, some of these
obstacles are being overcome. Recording and storing the
lung sounds digitally paved the way to the development of
computer-aided analyses in the field of auscultation. Several
studies were focused on detecting adventitious breathing
patterns[1], [2], [3]. Proper profiling of these pathological
indicators could eventually be used in diagnosing pulmonary
diseases thereby potentially substituting trained personnel in
the lack of medical expertise.

New deep learning approaches have opened a lot of
possibilities in fields like computer vision and speech recog-
nition exploiting the availability of large amounts of data

[4], [5], [6]. Access to data can also promote use of
artificial-intelligence tools to aid diagnostics, telemedicine
and computer-aided healthcare. In the domain of digital
auscultations, the issue of data access and curation remains a
limiting factor. While there are numerous studies that analyze
lung sounds in laboratory settings or controlled environments
[7], [8], [9], study conditions limit their applicability to real-
life clinical conditions. Specifically, lung sounds collected in
busy clinical settings tend to vary highly depending on the
surrounding conditions at the time of recording [10]. Addi-
tionally, the differences in devices and sensors themselves
exacerbate variability in the data collected. Ultimately, there
are no agreed-upon standards as to what constitutes ”good
data” in the domain of digital auscultations.

This study develops an objective metric of the quality of
a lung sound. It is crucial to note that the metric is not an
indicator of the presence or absence of adventitious lung
sounds lending to the diagnosis or classification of lung
sounds. Instead, it aims to deliver an independent assessment
of the integrity of the lung signal and whether it is still
valuable as an auscultation signal or whether it has been
masked by ambient sounds and distortions which would
render it uninterpretable to the ears of a physician or to an
automated classification system.

One of the challenges for developing such metrics is the
properties of breathing patterns like wheezes and crackles.
In addition to covering a large frequency span of 50 to
2500 Hz between the two, these abnormal lung sounds
often masquerade as noise. Any objective metric obtained
should be careful about not misinterpreting such cases as
low-quality. In this work, we try to achieve such a metric
by working with both normal and abnormal lung sounds
regarded to be of high quality by medical experts.

II. DATA

A. Data Acquisition and Preprocessing

Lung signals collected by the Pneumonia Etiology Re-
search for Child Health (PERCH) study group [11] are
used for the analysis. This study was conducted by Inter-
national Vaccine Access Center, Johns Hopkins Bloomberg
School of Public Health between 2011-2014 at 9 sites in 7
countries (The Gambia, Mali, Kenya, Zambia, South Africa,
Bangladesh and Thailand). A Thinklabs digital stethoscope
was used for collecting lung sounds from 8 body positions
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with approximately 10-20 seconds per chest position. The
clinical settings where the data was collected posed a number
of challenges. Lung sounds were often masked by ambient
noises such as background chatter in the waiting room,
musical toys, vehicle sirens, mobile or other electronic
interference. In addition, the study focused on pediatric
pneumonia with all patients between 1-59 months old, which
further exacerbated signal quality due to the subject’s intense
crying.

All signals were collected at 44.1KHz, and as part of pre-
processing, low-pass filtered with a fourth-order Butterworth
filter at 4 kHz cutoff, downsampled to 8 kHz, and centered to
zero mean and unit variance. Signals were further enhanced
to deal with clipping distortions, mechanical or sensor arti-
facts, heart sound’s interference, subject’s intense crying and
ambient noise [12].

B. Data curation for quality assessment

We extracted 250 hours of recorded lung sounds from the
PERCH dataset that were annotated by a panel of 9 expert
listeners (pediatricians or pediatric-experienced physicians).
Only segments for which a majority of expert listeners agreed
on the clinical diagnosis (as normal or abnormal) with high
confidence were kept. This curated subset of the data was
considered to be a ‘High Quality’ database of auscultation
signals for which there was a clear medical agreement from
expert physicians on the patient’s condition. We refer to this
high-quality dataset collected in a everyday clinical settings
as ΓHQ. It included data from around 900 pediatric patients
and contained an equal number of normal cases (no acute
lower respiratory infections) and abnormal cases (signals
containing crackles and wheezing which reflect acute lower
respiratory infections including pneumonia).

To systematically vary the quality of this clean dataset, we
corrupted these auscultations signals with ambient noises at
controlled signal-to-noise (SNR) levels. Background noises
consisted of sounds obtained from the BBC sound effects
database [13], and included 2 hours of chatter and crowd
sounds which comprised of wide range of noises like children
crying, background conversations, footsteps and electronic
buzzing. These BBC sounds effects signals were chosen as
they offer non-stationary ambient sounds that reflect changes
that can be encountered in everyday environments including
clinical settings.

The entire ΓHQ dataset was divided into ΓTrain
HQ and ΓTest

HQ

in a 80-20 ratio such that both datasets have equal number
of normal and abnormal lung sounds. ΓTrain

HQ dataset was
used to learn the profile of high quality lung sounds in an
unsupervised fashion. ΓTest

HQ was added to the BBC ambient
sounds with varying signal-to-noise ratios ranging between
-10 dB and 40 dB to obtain ΓNoisy on which the quality
metric was estimated.

Our final goal was to learn a regression model which
estimates a quality metric based on the extent of corruption.
For this purpose we formed a dataset ΓTrain

Regression comprising
80% of ΓNoisy having signal to noise ratios -5 dB, 10 dB
and 20 dB. And to get a sense of perfect score, we also

included 80% of ΓTest
HQ in it. We tested the performance of the

regression model on ΓTest
Regression which included the other

20% of ΓTest
HQ as well as 20% of ΓNoisy across all the signal

to noise ratios ranging from -10 to 40 dB.

III. METHODS

In this paper, we propose an objective quality metric for
lung sounds which accounts for masking from ambient noise
but is robust to the presence of adventitious lung sounds
which are pathological indicators of the signal rather than a
sign of low quality. We considered a wide set of low-level
and high-level features in order to profile a clean lung sound
(including both normal and abnormal cases), as outlined next.

A. Quality Metric Features

In order to estimate a quality metric, the following features
were extracted from auscultation signals in ΓNoisy dataset:

1) Spectrotemporal Features: An acoustic analysis of
each auscultation signal was performed as follows: The time
signal was first mapped to a time-frequency spectrogram
using an array of spectral filters and following the approach
proposed in Chi et al. [14]. This spectrogram was then used
to extract four spectral and temporal characteristics of the
signal as mentioned in [15]:

• Average spectral energy (E[S(f)]): This feature is ob-
tained by averaging the expectation of energy content in
the adjacent frequency bins of an auditory spectrogram.

• Pitch (F̂o): This fundamental frequency was calculated
by matching the spectral profile of each time slice to a
best fit from a set of pitch templates and estimating a
maximum likelihood method to fit a pitch frequency to
selected template. [16].

• Rate Average Energy (E[R̂(f)]): This feature represents
the average of temporal energy variations along each
frequency channel over a range of 2 to 32Hz.

• Scale Average Energy (E[Ŝ(f)]): These modulations
capture the average of energy spread in the spectro-
gram over a bank of log-spaced spectral filters ranging
between 0.25 and 8 cycles/octave.

2) Unsupervised embedding features: A convolutional
neural network autoencoder was trained in an unsupervised
fashion on ΓHQTrain dataset to obtain profile of high quality
lung sounds which were considered clinically highly inter-
pretable. As this dataset has equal number of normal and
abnormal lung sounds, adventitious breathing patterns get
represented as part of the ‘high-quality’ lung sound templates
learned by the network; and are not considered as indicators
of poor quality.

A three layer CNN was used as an autoencoder, and
trained on auditory spectrograms generated from two second
audio segments from the training dataset. The network learns
filters that get activated if driven by certain auditory cues,
thereby producing 2-dimensional activation map. The first
two layers act as an encoder with the first layer extracting
patches and second layer performing a non-linear mapping
onto a low dimensional feature space; the third layer decodes
the features back to the original spectrogram [17].
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Fig. 1: Embedded features across different SNR values

Once trained, two parameters were extracted from this
network, and used to supplement the signal-centered features
in our measure of lung quality:

• Mean Feature Error (µ): After passing a spectrogram
(32x128 dimensions) through the encoder (first two
layers of the CNN), a dense low dimensional (32x32)
embedding is obtained. An average of all the training
CNN embeddings acted as a high-quality data low-
dimensional ‘template’. The L2 distance of the unsu-
pervised features of the test data (ΓNoisy) from the
average feature template is taken as their corresponding
Mean Feature Error. The left panel of Figure 1 shows
the distribution of this mean error (µ) for high-quality
signals in yellow. Overlaid on the same histogram is
the distribution of mean errors obtained from -5 dB.
The figure shows a clear shift in the mean feature error,
indicating that it is a suitable attribute to supplement
our quality metric.

• Reconstruction Error (ω): Assuming a good quality
lung sound would be more similar to high-quality data
and gives better reconstruction with the Autoencoder
trained on clean data, we consider the L2 distance of the
reconstructed spectrogram with the original spectrogram
as the second embedding feature. The reconstruction
errors of -5 dB SNR sounds exhibit a clear rightward
shift from clean signals in the right panel of Figure 1.

B. Quality metric

Both signal-centric and learnt features (using the autoen-
coder) were combined together to yield an overall quality
metric (Figure 2). The six features were integrated using a
multivariate linear regression performed on the log transfor-
mation of the features. The regression labels for ΓTrain

Regression

ranged from 0 to 1 with 0 assigned to the -5 dB signal-to-
noise ratio values and 1 to the un-corrupted lung sounds. 10
dB and 20 dB SNR audio clippings were given intermediate
labels.

C. Listening Experiment

The quality metric obtained by regression was also val-
idated by two expert physicians. The survey data included

Fig. 2: Regression Block Diagram

92 lung sound recordings comprising clean data and signal
to noise ratios of -5, 10, and 20 dB also corrupted with the
BBC chatter and crowd noises. The subjects were asked to
rate the quality of lung sounds on a scale of 1 to 5 with 1
being clinically completely uninterpretable and 5 being of
the highest quality. All these lung sounds were shuffled in a
random order ensuring a blind listening test.

As isolated two second segments used for the modeling
were far too abrupt for human evaluation to assess the
quality, we included entire audio clips with lengths varying
from 10 to 20 seconds in the survey. The regression features
for these longer signals were calculated by averaging all the
features across their two second windowed segments.

IV. RESULTS

The obtained quality metric shows a strong correlation of
0.8528 ± 0.0039 on a 10-fold cross validation across the span
of signal to noise ratios with a high very high significance (p-
value < 0.0001). The compliance of this correlation by lung
sounds in ΓTest

Regression with additional signal to noise ratios
which were not included in ΓTrain

Regression further validates the
quality metric as shown in Figure 3.

We also compared the quality metric scores with the expert
evaluation of two physicians. We averaged the scores given
by each of them as mentioned in Listening Experiment
section. The quality metric also exhibits a high correlation of
0.7587 with the average expert score as observed in Figure
4.

V. CONCLUSIONS

Often times, we only have access to the recorded lung
sound and not the surrounding ambient noise. This makes
the estimation of noise content in the signal rather difficult.
Since the lung sounds contain adventitious patterns which
have similar spectral and temporal patterns as the ambient
noise, it is difficult to gauge the quality by the signal alone.
In this work, by creating a template of what a high quality
lung signal sounds like irrespective of whether they are
normal or abnormal(wheezes and crackles), we estimated
a quality metric on a systematically corrupted database.
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Fig. 3: Average Auscultation Quality Metric (AQM) from 0
to 1 vs Signal to Noise Ratio (SNR) in dB with the circles
indicating the SNR values included in the ΓTrain

Regression. The
error bars represent variance of AQM for each SNR.

Fig. 4: Average Auscultation Quality Metric (AQM) from 0
to 1 vs Average Expert Score each scaled from 1 to 5 with
variance of AQM for each score as error bars.

We used auditory salience features which account for the
noise content as well unsupervised embedded features based
on the clean template which justify the presence of the
adventitious sound patterns. The obtained metric is also
validated by the two expert physicians and the estimated
quality score is on par with their evaluation. Further analysis
could be done on testing the potential use of this metric as
a preprocessing criteria for automated lung sound analyses.
Also, if integrated with digital devices, data curation could
be made more efficient by alerting the physician of the bad
quality immediately to record again.
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