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Abstract— Technology is rapidly changing the health care
industry. As new systems and devices are developed, validating
their effectiveness in practice is not trivial, yet it is essential
for assessing their technical and clinical capabilities. Digital
auscultations are new technologies that are changing the land-
scape of diagnosis of lung and heart sounds and revamping
the centuries old original design of the stethoscope. Here, we
propose a methodology to validate a newly developed digital
stethoscope, and compare its effectiveness against a market-
accepted device, using a combination of signal properties
and clinical assessments. Data from 100 pediatric patients is
collected using both devices side by side in two clinical sites.
Using the proposed methodology, we objectively compare the
technical performance of the two devices, and identify clinical
situations where performance of the two devices differs. The
proposed methodology offers a general approach to verify
a new digital auscultation device as clinically-viable; while
highlighting the important consideration for clinical conditions
in performing these evaluations.

I. INTRODUCTION

The stethoscope is a well-established tool for diagnosing
lung and heart diseases. While this universal tool is found in
clinics across the globe, it has several limitations impairing
the physician’s ability to accurately assess cardiac or pul-
monary sounds, including chest-piece placement sensitivity
and signal degradation due to background noise. Advance-
ments in this technology, however, have been proposed to
address some of these limitations, especially in unusual
clinical settings where healthcare access can be limited.
Eko Devices developed a device that uses amplification
and Active Noise Cancellation then wirelessly streams the
collected data to a smartphone app for review by a trained
physician [1], [6]. MIT developed a low-cost diagnostic tool
that incorporates lung sounds with other data and provides
diagnostic feedback to the healthcare workers [17]. Our team
at Johns Hopkins has also developed a digital stethoscope
that uses a microphone array, rather than a single point
microphone, and an adaptive noise cancellation algorithm,
making chest-piece placement on the patient less critical and
mitigating background noise in noisy clinics [18].

As new technology becomes available, it must be validated
against commercial standards. Validation methods should in-
clude a balance between objective comparisons using signal

processing and analytical methods; and clinical evaluations
that consider use cases and medical outlooks. Stethoscopes
deliver to the physician’s ear the acoustic energy from a
body organ, particularly the lungs, which reflects presence
of any abnormality in the respiratory system. Validating a
new technology that provides access to this signal involves
assessing the spectral and temporal characteristics of the
auscultation signal delivered by the device. An objective
comparison against existing market technologies helps iden-
tify trends as well as similarities and differences among
various systems. Statistical similarities between the systems’
characteristics indicate that the new technology works as
well as the current technology. Differences in these statistics,
however, may not necessarily invalidate one technology or
the other, but instead, they help define unique use cases or
delineate potential limitations of some devices. For instance,
stethoscopes typically shape the spectral content of a lung
sound either through their design (e.g. tubing, transducers)
or in software in order to control the amount of leakage of
ambient noises into the actual body sound. Use of overly-
aggressive filtering of spectral content may benefit users by
blocking presence of background disturbances; but could also
limit the effectiveness of diagnosing abnormal auscultations
such as crackles or high-pitched wheezes, which sometimes
can masquerade as noise. This balance of high quality sound
with effective diagnosis can often be difficult to gauge in a
laboratory setting under controlled conditions and requires
careful consideration of use case and clinical environment in
order to properly evaluate utility and impact of an ausculta-
tion technology.

In the present work, we propose a validation methodology
for the JHUscope, a new system developed by our group that
contains hardware and software improvements over many ex-
isting stethoscopes [18]. This device contains a microphone
array consisting of five microphones that face inward towards
the patient, making it easier to pick up lung sounds even
if the stethoscope is not ideally placed on the body, and a
sixth microphone facing outward, that collects noise from
the environment. Pathological conditions create abnormal
signal patterns, and it is essential that any noise-filtering
leave these critical pieces of information intact. The team

978-1-7281-1990-8/20/$31.00 ©2020 IEEE 992

Authorized licensed use limited to: Johns Hopkins University. Downloaded on September 14,2020 at 17:03:21 UTC from IEEE Xplore.  Restrictions apply. 



developed onboard noise-cancellation algorithm that uses
active and adaptive acoustics. The algorithm analyzes lung
and ambient sounds recorded from the device microphones
and performs an adaptive noise cancellation to deliver a
cleaner lung sound to the physician’s ear. In order to validate
the efficacy of this device, we perform analytical and clinical
analyses of its auscultation recordings, and compare them
against a commercially and clinically-approved device by
performing signal comparisons and evaluating use cases.
The validation of the JHUscope is performed against the
Thinklabs One digital stethoscope. This device was designed
to eliminate the hollow tube styling that has been around
since the stethoscopes invention in the early 1800’s and is
considered one of the most powerful stethoscope on the
market. It offers 100x amplification, allows users to adjust
the range of frequencies heard, and has three filter settings
as well as ten volume levels, making it versatile for virtually
any user [2].

While we explore this comparison in the context of our
new device, the JHUscope, the methodologies outlined here
can be extended to a variety of technological devices. The
remainder of this paper is organized as follows: Methods
describes the pre-processing steps, the spectral and spectro-
temporal feature computation, and the datasets used in this
exploration. Results shows the results of our validation pro-
cedure, the similarities and differences in the spectra and the
features. Conclusion summarizes our findings and discusses
potential future work.

II. METHODS

A. Data

To assess our validation method in a range of clinical
challenges, auscultation signals were collected from two
clinical sites: 1) the Pediatric Emergency Department (PED)
at Johns Hopkins University Hospital and 2) small, rural
community clinics in Bangladesh under the Projahnmo Study
Group, in the northeastern district of Sylhet in Bangladesh
[18]. The hospital data consists of 25 pediatric patients with
a mean age of 6.02 years (±4.05) and was collected in
a relatively quiet, controlled environment (i.e., in an exam
room with the a closed door). The rural clinic data consists
of 75 pediatric patients and was collected in a much noisier
environment: local clinics, polluted with background sounds
including crying babies, people talking, generators, passing
mopeds, and nearby markets [7]. At each clinical site, auscul-
tation signals were collected using the two stethoscopes in a
back-to-back procedure from four thoracic positions [9]. All
signals were recorded using a ZOOM H4NPro recorder with
a 4 GB SD memory card. Whenever possible, auscultations
recorded using the JHUscope and Thinklabs devices were
augmented with additional clinical protocols (X-rays, blood
work), as well as diagnosis using a traditional acoustic
stethoscope to note presence of abnormal breathing patterns
(wheezes, crackles, etc).

B. Pre-Processing

Signals were originally recorded at 44.1 kHz then down-
sampled to 8 kHz. For further processing and extraction of
characteristic features, all signals were further downsampled
to 2 kHz using an anti-aliasing 4-th order Butterworth
filter, then normalized to have zero-mean and unit-variance.
Losing crucial information during this pre-processing stage
was not a concern, as 90% of the total signal energy was
concentrated in frequencies below 1 kHz [8]. The signals
were the segmented into 500 ms time fragments using a
rectangular window with 50% overlap. Any segment whose
average amplitude was less than 20% of the signal’s average
amplitude was classified as ”silent” and excluded from the
analysis. [14], [13], [10].

C. Feature Analysis

A total of eight spectral and spectro-temporal features
were extracted from each recording segment. The spectral
features capture frequency content information while the
temporal features capture dynamic changes or modulations in
the frequency content of the lung sounds. Figure 1 shows the
average power spectrum for the JHU data and generated as
follows: the STFT was computed using 500 ms windows for
each recording in the JHU dataset. The power spectrum for
each STFT was computed then averaged together to yield one
representative spectrum. The spectral features are annotated
in Figure 1 and described below.

Fig. 1: Annotation of spectral features. Note: The Peak Max,
Peak Frequency, and Peak Width are shown for reference but
are not computed on the Power Spectrum in dB.

Max Peak - The maximum value in the power spectrum.
Max Peak Location - Frequency of the maximum value
(max peak) in the power spectrum.
Peak Width - The peak width of the smoothed power
spectrum measured at 75% of the maximum peak [8].
Spectrum Slope - The slope of the linear regression line,
fit to the power spectrum in logarithmic axes. The spectrum
slope is measured in dB/octave, where an octave represents
the interval needed to double the frequency. The power
spectrum, plotted in dB, is defined as

10 ∗ log(P/Pmin)

where Pmin = 5× 10−5. [8], [3].
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Fig. 2: Schematic representation of Bandwidth and Dynamics.

Power of Regression Line - The power of the area under
the regression line [8].
Power Ratio - The ratio of power between the area under
the logarithmic spectrum, Espectrum and the area under the
linear regression line Eregression. It is defined as

PR = 1− |1− Espectrum/Eregression|

These areas are computed using trapezoidal integration. A
power ratio value close to 1 indicates that the logarithmic
spectrum closely follows the regression line [8], [3].
Spectral Modulations (bandwidth) - Spectral modulation
features estimate how broad or narrow the spectral profile is.
These bandwidth attributes reflect how contents vary along
frequency and reflect presence of broad or narrow spectral
components throughout the Fourier representation of the
signal. These features highlight presence of transients (e.g.
abnormal crackling lung sounds or sharp broad noises); they
also pickup presence of musical sounds such as wheezing
in the lung or possible ambient voices. Spectral modulations
were calculated from a time-frequency auditory spectrogram
following the procedure in Chi et al. [4]. The auditory
spectrogram was filtered using 31 Gabor-shape seed filters,
logarithmically spaced and varying from wideband to nar-
rowband: 0-8 cycles/octave (c/o) [8], [4], [19]. The response
produced for each bandwidth and time index was averaged
over time to produce a bandwidth profile. Low bandwidth
values correspond to a smooth spectral profile with peaks
that spread over more than 1 octave. High bandwidth values
correspond to a peaky spectral profile with more than one
peaks to troughs within one octave. Figure 2-right panel (top)
shows a typical profile of spectral modulations obtained from
a lung sound.
Temporal Modulations (dynamics) - Dynamics capture
how fast or slow the frequency contents change with time
and in which phase (direction), positive or negative. The
temporal modulations were calculated from the auditory
spectrogram using 23 exponential filters constructed from
varying velocities ranging from 0 to 32 Hz for both the
positive and negative directions [8], [4], [19]. The direc-
tion of the dynamics (positive versus negative) reflects the

phase of the modulations as upward or downward moving.
Dynamics were computed for each frequency band of the
spectrogram and the results were averaged to produce one
dynamics profile. Figure 2-right panel (bottom) shows the
dynamics derived from an auscultation signal and shows a
clear peak at slower temporal rates, with a clear bias to
positive modulations.

The feature analysis was divided into two experiments: the
first experiment used the quiet hospital data and the second
experiment used the noisy clinic data. In each experiment,
the Short-Term time-frequency spectrogram was calculated
for each patient. During the short-term spectrogram com-
putation, windows determined to be silent segments and
therefore non-informative were discarded. Each feature was
then computed from the spectrogram to give one value per
feature per patient. To quantify the statistical similarities
between the two devices, we ran a t-test (results in Tables
I and II) and a paired t-test (results not shown here as
outcomes were quantitatively and quantitatively similar to
those obtained with an unpaired statistical test). For each
device, we computed each feature’s mean by averaging the
feature values across all patients, as well as the difference
between the means (results in Tables I and II).

III. RESULTS

Using spectral and spectro-temporal features, we com-
pared auscultation signals obtained from the JHUscope
versus the Thinklabs One. Table I shows the side-by-side
comparison of all features from patient data obtained in
the hospital setting, along with their statistical comparison.
As the results indicate, many spectrotemporal features are
virtually identical when comparing the two devices. Notably,
dynamics, bandwidths as well as power ratio, power regres-
sion line, spectral slope, and peak width are all statistically
similar. However, the peak max and peak frequency reveal a
statistical difference between both devices. Looking closely
at the average spectral profile of both devices from data
collected in this hospital setting (Figure 3), we note that
Thinklabs device has a higher peak, slightly lower peak
frequency, and a narrower peak width. This slight deviation
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Feature p-value JHUscope
Mean

Thinklabs
Mean

Absolute Difference
Between Means

Peak Frequency <0.001 121 Hz 95.0 Hz 25.7 Hz
Peak Max <0.001 2.90× 103 4.93× 103 2.03× 103

Peak Width 0.176 7.31 Hz 6.49 Hz 0.825 Hz
Spectral Slope 0.590 -0.155 dB/oct -0.153 dB/oct 0.001 dB/oct

Power Regression
Line 0.779 1.20× 103 1.18× 103 24.8

Power Ratio 0.435 -66.41 -39.45 26.95
Bandwidths 0.708 1.36 c/o 1.36 c/o 0.004 c/o

Dynamics (Positive) 0.640 8.44 Hz 8.45 Hz 0.010 Hz
Dynamics (Negative) 0.876 5.61 Hz 5.63 Hz 0.021 Hz

TABLE I: Hospital Data (clean): Average spectral and spec-
trotemporal feature values and statistics

Fig. 3: Spectra of JHUscope and Thinklabs One, averaged
over all patients from the quiet hospital data

from the JHUscope is concentrated mostly near the area
of peak energy in the spectrum (as indicated by the three
features: peak max, peak frequency, and peak width) and
likely reflects the filtering profile of Thinklabs devices having
a slightly more assertive filtering property. Nonetheless, this
distinction between the JHUscope and Thinklabs near peak
energies in the 95-120 Hz region is unlikely to have a
major impact on the perception of lung sounds. Following
suggested guidelines for lung sound processing [16], respi-
ratory sounds are mostly perceptible above 100 Hz, with
most abnormal signatures (crackles, wheezing, rhonchus)
also manifesting above 100 Hz or 300 Hz in some cases
[5], [15], [12], [11]. Overall, the average profiles indicate
a close correspondence between sounds obtained using the
JHUscope and Thinklabs One in the quiet hospital setting.

In contrast, we performed the same analysis comparing
signals obtained side by side from the two devices in rural
clinics. Table II shows the average value of different features
along with a statistical comparison of the two signals.
The table clearly indicates a statistical difference between
almost all characteristics obtained from the JHUscope and
Thinklabs One in the noisy clinic data, the one exception
being the peak width. Looking closely at the average spectra
from both signals (Figure 4), it is clear that the Thinklabs
device reflects a great deal of noise that is prevalent in this
clinical setting and tend to manifest itself in higher frequency
regions between 200 and 500 Hz. The JHUscope, however,
is less affected by ambient noise. This noise leakage in the
Thinklabs data results in a shallower spectral roll-off yielding

Feature p-value JHUscope
Mean

Thinklabs
Mean

Absolute Difference
Between Means

Peak Frequency 0.030 122 Hz 132 Hz 9.54 Hz
Peak Max <0.001 3.65× 103 6.78× 103 1.64× 103

Peak Width 0.060 7.20 Hz 6.29 Hz 0.914 Hz
Spectral Slope <0.001 -0.152 dB/oct -0.127 dB/oct 0.025 dB/oct

Power Regression
Line <0.001 1.29× 103 2.26× 103 971

Power Ratio <0.001 -35.68 -23.25 12.4
Bandwidth <0.001 1.36 c/o 1.42 c/o 0.061 c/o

Dynamics (Positive) <0.001 8.39 Hz 8.25 Hz 0.140 Hz
Dynamics (Negative) <0.001 5.64 Hz 5.81 Hz 0.173 Hz

TABLE II: Bangladesh Clinic (noisy): Average spectra and
spectrotemporal feature values and statistics

Fig. 4: Spectra of JHUscope and Thinklabs One, averaged
over all patients from the rural clinic data

a smaller spectral slope.
Overall, the comparison of signals obtained in the clinical

setting suggests that presence of noise yields to substantial
difference in the auscultation signal obtained from both
devices. We therefore take a closer look at individual patient
cases to evaluate whether this difference may have diagnostic
implications.

The spectrograms in Figure 5 show clinical situations
where important lung sound information identified by the
JHUscope is masked by the noise in the Thinklabs device.
The top row shows the spectrograms from the JHUscope, and
the bottom row shows the spectrograms from the Thinklabs
device. Spectrogram pair 5a shows spectrograms for a pa-
tient where the JHUscope captured lung sounds containing
periodic bursts of low-frequency energy but the Thinklabs
did not. The frequency content in the Thinklabs device
spikes to 1000 Hz periodically, masking the low-frequency
energy bursts. Pair 5b shows a similar pattern to the previous
pair: the low-frequency energy bursts can be identified in
the JHUscope, but not in the Thinklabs device. The noise
does not spike to 1000 Hz as in the previous pair, but the
noise blurs the respiratory cycles together, making the low-
frequency content virtually inaudible. In the JHUscope audio
signals for 5a and 5b, there were audible grunting sounds,
which is often indicative of a respiratory infection; these
noises were not audible in the corresponding Thinklabs audio
signals. The spectrogram pair in 5c shows that the Thinklabs
device missed some of the higher frequency components of
the lung sounds. In this case, the JHUscope captured the
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Fig. 5: Spectrograms of four patients with abnormal lung sounds. Top: JHUscope. Bottom: Thinklabs One

content between 100-300 Hz, yet the Thinklabs device only
captured content around 100 Hz. The JHUscope audio signal,
contained an audible rattling sound that was not audible in
the Thinklabs audio signal. Pair 5d shows an example of
a patient who was crying during the auscultation. In the
JHUscope, some evidence of the crying is there (i.e., high
frequency components around 500 Hz) yet the lung sounds
were still captured as well. Only the crying is audible in
the Thinklabs device and completely masks the breathing
sound, making such auscultation using the Thinklabs device
impossible. While these remain limited examples of clinical
implications of changes in signal quality captured through
a digital device, they reflect the potential clinical impact of
sensor tuning and sensitivity to ambient noise.

IV. CONCLUSION

This validation study looked at objective features, which
capture both the spectral and spectro-temporal properties of
the data, for comparing a new technology (the JHUscope)
to a commercially available system (Thinklabs One), in
a variety of clinical settings. When clinical settings are
controlled, as in the quiet hospital data, both systems yield
very comparable performances and signal characteristics.
This comparison agreement validates that the new device,
though using different microphone layout and integration,
does deliver a suitable auscultation signal. However, the
comparison in highly unusual clinical settings that include
remarkable levels of ambient noise and distortions suggests
that tuning of stethoscope devices needs to balance use
case and efficacy. Under-controlling for noise leakage (as
is the case of the Thinklabs device) does result in masking
of clinical markers of lung sounds which likely impacts
possibility of diagnosis using auscultations.

Acknowledgements The authors would like to thank all
collaborators who facilitated the data collection, as well as

the patients and families enrolled in this study. We would
also like to thank the funding sources: National Institutes of
Health grants R01HL133043 and U01AG058532.

REFERENCES

[1] Anonymous. Eko Digital Stethoscope, 2019.
[2] Anonymous. Thinklabs One Digital Stethoscope, 2019.
[3] Paul Boersma. ACCURATE SHORT-TERM ANALYSIS OF THE

FUNDAMENTAL FREQUENCY AND THE HARMONICS-TO-
NOISE RATIO OF A SAMPLED SOUND. Proceedings of the
Institute of Phonetic Sciences, 17(Proceedings 17):97–110, 1993.

[4] T Chi, P Ru, and S A Shamma. Multiresolution spectrotemporal
analysis of complex sounds. Journal of the Acoustical Society of
America, 118(2):887–906, 2005.

[5] F Dalmasso, M M Guarene, R Spagnolo, G Benedetto, and G Righini.
A computer system for timing and acoustical analysis of crackles:
a study in cryptogenic fibrosing alveolitis. Bulletin europeen de
physiopathologie respiratoire, 20(2):139–144, 1984.

[6] Eko Devices. CORE Digital Stethoscope - Electronic Stethoscopes,
2019.

[7] Mounya Elhilali and James E. West. The Stethoscope Gets Smart.
IEEE Spectrum, 56(02):36–41, 2 2019.

[8] Laura E. Ellington, Dimitra Emmanouilidou, Mounya Elhilali,
Robert H. Gilman, James M. Tielsch, Miguel A. Chavez, Julio
Marin-Concha, Dante Figueroa, James West, and William Checkley.
Developing a Reference of Normal Lung Sounds in Healthy Peruvian
Children. Lung, 192(5):765–773, 10 2014.

[9] Laura E Ellington, Robert H Gilman, James M Tielsch, Mark Stein-
hoff, Dante Figueroa, Shalim Rodriguez, Brian Caffo, Brian Tracey,
Mounya Elhilali, James West, and William Checkley. Computerised
lung sound analysis to improve the specificity of paediatric pneumonia
diagnosis in resource-poor settings: protocol and methods for an
observational study. BMJ open, 2(1):e000506, 2 2012.

[10] Dimitra Emmanouilidou and Mounya Elhilali. Characterization of
noise contaminations in lung sound recordings. In 2013 35th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pages 2551–2554. IEEE, 7 2013.

[11] B Flietstra, N Markuzon, A Vyshedskiy, and R Murphy. Automated
Analysis of Crackles in Patients with Interstitial Pulmonary Fibrosis.
Pulmonary medicine, (2):590506, 2011.

[12] Arati Gurung, Carolyn G Scrafford, James M Tielsch, Orin S Levine,
and William Checkley. Computerized lung sound analysis as diagnos-
tic aid for the detection of abnormal lung sounds: a systematic review
and meta-analysis. Respir Med, 105(9):1396–1403, 9 2011.

996

Authorized licensed use limited to: Johns Hopkins University. Downloaded on September 14,2020 at 17:03:21 UTC from IEEE Xplore.  Restrictions apply. 



[13] Suneeti Nathani Iyer and D Kimbrough Oller. Fundamental frequency
development in typically developing infants and infants with severe-to-
profound hearing loss. Clinical linguistics phonetics, 22(12):917–936,
2008.

[14] Dror Lederman. Estimation of Infants’ Cry Fundamental Frequency
using a Modified SIFT algorithm. Time, pages 703–709, 2010.

[15] Hans Pasterkamp, Steve S. Kraman, and George R. Wodicka. Respi-
ratory sounds: Advances beyond the stethoscope, 1997.

[16] A R A Sovij arvi, J Vanderschoot, and J E Earis. Standardization

of computerized respiratory sound analysis. European Respiratory
Review, 10(77):585, 2000.

[17] Vijee Venkatraman. MIT Researchers Develop the World’s First USB-
Powered Mobile Stethoscope, 2015.

[18] Jacob Williamson-Rea. Saving Lives with a Smart Stethoscope. Johns
Hopkins Magazine, 9 2019.

[19] X Yang, K Wang, and S A Shamma. Auditory representations of
acoustic signals. IEEE Trans. Inf. Theory, 38(2):824–839, 1992.

997

Authorized licensed use limited to: Johns Hopkins University. Downloaded on September 14,2020 at 17:03:21 UTC from IEEE Xplore.  Restrictions apply. 


