
  

  
Abstract— The cocktail party problem is a multi-

faceted challenge which encompasses various aspects 

of auditory perception. Its processes underlie the 

brain’s ability to detect, identify and classify sound 

objects; to robustly represent and maintain speech 

intelligibility amidst severe distortions; and to guide 

actions and behaviors in line with complex goals and 

shifting acoustic soundscapes. Here, we present a 

perspective that considers the powerful Bayesian 

inference as a unifying framework to integrate the role 

of sensory cues as well as stimulus-driven priors and 

top-down schemas including attention.  
 

I. INTRODUCTION 

 

Auditory scene analysis is often described in terms of 

the cues and processes that govern it: simultaneous vs. 

sequential grouping cues; bottom-up vs. top-down 

processes. Grouping cues describe the principles used 

by the auditory system to determine whether different 

acoustic features emanate from a common sound 

source or should belong to the same perceptual 

auditory object or stream. They define the concurrent 

organization of sound features based on pitch, 

synchrony and spectral structure (Bird & Darwin, 

1997; Darwin, 1997; Roberts & Bailey, 1996); as well 

as sequential cues to organize elements over time 

based on –for instance- frequency separation, 

presentation rate, modulation patterns, and spatial 

locations (Darwin & Carlyon, 1995; Moore & Gockel, 

2002). These organizational principles are 

complemented with top-down processes set by context; 

expectations and attentional state in guiding how an 

auditory scene is perceived (Bregman, 1990). 
While studies of grouping cues and processes have 

greatly benefited our understanding of the phenomenon 
of auditory scene analysis, there is still a lack of 
integrative theories that provide a framework of how 
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the auditory system orchestrates all these players 
together to guide our perception of the surrounding 
soundscape. Specifically, the role of grouping cues and 
organizational principles has often been interpreted in 
the context of a rule-based Gestalt segregation regime. 
The quest for defining the parameters of these grouping 
cues and neural underpinning of segregation rules has 
often driven the study of the biological and perceptual 
correlates of auditory scene analysis. In this context, the 
role of top-down processes, particularly goal-directed 
attention, is often interpreted abstracted from that of 
sensory-driven segregation cues.  

Here, we present a perspective that considers the 
powerful Bayesian inference as a an alternative 
unifying framework to integrate the role of sensory cues 
as well as stimulus-driven priors and top-down schemas 
including attention. Bayesian inference has been widely 
applied in other modalities particularly vision and 
sensorimotor (Kwon & Knill, 2013; Lee & Mumford, 
2003; Moreno-Bote, Knill, & Pouget, 2011). It has had 
limited treatment in the auditory literature (e.g. see 
(Grossberg, Govindarajan, Wyse, & Cohen, 2004; 
Winkler, Denham, & Nelken, 2009)). Here, we argue 
that a Bayesian inference framework is a powerful tool 
to encompass the role of bottom-up and top-down 
processes in auditory streaming; to predict their 
interactions in biasing auditory perception in an optimal 
or quasi-optimal fashion. This framework provides a 
proper computational scheme for integrating the 
uncertainty surrounding sensory information, 
nondeterministic neural representations of incoming 
cues as well as malleability of prior knowledge, making 
a probabilistic interpretation appropriate. We discuss 
the use of such framework in the context of auditory 
scene analysis, and provide support for a number of 
physiological and perceptual studies that provide 
support for such scheme in processes of auditory scene 
analysis.  

 

II. SCENE ANALYSIS FRAMEWORK 

 

In presence of a multitude of often ambiguous 
sensory cues and cognitive factors, perception of 
auditory scenes can be thought of as an inference 
process (Knill & Richards, 2008); where the system 
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integrates all information (both sensory and cognitive) 
to come up with likely interpretations of the 
soundscape.  This process is not solely driven by the 
external stimuli surroundings us. Rather, it integrates 
both sensory cues with ‘internal’ top-down information 
built from learned schemas, prior knowledge and 
behavioral goals.  

Initially, this process maps the acoustic input onto a 
rich representation that encodes detailed parameters 
about the signal. Such mapping of sound is 
parameterized by the acoustic dimensions explicitly 
represented along different stages of the auditory 
system starting at the periphery all the way to auditory 
cortex (see section II.A). The neural mapping of such 
representation is therefore an estimate of the likelihood 
state of the soundscape based on its acoustic attributes. 
This mapping needs to be integrated by a set of priors 
about the soundscape before inferring knowledge about 
the state of world. In the current study, we consider 
priors in the form of bottom-up statistics that are 
acquired throughout the process of scene analysis (a 
type of dynamic prior) as well as a selective bias driven 
by goal-directed attention (Whiteley & Sahani, 2012).  
The integration of the likelihood estimate with the 
priors can be optimally through a Bayesian relationship. 

In addition, it is also important to acknowledge the 
dynamic nature of the acoustic space. Therefore, this 
integration process via Bayesian inference is not a static 
one; but varies with the changing nature of the acoustic 
environment. This issue is discussed further in section 
II.B. 

A. Cortical multidimensional representation 

Auditory cortex is a natural neural locus of interest 

in defining the proper representation of the acoustic 

scene (Nelken, 2004; Sharpee, Atencio, & Schreiner, 

2011). Reviewing the literature of cortical sound 

processing, neurons in the primary auditory cortex 

appear to be selective not only to the spectral energy at 

a given frequency, but rather to the specifics of the 

local spectral shape such as its bandwidth (Schreiner & 

Sutter, 1992; Schreiner, 1995), symmetry (Versnel, 

Kowalski, & Shamma, 1995), and dynamics or 

temporal modulations (Lu, Liang, & Wang, 2001; 

Miller, Escabi, Read, & Schreiner, 2002; Schreiner, 

Mendelson, Raggio, Brosch, & Krueger, 1997). The 

resulting representation of sound in A1 is a 

multidimensional representation, which can be thought 

of as an array of filters. Cortical filter responses, also 

called spectro-temporal receptive fields (STRFs) vary 

along at least three dimensions: (1) Best frequencies 

(BF) that span the entire auditory range; (2) 

Bandwidths that span a wide range from very broad (2-

3 octaves) to narrowly tuned (< 0.25 octave); (3) 

Dynamics that are limited to few Hertz (1-30 Hz).  
Mathematically, the mapping from a single-

dimension acoustic waveform to a higher dimensional 
cortical space can be captured via a series of 
transformations, depicting two main operations: (1) an 
early transformation that captures cochlear and 
midbrain processing. It transforms the one-dimensional 
acoustic stimulus to an auditory time-frequency 
spectrographic representation; (2) a cortical 
transformation; so-named because it reflects the more 
complex spectrotemporal analysis presumed to take 
place in mammalian primary auditory cortex. While this 
formulation is not strictly biophysical and bypasses 
numerous interesting neural transformations occurring 
in pre-cortical stages; it abstracts an interpretation that 
is sufficient to understand perceptual phenomena such 
as stream segregation and auditory object formation 

It is important to note that the use of this cortical 
space as our operating platform is not a statement to 
reduce the role of auditory cortex to a network of 
feature detectors (Nelken & Bar-Yosef, 2008). Rather, 
it is the culmination of a series of transformation 
undergone by the one-dimensional acoustic input to 
highlights numerous intricate details about the sound, 
both spectrally and temporally. Such attributes are 
believed to define the dimensions where a 
representation of complex acoustic scenes is 
highlighted better. 

B. Recursive Bayesian estimation 

The mapping of sound into a higher dimensional 

cortical space allows different features to occupy non-

overlapping parts of perceptual space, hence enhancing 

discrimination between different auditory objects in the 

scene. This operation is reminiscent of classification 

and regression techniques such as support vector 

machines and kernel-based classifiers (Duda, Hart, & 

Stork, 2000; Herbrich, 2001). The rich cortical 

representation can generate predictions which can be 

fed back to reconcile with incoming inputs subject to 

known constraints of auditory objects. This premise 

can be thought of as a dynamic inference process that 

tracks the evolution of sound features in the cortical 

space (Elhilali & Shamma, 2008). The scheme models 

the underlying dynamical system as Markov-chain 

model where the future state at time � � �; depends on 

its current state, along with the stimulus input at time �. 

By keeping the system relationships linear, the optimal 

solution would be a Kalman filter estimation (Chui & 

Chen, 1999). In the implementation of such scheme 

presented in (Elhilali & Shamma, 2008), one can 

combine this tracking stage with a clustering process, 

where the system tracks multiple streams based on how 
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well each of their predictions match with the incoming 

input. While the implementation based on Kalman-

filtering is over simplified and presents a number of 

limitations, it still provides a tractable and optimal 

framework for predicting the dynamic behavior of the 

cortical space as sounds evolve over time and adjust to 

the changing nature of the acoustic scene.  
 

III. ADAPTATION OF THE SENSORY SPACE 

 

In addition to the inherent dynamics of the acoustic 

input; and therefore its neural representation, the 

cortical space itself has been shown to undergo 

dynamic adaptation driven by attentional goals. Recent 

neurophysiological data has shown that cortical 

receptive fields undergo a rapid plasticity which 

changes their tuning almost on the fly in response to 

changing behavioral goals. The STRFs adapt their 

spectral and temporal properties in order to enhance 

behavioral performance, which can monitored through 

external (reward or aversive) feedback signals.  

Specifically, an animal engaged in a spectral task 

enhances its cortical response at the target tone 

location (Fritz, Elhilali, Klein, & Shamma, 2003; Fritz, 

Elhilali, & Shamma, 2007), while an animal engaged 

in detecting a temporal event such as gap changes its 

STRF temporal dynamics to enhance its temporal 

response (Fritz, Elhilali, & Shamma, 2005). Overall, 

the spectral and temporal nature of target/reference 

cues dictate the specific form of STRF change, but 

only if the animal is behaviorally engaged. No such 

changes were observed in naïve animals, or in trained 

animals with poor behavioral performance. 

Largely, these results suggest the presence of 

attention-triggered adaptive changes in primary 

auditory cortex that can swiftly change STRF shape by 

transforming receptive fields to enhance figure/ground 

separation. Such changes provide evidence of 

integration of selective priors with the acoustic 

mapping of sound cues in order to bias the 

representation in order to perform a task of interest. 

Whether this integration is done ‘optimally’ and 

provides evidence for a Bayesian framework remains 

to be proven; though there is no evidence to counter 

this assertion of optimality. Still, attention does 

undoubtedly play a role in the scene analysis process in 

the brain (Fritz, Elhilali, David, & Shamma, 2007; 

Shinn-Cunningham, 2008); and can be shown to 

improve scene analysis in engineering applications as 

well (Patil & Elhilali, 2012).  

IV. CONCLUSION 

 

Here, we postulate that auditory scenes are parsed 

via a balancing act between three separate components: 

sensory information emerging from the soundscape, 

bottom-up priors and top-down attentional demands. 

As a result of the push-pull between these different 

factors, the cortical representation undergoes 

adaptation in order to heighten the system’s noise 

robustness by enhancing figure/ground separation 

(increasing signal to noise ratio), and boosts its 

computational efficiency by constricting processing of 

redundant and irrelevant backgrounds in the acoustic 

scene. This scheme can be translated into a statistical 

optimization, whose solution tracks the cortical state 

which underlies specific percepts and behaviors. 

Optimality is defined in a Bayesian manner which 

reconciles the sensory evidence with priors conveying 

bottom-up and top-down controls. 
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