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Objectives: Studies have shown that listener prefer-
ences for omnidirectional (OMNI) or directional
(DIR) processing in hearing aids depend largely on
the characteristics of the listening environment, in-
cluding the relative locations of the listener, signal
sources, and noise sources; and whether reverbera-
tion is present. Many modern hearing aids incorpo-
rate algorithms to switch automatically between
microphone modes based on an analysis of the
acoustic environment. Little work has been done,
however, to evaluate these devices with respect to
user preferences, or to compare the outputs of dif-
ferent signal processing algorithms directly to
make informed choices between the different mi-
crophone modes. This study describes a strategy for
automatically switching between DIR and OMNI
microphone modes based on a direct comparison
between acoustic speech signals processed by DIR
and OMNI algorithms in the same listening environ-
ment. In addition, data are shown regarding how a
decision to choose one microphone mode over an-
other might change as a function of speech to noise
ratio (SNR) and spatial orientation of the listener.

Design: Speech and noise signals were presented at
a variety of SNR’s and in different spatial orienta-
tions relative to a listener’s head. Monaural record-
ings, made in both OMNI and DIR microphone
processing modes, were analyzed using a model of
auditory processing that highlights the spectral
and temporal dynamics of speech. Differences be-
tween OMNI and DIR processing were expressed in
terms of a modified spectrotemporal modulation
index (mSTMI) developed specifically for this hear-
ing aid application. Differences in mSTMI values
were compared with intelligibility measures and
user preference judgments made under the same
listening conditions.

Results: A comparison between the results of the
mSTMI analyses and behavioral data (intelligibility
and preference judgments) showed excellent agree-
ment, especially in stationary noise backgrounds.
In addition, the mSTMI was found to be sensitive to
changes in SNR as well as spatial orientation of the
listener relative to signal and noise sources. Subse-
quent mSTMI analyses on hearing aid recordings

obtained from real-life environments with more
than one talker and modulated noise backgrounds
also showed promise for predicting the preferred
microphone setting in varied and complex listening
environments.

(Ear & Hearing 2008;29;199–213)

INTRODUCTION

Persons with mild to moderate hearing loss or
worse often require a more favorable signal to noise
ratio (SNR) to understand speech than do individu-
als with normal hearing (Bronkhorst & Plomp, 1990;
Dubno, et al., 1984). As a result, many hearing aids
offer listeners the option to use directional (DIR)
microphones instead of omnidirectional (OMNI) mi-
crophones, which have been demonstrated to im-
prove the SNR under certain listening environments
(Blamey, et al., 2006; Chung, 2004; Ricketts &
Henry, 2002; Valente, et al., 1995). Recent labora-
tory and field studies (Cord, et al., 2002; Surr, et al.,
2002; Walden, et al., 2004) have shown that the
perceived benefit of DIR microphones, when com-
pared with OMNI microphones, depends primarily
on the characteristics of the listening environment.
Specifically, OMNI microphones tend to be preferred
in quiet listening situations or in the presence of
background noise when the signal source is not
located in front of the listener or is moving. On the
other hand, DIR microphones tend to be preferred
when background noise is present, and the signal is
located close to and in front of the listener.

For a variety of reasons (e.g., poor manual dex-
terity, uncertainty as to when to switch between
microphone modes, forgetfulness), roughly one-third
of hearing-impaired patients fit with manually se-
lected OMNI/DIR hearing aids fail to use the DIR
mode even when the acoustic environment suggests
that a clear microphone preference and a benefit in
speech understanding would likely result (i.e., when
noise is present, the signal is in front of the listener,
and the signal is near). That is, some patients tend
to leave their hearing aids permanently set in the
default OMNI mode, regardless of the listening
environment (Cord, et al., 2002).

To address this problem, most modern hearing
aids that offer DIR processing use algorithms that
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automatically select the “preferred” microphone mode
by continuously monitoring the listening environment
and adapting the hearing aid parameters so that they
are optimized for the particular acoustic conditions
(Blamey, 2006; Fabry, 2006; Palmer, et al., 2006).
Unfortunately, there have been very few studies that
have explicitly evaluated patient satisfaction with au-
tomatic directionality circuits. Does the hearing aid
switch at the right time and situation? Does it
improve the SNR of the desired target signal, or is
the wrong signal sometimes enhanced? How easy is
it for the patient to override the automatic decision
and return to manual control? The difficulty in
answering these questions stems in large measure
from not knowing precisely when the hearing aids
switch between OMNI and DIR modes, how often
and when listeners were in each particular acoustic
environment, and what the listener’s preference was
at the time the hearing aid chose one mode over the
other. Despite these methodological challenges,
some recent studies suggest that whereas hearing
aid algorithms used for automatic directionality
continue to improve, they are still likely to make
errors and select DIR processing mode in situations
where OMNI would be preferred, and vice versa. For
example, Palmer et al. evaluated the Siemens Tri-
ano3 ™ in a field trial of 49 individuals with mod-
erate to severe sloping hearing loss. The primary
questions addressed in this study were (1) whether
adaptive directionality was preferred over fixed di-
rectionality or OMNI processing; (2) whether listen-
ers prefer one of the three microphone modes
(OMNI, fixed directionality, or adaptive directional-
ity) for most everyday listening situations; and (3)
whether the preferred microphone mode could be
predicted from the particular acoustics of the listen-
ing situation. Results showed that roughly one-third
of the patients could not distinguish between auto-
matic directionality (either fixed or adaptive) and
OMNI processing modes. For the remaining pa-
tients, when given the opportunity to choose be-
tween OMNI mode and automatic directionality,
approximately half chose to be in OMNI mode more
often than automatic directionality, even though
automatic directionality includes the option to set
the microphone mode to OMNI processing. To inter-
pret these data one has to consider the two possible
states that could have occurred with the automatic
directionality algorithm used in this study. For a
particular acoustic environment, if the automatic
directionality algorithm resulted in placing the aid
in OMNI mode (which probably happened quite
often) listeners would have no basis for choosing
reliably between OMNI and automatic DIR, and we
would expect a roughly equal split between the
amount of time spent in one mode or the other. On

the other hand, if the algorithm selected the DIR
mode and the listening situation favored direction-
ality, listeners should have selected the automatic
DIR mode more often than the OMNI mode. There-
fore, the fact that the OMNI mode was used as often
as the DIR mode suggests that the algorithm must
have been wrong some proportion of the time when
it chose to implement DIR processing instead of
OMNI processing (e.g., a noisy environment where
the talker was not in front of the listener) and vice
versa. These errors can occur for at least two rea-
sons: (1) the scene analysis classifier could have
made an error, or (2) the rules linking a particular
scene with a particular microphone mode may not be
correct (e.g., not all noisy environments should re-
sult in DIR processing). Additionally, there could be a
general bias on the part of some listeners for prefer-
ring OMNI over DIR (perhaps relating to localization
and other qualitative differences between the two
processing modes).

A somewhat similar finding was reported by
Fabry (2006) in an evaluation of a variety of differ-
ent wearable digital aids equipped with automatic
directionality. Sixty-three hearing-impaired subjects
rated several aspects pertaining to the switching be-
havior of the hearing aids including how often the
instrument switched between microphone modes. Ap-
proximately 25% of the judgments were perceived as
either too seldom or too often, suggesting some dissat-
isfaction with the algorithm decision.

Blamey et al. (2006) reported results for an auto-
matic adaptive directional aid in conjunction with
the adaptive dynamic range optimization amplifica-
tion scheme. Data from eight patients included
speech intelligibility, speech and spatial quality,
and situational preferences. As with the Palmer et
al. (2004) and Fabry (2006) studies, subjects could
not distinguish between the adaptive directionality
and OMNI mode of processing approximately one-
third of the time (not too surprising considering that
the adaptive directionality will often select the OMNI
processing mode). When subjects were asked to rate
their preferences for the two processing modes in
different listening environments, 17% chose the OMNI
mode of processing over the automatic adaptive direc-
tionality. As discussed earlier, the fact that a propor-
tion of subjects still preferred OMNI processing over
automatic directionality indicates that some of the
decisions made by the algorithm must have been
wrong.

Finally, Walden et al. (2004) estimated the time
period listeners spent in different acoustic environ-
ments characterized by, whether noise and/or rever-
beration was present, the location of the primary
talker and the distance of the primary talker. Lis-
teners reported that roughly 35% of the time back-
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ground noise was present and the talker was near
and in front. Although not guaranteed, these are the
most likely conditions where DIR processing would
be favored over OMNI processing. Recent estimates
from our own clinic, based on data logging capabili-
ties found in some hearing aids, suggest that auto-
matic directionality is activated between 5 and 17%
of the time, substantially �35% anticipated by Wal-
den et al. (2004).

Taken together, the studies referenced above sug-
gest that (1) differences between OMNI and DIR
processing in many real-world environments are
subtle and difficult for subjects to hear, and (2) the
decision as to when to switch between OMNI and
DIR processing modes, depending on the attributes
of the acoustic environment, continues to be a diffi-
cult decision with room for improvement.

Many automatic DIR hearing aids operate based
on a “scene analysis” approach. This requires that
hearing aids classify accurately a number of acoustic
environmental attributes. For example, the algo-
rithm may have to identify an acoustic signal of
interest in the environment (e.g., speech, music,
sounds of nature), whether noise was present or not,
the location of the signal(s) of interest and the
noise(s), an estimate of the distance of signal(s) and
noise(s) from the listener, and an estimate of the
degree of reverberation in the environment. Each of
these estimates must then be consulted before auto-
matically making a decision as to the preferred
microphone setting at a given time.

Recent attempts to accurately identify and label
different auditory scenes by a categorization of
acoustic features extracted from signals recorded
from the environment have shown considerable
promise (e.g., quiet versus noise, speech versus
music, Buchler, 2002; speech versus nonspeech,
Mesgarani, et al., 2006; noisy speech versus clean
speech, Mesgarani & Shamma, 2005). However,
even with modern advances in computational audi-
tory scene analysis, and greater and greater accu-
racy in classifying specific acoustic scenes, the
chance of making a mistake and selecting the wrong
microphone mode for a given listening environment
may still be unacceptably high. This is because the
acoustic correlates differentiating one auditory
scene from another with regard to key dimensions of
interest, for example, the number of sources, the
source type (noise or speech), the location of the
various sources, and the distance of each source
from the listener, are not well understood or easily
measured in real world environments. This is par-
ticularly true in reverberant environments where
the signal source locations can be obscured by room
reflections. Further, the rules for determining the
relationship between the acoustic scene and optimal

microphone selection are not well established. DIR
microphones are not preferred in all noisy environ-
ments, and substantial differences in microphone
preferences across hearing-impaired listeners may
exist.

Other methods for determining microphone switch-
ing rules besides a detailed acoustic scene analysis
also exist. Some of these methods use relatively simple
criteria such as a measure of the overall incoming
signal level, an estimation of the SNR, the spectral
shape of the incoming sound, and a determination of
whether wind noise is present or absent (e.g., see
Chung, 2004 for a review; Blamey, 2006). More infre-
quently, acoustic analyses can be made in parallel for
the different microphone modes under consideration.
In these cases, a switching decision can be made based
on an estimation of the SNR of the signal produced by
OMNI and DIR circuits or on a variety of other
variables (e.g., whether wind noise is present, whether
moderate to high noise levels are detected).

The current manuscript focuses specifically on
this latter approach of automatic switching between
OMNI and DIR microphone modes. In this “direct
comparison” approach, acoustic signals are sampled
through both microphone settings of the hearing aid
simultaneously or in near succession, and whichever
signal (DIR or OMNI) is the “cleaner,” less noisy
signal is chosen to be delivered to the listener. When
the target signal is speech, the primary decision may
be which processed signal (OMNI or DIR) has char-
acteristics that come closest to clean speech, uncor-
rupted by noise and/or reverberation. To make this
decision, an analysis of the processed signals must
be performed for each microphone mode, and the
results compared with a model of clean speech. For
practical applications (e.g., a hearing aid worn in
everyday listening environments), a model, or “tem-
plate” of clean speech, must be developed because
access to an uncorrupted version of the current
speech signal is unavailable.

Several different analysis metrics that might
serve well for predicting the benefits of different
microphone modes have been suggested. For exam-
ple, Dhar et al. (2004), Ricketts and Hornsby (2003),
and Maj et al. (2004) have used acoustically derived
indices such as the Articulation Index (AI), the
Speech Transmission Index (STI), and an intelligi-
bility weighted Directivity Index (DIAI) in an at-
tempt to predict the behavioral advantage of DIR
microphones in noise and reverberation. Although
these studies have demonstrated some success in
accounting for DIR advantages (DAs) under con-
trolled laboratory conditions, the methods used were
limited because the probe signals and analysis
methods used to test the signal quality of DIR
versus OMNI processed hearing aid outputs were
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restricted to speech-shaped noise modulated in
highly prescribed ways (Maj, et al., 2004; Ricketts &
Hornsby, 2003), or to real ear measures using swept
pure tones (Dhar, et al., 2004). Unfortunately, these
particular choices of probe signals and analysis
methods do not provide guidance as to which micro-
phone mode to choose when real speech, corrupted
by noise and reverberation, arrives at the micro-
phone ports.

A number of speech-based STI methods have been
proposed to evaluate signal distortions, such as
dynamic amplitude compression, envelope expan-
sion, envelope clipping, phase jitter, and to analyze
differences in the way noise and reverberation affect
clear and conversational speech (Drullman, 1995;
Goldsworthy & Greenberg, 2004; Hohmann &
Kollmeier, 1995; Payton & Braida, 1999; Payton, et
al., 1994, 2002). In general, these methods have not
fared very well at explaining the behavioral conse-
quences of joint spectrotemporal distortions that are
common to many nonlinear operators (as in channel
phase-distortion, amplitude clipping, or phase jit-
ter). More importantly, however, these methods
tend to rely on a comparison between clean and
noisy and/or reverberant speech tokens to determine
the transmission loss caused by a particular envi-
ronment. In many cases, the clean and degraded
speech samples originated from the same tokens
(same talker, same linguistic materials). As previ-
ously mentioned, for the purposes of developing a
strategy for automatically switching between DIR
and OMNI microphone modes in a variety of every-
day listening environments, it is neither reasonable
nor practical to assume that a clean version of the
degraded speech signal will be available. In the
approach described in this article, corrupted speech
samples, processed through both microphone modes,
are compared with a generalized clean-speech tem-
plate that includes examples of male and female
speech and various signal levels. This template is a
generalized representation of clean speech that can
be compared with unknown speech samples dis-
torted in a variety of unpredictable ways.

The goal of the present investigation was to
compare acoustic signals captured at the output of
the hearing aid microphone (after OMNI or DIR
processing) to a clean-speech template, make a de-
cision based on this comparison as to whether the
signal processed by the OMNI microphone or DIR
microphone would be the more intelligible and most
likely preferred signal for the listener, and evaluate
the accuracy of this decision against behavioral data
that included intelligibility measures and micro-
phone preferences through both microphone modes
(Walden, et al., 2005). To achieve these goals, we
chose to use the spectrotemporal modulation index

(STMI) based on the auditory model of Chi et al.
(1999, 2005). Specifically, we examined whether an
STMI analyses of OMNI and DIR speech recorded in
laboratory and real-world environments with both
noise and reverberation could be related to behav-
ioral measures of intelligibility and preference
across a range of SNR, speech/noise source locations,
and environmental configurations. To the extent
that acoustic measures of DIR microphone process-
ing can be closely related to behavioral measures of
DIR microphone performance (e.g., intelligibility
and preference), more effective automatic micro-
phone switching algorithms might be developed. In
exploring this possibility, the STMI was modified to
handle speech processed through hearing aids while
maintaining its efficacy as a metric for analyzing a
variety of linear and nonlinear acoustic distortions,
previously reported by Elhilali et al. (2003). Modifi-
cations to the STMI, acoustic recording procedures,
and behavioral measures are described below. The
results of the modified STMI analyses were com-
pared with the behavioral results of Walden et al. to
determine if behavioral preferences of OMNI/DIR
microphone modes can be predicted from the acous-
tic output of the hearing aid alone.

MATERIALS AND METHODS

Experiment 1: Relation Between Objective
and Subjective Laboratory Measures of
Speech Intelligibility in Noise

Acoustic Recordings • A modified GN ReSound
Canta770D hearing aid that provided direct access
to the processed signals just before the hearing aid
receiver was used to make all acoustic recordings.
The modified hearing aid was programmed with the
audiogram � fitting algorithm of the Aventa 1.2
software using the binaurally averaged hearing
threshold data from 31 hearing-impaired subjects
tested by Walden et al. (2005). Because DIR process-
ing typically results in a loss of gain (relative to
OMNI mode) in the low frequencies, the low-fre-
quency gain was adjusted using the “max boost”
feature to equalize the outputs between the two
microphone settings. For recording purposes, the
hearing aid was placed behind the right ear of a
Knowles Electronics Mannequin for Acoustic Re-
search (KEMAR). The mannequin was positioned in
the center of four loudspeakers located at 90° inter-
vals around the head. Figure 1 shows the basic
geometry of the recording setup. The loudspeakers
were mounted on the walls of a double-walled sound-
treated audiometric suite with dimensions 8� wide �
10� long � 7� high. The floor of the booth was
carpeted and the walls and ceiling were sound
treated to reduce reverberation. The loudspeakers
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were positioned in the center of each wall at a height
equal to ear level for a seated subject (approximately
4�). This same exact audiometric suite was used in
the Walden et al. study, where subjects recognized
speech and rated OMNI and DIR preferences in a
variety of SNR conditions.

In separate recordings, the mannequin was ro-
tated so that it faced either the speech signal (0°) or
one of three uncorrelated speech-shaped noise sig-
nals (90, 180, and 270°). Note that for three of these
spatial orientations, the hearing aid was closer to
one of the noise sources than to the speech. In other
cases, head shadow effects played a role in shaping
the recorded output, for example, when the hearing
aid was closest to the rear speaker (i.e., the manne-
quin rotated to the right 90°).

The input speech signals consisted of IEEE/Har-
vard sentences (IEEE, 1969) spoken by a female
talker of American English. The sentences were
presented at a fixed level of 65 dBA (measured at the
position of KEMAR’s head). Eleven different SNRs,
ranging from �15 to �15 dB in 3-dB steps, were
used. The noise consisted of a white noise spectrally
filtered to match the long-term spectrum of the
entire set of 720 IEEE sentences. The signal coming
from each of the three separate noise loudspeakers
was equal in level but uncorrelated in phase. The
SNR was determined as the difference between the
speech level and the sum of the three noise signals
measured at the position of the mannequin’s head. The
four loudspeakers (three noises, one speech) were
controlled by separate programmable attenuators.

The output of the hearing aid (just before the
hearing aid receiver) was routed to the microphone
input of a laptop computer and digitized at 44.1 kHz
(16 bits). Approximately 30 sec of speech were re-
corded at each SNR in each microphone settings
(OMNI and DIR) and in all four spatial orientations.
The recorded signals were further processed through a
simulation of the Canta 770D receiver. No attempt
was made to simulate the effects of occluded ear canal
resonance that would have further shaped the re-
corded signals. This decision was made because it was
felt that any automatic algorithm selection performed
by the hearing aid would likely be based on differences
among electronic signals (e.g., OMNI versus DIR)
acquired from inside the hearing aid circuitry rather
than from signals recorded in the patient’s ear canal
(Walden, et al., 2007).
Modified STMI Analysis • The acoustic record-
ings were analyzed using a modified version of the
spectrotemporal modulation index (STMI) described
by Elhilali et al. (2003). Conceptually, the STMI is a
measure of the joint spectral and temporal modula-
tions in speech as reflected by a model of auditory
processing (Chi, et al., 1999, 2005). The model is
inspired from known physiological findings of the
peripheral and central mammalian auditory system,
but is greatly simplified to allow for relatively fast
computations. We chose to use the auditory process-
ing model developed by Chi et al. primarily because
it represents complex acoustic signals (such as
speech) as a combination of spectral and temporal
modulations. These slow rate modulations in ampli-
tude and frequency have been demonstrated to be
critically important for speech (Drullman, et al.,
1994; Houtgast & Steeneken, 1985). The model
extracts and highlights this particular attribute of
dynamic acoustic signals through the use of a corti-
cal model that uses tuned modulation filters. Thus,
speech signals (and other complex signals) are rep-
resented in terms of a set of relevant cortical fea-
tures that are related to both intelligibility and
quality.

The auditory processing model starts with a pe-
ripheral stage (including cochlear filtering, hair-cell
transduction, auditory-nerve, and cochlear-nucleus
spectrotemporal sharpening) to produce a time-fre-
quency pattern of activation called an auditory spec-
trogram (Fig. 2A). Next, the model proceeds to a
finer analysis of the spectrogram via a bank of
modulation-selective filters tuned to a range of tem-
poral (rate) and spectral (scale) modulations. This
analysis is implemented via a two-dimensional
wavelet transform, whose parameters are derived
from physiological data in animals and psychoacous-
tic results in humans (Chi, et al., 1999, 2005). The
model yields a multi-dimensional representation of
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Fig. 1. Recording arrangement. The speech was presented
from the loudspeaker labeled “speech”. Uncorrelated speech-
shaped noise was presented from the remaining three loud-
speakers. The hearing aid was worn on the mannequin’s right
ear. The panel labels (e.g., “Speech R-Side”) indicate the loca-
tion of the speech signal relative to the mannequin’s facing
orientation.
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speech signals that reflect the temporal and spectral
modulation content of sound and their distribution
in time and frequency (Fig. 2B). This auditory model
is used to build a template or generalized represen-
tation of the average spectrotemporal modulation
patterns found in natural speech. This template is
derived from a long sample of conversational speech

produced by many male and female speakers. The
template is an average across various speakers and
speaking styles of the typical spectral and temporal
modulation content in conversational speech. Using
this generalized template, the STMI measures the
fidelity of the modulation content of any target
speech signal relative to this generic template by
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computing a difference between the template and
modulation map of the test signal. In order to focus
the analysis specifically on the dynamic temporal
and spectral modulations in the speech signal, the
cortical output of the model for both template and
test stimulus are modified by subtracting the model
output due to the signal’s base spectrum. The base
spectrum is a stationary noise with a spectrum
identical to that of the long-term spectrum of the
signal being processed (usually about 20–30 sec of
speech). This base signal is processed through the
auditory model to yield its own multirate represen-
tation, which is then subtracted from the original
signal’s representation. The same baseline adjust-
ment is also performed when constructing the clean-
speech templates.

The STMI is based on the premise that any
distortion of the modulation map of the generalized
natural speech template reflects a loss of fidelity
and, as a consequence, a loss in intelligibility. On
the other hand, any manipulation or noise that does
not disrupt significantly the integrity of this map
would be relatively harmless to intelligibility. The
STMI bears a great deal of similarity to another,
more common intelligibility metric known as the
STI. However, the STMI offers the advantage of
using a generalized template that does not have to
correspond directly to the specific speech samples
being tested. In other words, newly acquired speech
samples can be evaluated against the generic tem-
plate to determine the relative loss in signal clarity
as a result of environmental factors such as noise
and reverberation. In addition, The STMI differs
fundamentally from the STI in its sensitivity to joint
spectrotemporal modulations, and hence in its abil-
ity to detect distortions that are inseparable along
the temporal and spectral dimensions.

The basic steps in computing the STMI are de-
picted schematically in Figure 2. The top panel
shows the early stage of processing where speech is
analyzed by a bank of cochlear filters, a hair cell
model, and lateral inhibitory network to produce a
neural spectrogram. The middle panel shows the
neural spectrogram processed by a bank of modula-
tion selective filters to produce the multirate cortical
representation. The multidimensional cortical rep-
resentation is typically reduced to a 3D representa-
tion (spectral modulation, temporal modulation, and
frequency) by integrating over time to produce ei-
ther a generic template or the analyses of a specific
sample of speech that is under investigation. The
third panel in Figure 2 shows the actual STMI
analyses as used for the current study. Here, the
target noisy signal is processed as described earlier
and the cortical representation is integrated over
both frequency and time to produce a 2D represen-

tation of spectral and temporal modulations. The
target representation is compared with a similarly
reduced template and the normalized distance be-
tween target and template is interpreted as a mea-
sure of the loss in signal fidelity.

Three important modifications to the original
STMI described by Elhilali et al. (2003) were used
for this work. First, the clean-speech database de-
rived from randomly selected TIMIT sentences (Ga-
rofolo, 1988) and used to build the generic speech
template was extended by roughly a factor of 10
(from 20 sec to roughly 200 sec). This increase allows
for a more realistic view of the variability in natural
speech and makes the method for computing the
STMI from generic templates more flexible and robust.
In particular, by averaging individual differences
among talkers (e.g., gender, age, physical characteris-
tics of the vocal tract) and speaking styles, the impact
of any one individual speaker is reduced as longer and
more varied speech is used to develop the generic
template. Throughout the current study, we used the
same extended template for all experiments. This
template was derived from the original TIMIT data-
base without being processed through a hearing aid.

A second major modification to the STMI per-
tained to the number of dimensions used to charac-
terize the spectrotemporal modulations in speech. In
the original formulation (Elhilali, 2003), the tem-
plate and target representations were described in
three dimensions (tonotopic frequency � temporal
modulation � spectral modulation) collapsed over
stimulus duration. In the modified STMI, the three-
dimensional mapping was reduced to a two-dimen-
sional mapping by integrating the template across
the tonotopic axis. This modification was essential to
account for the high-frequency emphasis introduced
by the hearing aid, but still enabled the model to
capture the total amount of spectrotemporal modu-
lation present in the sound. This frequency compen-
sation could have equally been achieved by a change
of the cochlear filtering stage in the model. However,
we opted for using a spectral integration in the
mSTMI to maintain the generality of the STMI
technique. In fact, the mSTMI can use the same
generic template for analyzing both regular and
hearing aid processed speech, hence circumventing
the need to change the analysis method depending
on the circumstances and the nature of the signal.

A third modification to the original STMI compu-
tation was designed to emphasize the importance of
particular modulation bands in clean speech. That
is, by weighting any differences observed between
the current speech sample and the clean-speech
template by the template itself, modulation regions
where the template has significant amounts of en-
ergy are highlighted, and regions where the tem-
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plate has low energy are deemphasized. This modi-
fication helped to further reduce the unwanted
influence of spectral tilt introduced by the frequen-
cy-gain shaping of the hearing aid. In the original
template-based STMI described by Elhilali et al.
(2003), an Euclidean distance metric was used to
describe differences between the clean-speech tem-
plate and a given noisy speech template. In other

words, STMIT � 1 �
�T � X�2

�T�2 , where T and X are

the 3D model outputs (temporal modulation � spec-
tral modulation � tonotopic frequency) for the clean-
speech template and noisy speech sample, respec-
tively. In the modified STMI used in this study, a
weighted distance metric was used: STMIT � 1

�
�T●�X � T��

�T2� , where T and X are the 2-D model

outputs. The shortest (Euclidian) distance is defined
as �A� � �¥iAi

2, where Ai is the individual element
of the vector (or vectorized matrix) A. Thus, in
computing the modified STMI, the distance between
the clean-speech template and the recorded speech
samples processed through the hearing aid was
weighted by a factor proportional to the degree of
modulation within each band in the clean-speech
template. The denominator represents the Euclid-
ian norm (length) of the vectorized squared template
profile T2. These distances were obtained for each
successive 2-sec interval.

The final mSTMI was computed as a moving aver-
age of five successive 2-sec intervals. Thus, in its
current formulation, a microphone decision based on
mSTMI differences for OMNI and DIR modes could be
made at most once every 2 sec, after an initial 10 sec of
speech. Further, for a change in the acoustic environ-
ment to be fully represented by the mSTMI analysis
(with no overlap with the previous analysis), the test
samples would have to be at least 10 sec apart.
Behavioral Measures of DIR Advantage • Data
from Walden et al. (2005) was used to evaluate the
mSTMI for predicting speech recognition scores and
microphone preferences. These data consisted of
measurements of sentence recognition in noise and
microphone preference ratings by 31 hearing-im-
paired adults. IEEE/Harvard sentences were pre-
sented in a sound attenuated audiometric booth at
SNR values between �15 and 15 dB in 3 dB steps.
The speech signal was presented at a constant level
of 65 dBA from a loudspeaker positioned approxi-
mately 4 ft. in front of the subject. Uncorrelated
noise from three loudspeakers positioned to the
sides and back of the subject (90, 270, and 180°) was
added at varying levels to produce the different SNR
conditions (see Fig. 1, “Speech Front”). For all con-
ditions, the level of the noise from three loudspeak-

ers was equated at the position of the listener’s
head. The intelligibility of each SNR condition was
assessed under both ONMI and DIR microphone
modes using 30 unique IEEE sentences per condi-
tion. Subjects responded verbally to each sentence
and the number of correct key words was tallied.

In addition to speech recognition scores, Walden et
al. (2005) also reported microphone preferences for
each of the 11 SNR conditions. Approximately 40 sec of
concatenated IEEE sentences were presented to sub-
jects who manually switched several times between
microphone modes and reported a preference for either
OMNI or DIR processing or reported “no preference.”
Walden et al. showed that the preference data and the
difference between speech recognition scores obtained
for the OMNI and DIR modes (i.e., the DA) were highly
correlated (r � 0.9), suggesting that, for the conditions
tested, microphone preferences were determined
largely by the relative intelligibility of speech through
each microphone mode. For further details, see Wal-
den et al. (2005).

RESULTS

Acoustic Analyses

The purpose of this study was to determine the
feasibility of automatically choosing the best micro-
phone mode for a given listening environment based
on a direct comparison of acoustic information derived
from the OMNI and DIR conditions within a single
stable environment. Different test environments were
created by changing the SNR of the background noise
for a fixed-intensity, fixed-position speech signal. Re-
cordings of hearing aid output were obtained by rotat-
ing, in 90° increments, a KEMAR dummy wearing a
hearing aid on the right ear. As noted earlier, the
mSTMI is a summary description of the differences in
spectral and temporal dynamics between the test sig-
nal and a generic clean-speech template. The results of
this analysis are shown in Figure 3.

The data in Figure 3A indicate that higher
mSTMI scores occurred for the DIR processing mode
(when compared with the OMNI mode) only when
the speech signal originated from the front. When
the signal was in back, or when the aided ear was
nearest to the signal (e.g., speech on R-Side), the
OMNI processing mode resulted in the greater
mSTMI values. Little or no difference between mi-
crophone modes was observed when the aided ear
was opposite to the signal and affected by head
shadow (e.g., speech on L-Side).

When the data are plotted separately for each
processing mode (Fig. 3B), the mSTMI values ob-
tained with DIR processing showed a graded sensi-
tivity for each of the four spatial orientations indi-
cating a gradual shift in the SNR. In OMNI mode,
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however, mSTMI values were nearly identical for all
orientations except when the speech was closest to
the hearing aid (see Fig. 3B, bottom panel, Speech
R-Side). These data show one potential use of the
mSTMI as a tool for scene analysis. By computing
the mSTMI in the OMNI mode across ears, it may be
possible to determine where the predominant speech
signal is in space. For example, similar mSTMIOMNI

values across ears would suggest that the signal is
in front, rear, above, or below the listener. Different
mSTMIOMNI values across ears would suggest that
the speech signal is coming from the side with the
greater OMNI fidelity.

Comparison of Acoustic Analyses
and Behavioral Data

Walden et al. (2005) measured speech intelligibil-
ity in noise and microphone preferences for a range
of SNR conditions when speech was presented from
the front loudspeaker and noise from the sides and
rear. Their data showed a consistent advantage for
the DIR mode over the OMNI mode for all SNR
conditions tested. As can be seen in Figure 3A,
mSTMI analyses obtained when the speech was
presented from the front showed that the DIR mi-
crophone mode resulted in higher mSTMI values
than the OMNI mode for all SNR’s tested. Further,
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Fig. 3. A, mSTMI as a function of
speech to noise ratio and spatial
location of speech and noise sound
sources. Each panel shows the re-
sults for IEEE sentences (1969) re-
corded through a KEMAR manne-
quin wearing a modified Canta
770D hearing aid in the right ear at
a different spatial orientations (see
Fig. 1). Each computation is based
on the moving average of five 2-sec
nonoverlapping samples of speech.
B, Same data as (A) but with pro-
cessing mode as the parameter.
Top panel shows results for DIR
microphone; bottom panel shows
results for OMNI microphone.
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because Walden et al. showed that for these labora-
tory test conditions subject preference ratings were
strongly associated with the DA (the difference in
intelligibility between the DIR and OMNI modes),
the mSTMI seems to be generally consistent with
both the speech recognition data and preference
ratings showing an advantage for DIR processing.

Figure 4 plots the DA, or the difference in speech
intelligibility between DIR and OMNI modes, obtained
by Walden et al. (2005). Also shown are the mSTMI
differences formed by subtracting the mSTMIOMNI from
the mSTMIDIR at each SNR value. To facilitate
comparisons between objective and behavioral data,
the difference scores (i.e., DIR-OMNI) from both the
present study and the Walden et al. study were nor-
malized so that the maximum difference (in either
percent correct or mSTMI) was set to one.

One obvious similarity between objective (mSTMI)
and behavioral data is that all DIR-OMNI difference
scores are positive across the range of SNR’s tested. In
other words, when speech was presented from the
front, speech intelligibility was always better, and
subjects always preferred the DIR processing mode,
even in relative quiet (Walden et al., 2005). Likewise,
acoustic analyses showed that the DIR processed sig-
nals had the higher mSTMI for all SNR’s. However,
the peak in the average behavioral DA occurred at �3
dB SNR, whereas the peak in the mSTMI DA occurred
at �3 dB SNR. In interpreting these differences, it is
important to remember that the relationship between
the mSTMI (or any other intelligibility index) and
speech recognition scores depends to a large degree on
the speech materials. As noted in the ANSI (1969)
standard for calculating the AI (ANSI, Fig. 15), an AI
of 0.4 results in recognition scores ranging from 100%
correct for a small, closed set of phonetically balanced

words to approximately 52% correct for a large set of
nonsense syllables. These different mappings between
intelligibility index and speech recognition score are
due primarily to nonauditory factors in speech process-
ing, such as lexical and contextual effects on word
recognition, as well as ceiling and floor effects. In the
case of the Walden et al. data, scores for the hearing-
impaired subjects were limited by their speech-in-
quiet recognition, which was roughly 85% correct. The
point at which these subjects’ average speech recogni-
tion scores approached asymptote was at an SNR of
about 3 to 6 dB for the DIR condition and about 9 dB
for the OMNI condition. At SNR’s more favorable than
these, the hearing-impaired subjects seemed not to be
able to benefit from any further improvements in SNR.
However, the mSTMI continues to register improve-
ment in signal quality as the SNR is systematically
increased from �3 to �15 dB SNR and beyond. Thus,
the strength of the relation between the mSTMI ad-
vantage and the behavioral DA will depend on
whether the OMNI or DIR speech recognition data
have reached asymptotic performance.

To look at this issue more closely, the behavioral
DA in percent correct and the objective DA in the
mSTMI units, must be converted to the same unit of
measure. This was done by converting the mSTMI
scores shown in Figure 3 to percent correct and then
computing the DIR-OMNI difference scores. To ac-
complish this, the 22 average percent correct scores
(from Walden et al., 2005; 11 SNR conditions � 2
microphone processing modes) were plotted as a
function of mSTMI and fitted with a logistic regres-
sion. The fitted curve was then used to convert the
mSTMI scores to predicted percent correct. The
results of this conversion are shown in Figure 5.

The top panel of Figure 5 shows the different
percent correct scores obtained for the 22 test con-
ditions as a function of mSTMI. The fitted logistic
equation (r2 	 0.98) was used to compute a percent
correct value for a given mSTMI. Differences be-
tween OMNI and DIR percent correct estimates
were then plotted as a function of SNR to construct
a predicted DA analogous to the traditional DA
obtained in behavioral studies. As can be seen in the
bottom panel of Figure 5, the objective and behav-
ioral DA now look quite similar showing peak dif-
ferences between the two microphone modes at
SNRs between �3 and 0 dB.

Walden et al. (2005) found that across individual
subjects there was considerable variability in the
SNR that produced the maximum DA. For example,
one subject demonstrated a DA of 36% at an SNR of
�3 dB and a DA of 6% at an SNR of �3 dB. In
contrast, a different subject demonstrated a DA of
5% at an SNR of �3 dB and a DA of 35% at an SNR
of �3 dB. In other words, at a particular SNR, some
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subjects were able to benefit from DIR processing
whereas other subjects were not. These differences in
individual performance are not hard to understand
once we consider the individual functions relating
percent correct speech recognition to SNR. Subjects
who demonstrate a significant DA for negative SNR’s
(and nearly no DA for more positive SNR’s) tend to
show a very steep increase in percent correct for SNR
values between �12 and �3 dB, followed by a much
more gradual increase in intelligibility for all subse-
quent improvements in SNR. In contrast, subjects who
demonstrate a significant DA at more positive SNR’s
tend to show a more gradual increase in percent
correct as a function of SNR extending out to much
more favorable listening conditions before reaching an
asymptote at their maximum speech recognition per-
formance in quiet. Thus, it is possible to demonstrate
excellent agreement between the behavioral and ob-
jective DA for individual subjects just as was done for
the average across hearing-impaired subjects shown
in Figure 5. To fit individual data, all that is required
is to repeat the steps taken in Figure 5 using individ-
ual subject functions relating percent correct and
mSTMI rather than the average function.

Experiment 2: Relation Between Objective
and Subjective Microphone Preferences in
Real-World Acoustic Environments: A Pilot
Study

The data discussed thus far are based on labora-
tory measures of DA using fixed spatial positions for

speech and noise sources and noises that are steady
and unmodulated. However, the kinds of noise in-
terference encountered in everyday listening envi-
ronments are often much more complex, temporally
dynamic, and quite often composed of competing
speech (Cherry, 1953). The data from Walden et al.
(2005) are further limited because there were no
conditions where OMNI processing was better than
DIR processing. The question posed in this second,
brief pilot experiment is whether the direct compar-
ison approach to automatic microphone selection
based on a metric such as the mSTMI is as robust
and informative in more complex sound environ-
ments as in relatively pristine laboratory conditions.
Acoustic Recordings • To further test the poten-
tial value of the mSTMI measure as a means for
automatically predicting microphone preferences,
additional recordings using the modified Canta 7
hearing aid were obtained in more realistic listening
environments (Grant, et al., 2006; Walden, et al.,
2007). These included male and female speakers
positioned in front and to the sides and back of the
listener having conversations in settings such as a
hospital cafeteria, hospital lobby, moderately rever-
berant lunch room, next to an outdoor fountain, and
seated in a small conference room. These sound
environments were much more complex and varied
than the previous laboratory samples that were
composed of male and female speakers in motion
with respect to each other. In addition, many of the
recordings from this set were made in environments
where events were somewhat unpredictable. Street
noise could increase and decrease as could noise
from wind and leaves. Therefore, the spectrum of
the noise and the short-term SNR varied over the
duration of the recording. Overall, the selection of
the different sound environments was chosen to
accomplish certain specific goals, namely a unani-
mous consensus preference for one microphone
mode over the other, or ambiguity between micro-
phone modes (“no preference”). Further, there had to
be some stability over the course of 20 to 40 sec of
recording to perform the planned acoustic analyses.
If there were loud, abrupt changes in the environ-
mental background sound, these recordings were
eliminated.

The hearing aid was programmed to provide gain
and compression characteristics in accordance with
the audiogram � fitting algorithm of the Aventa 1.2
software with full compensation for the normal
low-frequency roll-off in the DIR mode. The binau-
rally averaged hearing threshold data from 17 hear-
ing-impaired subjects tested by Walden et al. (2004)
were used to program the aid.

A total of 12, approximately 2-min recordings
were made, alternating between OMNI and DIR

0

10

20

30

40

50

-18 -15 -12 -9 -6 -3 0 3 6 9 12 15 18
SNR (dB)

mSTMI

Walden et al. (2005)

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
mSTMI

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
er

ce
nt

 C
or

re
ct

D
ire

ct
io

na
l A

dv
an

ta
ge

 (%
)

r2 = 0.98
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den et al. (2005).The 22 SNR conditions (11 OMNI, 11 DIR)
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modes every 10 sec. From these original 12 record-
ings, laboratory test materials were created, which
were approximately 60 sec long, alternating four
times between OMNI and DIR modes. For each of
the original master recordings (representing approx-
imately 2 min of a single listening environment), six
different stimuli were created reflecting different
time slices through the master recording (e.g., be-
ginning, middle, and end). This was done to inves-
tigate the stability of a given listening situation with
regard to eventual microphone preference decisions.
A total of 72 test stimuli were constructed, with half
of the test recordings starting with OMNI and half
starting with DIR.

From these 72 stimuli, 12 were selected for fur-
ther analyses using the mSTMI approach. These 12
stimuli were selected after being played monaurally
to five normal-hearing subjects using an insert ear-
phone (Eartone 3A) and being judged unanimously
as representing four clear examples of where OMNI
processing was preferable, four clear examples
where DIR processing was preferable, and four clear
examples where neither microphone mode was pre-
ferred. The primary question addressed by this
experiment was whether the mSTMI analyses for
these 12 recordings would correspond to the prefer-
ence judgments given by the normal-hearing sub-
jects.
mSTMI Analysis • Recorded speech samples alter-
nated roughly every 10 sec between OMNI and DIR
modes. These alternating segments were accumu-
lated into two, approximately 20-sec sound samples
(one for OMNI and one for DIR) before being sub-
jected to the mSTMI analysis. The mSTMI analysis
of the recorded materials was the same as described
above for the laboratory measures. Results are
shown in Figure 6.

As seen with the laboratory recordings, the
mSTMI results for these more complex recordings
were consistent with preference judgments made by
normal-hearing subjects for those stimuli that were
judged to have a preference. In comparing OMNI-
preferred and DIR-preferred recordings, all of the
mSTMI differences were in the expected direction
(OMNI mSTMI values greater than DIR for OMNI
preferred sites and DIR mSTMI values greater than
OMNI for DIR preferred sites). The “no preference”
recordings, however, showed more variability and
some unexpected values, deviating sometimes sub-
stantially from a small (approximately zero) ex-
pected DIR-OMNI difference.

DISCUSSION

The use of objective acoustic analyses on the
processed output of hearing aids for the purpose of

optimizing the choice between two or more potential
processing algorithms for any given listening envi-
ronment seems promising. In the current context,
objective measures of how well the DIR or OMNI
processed signal matched the joint spectral and
temporal modulations inherent in clean speech were
mostly consistent with subjects’ preferences regard-
ing the two microphone modes. This was true re-
gardless of whether the recordings were made in the
laboratory under relatively pristine conditions or in
the real world under more naturalistic conditions
with speech and noise dynamically changing over
time. These measures can be made in near real-time
in the background without requiring any input from
the hearing aid user. If the analysis suggests that
one signal is closer than the other to the spectrotem-
poral modulations found in clean, undistorted
speech, that signal would be selected and passed on
to the hearing aid receiver for the patient to hear.
There seem to be several advantages to this direct
comparison approach for switching between hearing
aid processing options. First, the method is general
and can be applied to any signal processing algo-
rithm where the device must select among a number
of processing options. Second, there is no need to
estimate the details of the listening environment,
such as how many sources there might be, which
sources are speech and which are noise, the distance
of these sources from the listener, or whether the
environment is reverberant or not. And third, rules
for interpreting changes in the acoustic environment
so that decisions regarding which algorithm should
be used need not be made. Instead, decisions are
based completely on a direct comparison between
the processed signal and a generic template of clean
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speech. Further, thresholds can be set such that
differences in mSTMI values would have to exceed a
particular level before any switching is imple-
mented. Such thresholds might be desirable if it
were to be determined that patients prefer to remain
in OMNI mode when there is little or no preference
between OMNI and DIR, as reported earlier by
Walden et al. (2004), or if the frequency with which
the device switches between two processing modes
needs to be regulated if switching between modes is
distracting to the wearer.

The mSTMI is an approach that can be used to
monitor and analyze hearing aid processing for the
purpose of determining the better algorithm to apply
in any given listening environment at any given
time. Other analysis tools, such as the STI and AI
can also be used, provided that the analysis can
proceed without requiring a sample of clean speech
for making comparisons with the corrupted speech
signal. In other words, some form of stored clean-
speech template needs to be used. Thus far, proce-
dures for estimating the STI or AI from canonical
representations of clean speech have not been devel-
oped.

For the mSTMI method to be used effectively as
the basis for deciding on the best speech processing
strategy for a given listening environment, rules
would have to be developed that take into account
the magnitude of the mSTMI values and their dif-
ferences across the various algorithms under consid-
eration. For example, how large should the differ-
ence between one algorithm and another be before
deciding to implement the preferential processing
mode? Naturally, behavioral data sets showing pref-
erences for various processing strategies would be
consulted in establishing such rules, and given the
likelihood of large individual differences regarding
the preference for one or another algorithm, individ-
ual data might be required (Walden, et al., 2007). In
experiment 1, the data provided by Walden et al.
(2005) were consulted for the current project. How-
ever, in these laboratory test environments, struc-
tured to favor DIR processing (noise present, signal
front and near), a DA was observed across a broad
range of SNRs. Because Walden et al. did not test
conditions that led to OMNI preferences or to “no
preference” judgments, it was not possible to estab-
lish a definitive set of switching rules. All mSTMI
values computed with speech emanating from the
front loudspeaker suggested a DA. Likewise, all
behavioral judgments collected by Walden et al.
showed a preference for the DIR microphone mode.
Further tests of the mSTMI are required under
conditions more similar to real-world settings where
the OMNI mode is often preferred. Preliminary
results of this type (experiment 2) demonstrated

fairly good agreement between mSTMI values and
subjective preferences. Listening environments that
resulted in a judgment of “no preference” were more
difficult to capture using the current objective ap-
proach. Work is currently underway with a group of
hearing-impaired subjects to determine whether the
mSTMI is a good predictor of how subjects might
respond to various hearing aid algorithms (such as
OMNI/DIR processing, noise reduction). In this re-
gard, it is important to remember that the current
mSTMI procedure is based on normal auditory pro-
cessing and not on impaired auditory processing. As
such, all of the spectrotemporal modulations ob-
served in the clean-speech template or in the specific
signal under test are included in computing the
mSTMI. It is quite possible that not all modulations
in the clean-speech signal are informative or predic-
tive of various outcome measures for hearing-im-
paired listeners because of a loss of audibility and a
loss of spectral and temporal acuity that result from
the hearing loss. Thus, it remains to be seen how
robust the preferences are for different signal pro-
cessing strategies across listeners with and without
hearing loss (Walden, et al., 2007). If hearing-im-
paired individuals show distinctly different prefer-
ences than do normally hearing individuals, the
auditory processing model used for the mSTMI anal-
ysis may have to be changed to reflect impaired
processing. On the other hand, it may be the case
that listeners, regardless of hearing status, rank
processed speech signals similarly (e.g., signal A is
better than signal B) even though the intelligibility
of a given signal may be much worse for impaired
listeners.

CONCLUSIONS

This study evaluated a means for selecting auto-
matically between hearing aid signal processing
strategies designed to improve the transmission of
speech information. The decision as to which of a set
of possible speech signals should be delivered to the
listener’s ear is based on which signal comes closest
to matching a clean-speech template. This decision
is made in a direct comparison mode rather than a
scene analyses mode by comparing both the OMNI
and DIR processed signals to a clean-speech tem-
plate. The current process operates on approxi-
mately 10 sec of signal and is quite general in that it
does not need to know anything about the target
speech signal before it was corrupted by noise and/or
reverberation.

In the first experiment, mSTMI calculations were
performed on speech in a diffuse, stationary noise
coming from a variety of different spatial locations
and processed by either OMNI or DIR microphone
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modes. The OMNI microphone mode yielded the
better fidelity speech signal in noise whenever the
speech source was not in front of the listener. These
objective predictions were well matched to the be-
havioral data reported by Walden et al. (2005) dem-
onstrating the benefits of DIR processing for both
intelligibility and preference when speech is pre-
sented from the front in a diffuse noise background.
In a second experiment using much more varied and
complex sound environments, the mSTMI also did
very well in matching the preferences of a panel of
five normal-hearing judges. These complex environ-
mental sound recordings were analyzed in the exact
same manner as were the more controlled labora-
tory recordings and compared with the same clean-
speech template as before. The results were very
promising in that the current version of the mSTMI
was able to identify accurately the preferred pro-
cessing scheme in all cases where there was a clear
microphone preference. Work is underway to expand
these tests with a much larger data set to determine
the robustness of the direct comparison approach
outlined in this study (Walden, et al., 2007).
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