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Abstract-Neurophysiological studies of sound encoding at the 
level of auditory cortex paint a picture of an intricate filterbank 
that encodes detailed spectral and temporal modulations in the 
sensory input. Furthermore, these filters exhibit adaptive qualities 
called neural plasticity that shape their tuning parameters in 
line with behavioral goals of interest. In this work, we explore 
qualitative principles about how this neuronal reshaping can aid 
in an enhanced representation of target sounds. Here, we employ 
a set of parameterized two-dimensional Gabor filters as basis 
functions that tile the space of neurophysiological spectrotemporal 
modulations. We examine mechanisms for judiciously retuning 
parameters of the Gabor filter bank in order to enhance the 
representation of target sounds of interest. We test the efficacy 
of this scheme in enhancing representation of sound tokens in 
adverse noisy backgrounds. 

I. INTRODUCTION 

Everyday acoustic environments are complex sensory sig
nals that are composed of multiple sound "objects". While 
the identity of the sound "object" is not necessarily uniquely 
constructed [1], sounds of interest are often determined by the 
listener in line with their behavioral goals. When chatting at 
a cocktail party, a listener is naturally trying to attend to the 
speech signal produced by an interlocutor; hence focusing their 
attention on it as their object of interest, all the while ignoring 
surrounding interference or background chatter. 

Parsing such acoustic scenes is naturally challenging given 
the complex temporal and spectral dynamics of the sound that 
originates from the multiple sources present in the acoustic 
scene. Despite the complex nature of the signal, humans 
exhibit an effortless ability to parse such complex scenes 
and robustly encode signals of interest even amidst severe 
interference. Studies [2] of the marmnalian auditory pathway 
have shown that neurons in the central auditory system partic
ularly in primary auditory cortex play a major role in parsing 
such complex acoustic scenes [3], [4]. Cortical neurons and 
their corresponding transfer functions called spectrotemporal 
receptive fields [5] act as selective filters that encode the 
details of the temporal dynamics (or temporal modulations) 
and frequency changes (or spectral modulations) in a signal. 
This mapping effectively projects a low dimensional acoustic 
waveform onto a high dimensional modulation space that 
facilitates the separation of different auditory objects present in 
a scene. This behavior can be nicely modeled using modulation 
selective filters, such as 2-dimensional Gabor functions. While 
Gabor filters are only a linear approximation of the complex 
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selectivity in cortical neurons, they represent a good approx
imation of the basis functions that tile the modulation space 
observed in neurophysiology. Moreover, a number of studies 
have in fact shown that such Gabor approximations of cortical 
tuning can be quite effective in extracting joint spectrotemporal 
modulations from the signal [6], [7]. 

In addition to their intricate selectivity, cortical neurons 
also exhibit the ability to adapt their tuning properties to 
behavioral and task demands as dictated by the attentional state 
of the brain. These changes referred to as task-driven plasticity 
are reported as changes in the shape and/or gain of the cortical 
receptive fields [8], [9]. These changes have been argued to 
operate as a contrast matched filter so as to highlight a target 
object of interest while suppressing undesired background 
distractors [10]. The net effect of these changes is that the 
representation of a target sound is effectively enhanced relative 
to the background; hence facilitating target detection. Figure 
1 shows a reproduction of an example of STRF plasticity 
observed in neurophysiological recordings [11]. In this figure, 
a cortical STRF (left panel) is recorded while an awake ferret 
is passively listening to modulated noise sounds. The figure 
shows tuning properties of that particular neuron, particularly 
its strong inhibitory field around 9KHz. The animal is then 
engaged in an active listening task, where it has to detect the 
presence of a pure tone at 7KHz that is presented intermittently 
with the modulated noise sounds. The right panel shows the 
recorded STRF from the same neuron during active detection. 
The filter reveals an increased excitatory response around 
7KHz, hence enhancing the neuron's ability to detect the 
presence of the desired tone. 

In the current study, we examine the role of such plasticity 
retuning in facilitating detection of speech tokens in presence 
of background noise. In order to closely dissect the role 
of different components of the receptive field in improving 
the detection of the target sound, we employ a set of 2-
dimensional Gabor filters as linear approximations of the ob
served neurophysiological STRFs. The benefit of working with 
parameterized filters is that we can independently manipulate 
their individual components and assess their contribution to 
the improved detection of the target. This work examines 
mechanisms for judiciously retuning parameters of the Gabor 
filterbank. This manipulation is performed in the context of 
speech detection and focuses on the role of different filter 
parameters in the detection of specific speech phonemes. 



II. CORTICAL MAPPING OF SPEECH SIGNALS 

The transformation of an acoustic signal at the level of the 
manunalian auditory system can be structured into two basic 
stages. In the early subcortical processing stage, the acoustic 
signal is transformed into a time frequency representation 
referred to as the auditory spectrogram [12]. This stage consists 
of cochlear filtering performed via a set of 128 asymmetric 
filters spanning 5.3 octaves starting at a frequency of 180Hz. 
The resultant signal is then spectrally enhanced using a spectral 
derivative and a half wave rectification, modeling the lateral 
inhibition network at the level of the cochlear nucleus. Then, 
the signal undergoes short term integration with a window 

w(t; T) = e-t/Tu(t) where T = 8ms and a cubic root com
pression mimicking midbrain processing. If a(t) is the acoustic 
signal and hc( t, 1) represents the impulse response of the 
cochlear filters, the subcortical transformation can be written 
as shown in equation l. The symbol * denotes convolution 
with respect to time. 

Y(t,1) = (max(bf(a(t) * hc(t, 1)), 0) * w(t, T))1/3 (1) 

The second stage of processing is the cortical stage 
where the estimated auditory spectrogram undergoes further 
spectrotemporal analysis. This stage mimics the modulation 
analysis believed to take place at the level of primary auditory 
cortex. Response fields of cortical neurons known as spec
trotemporal receptive fields (STRF) can be computationally 
modeled as a bank of modulation selective filters with spec
trotemporal impulse responses S(t,1). The resultant cortical 
output r(t, 1) parameterized by frequency j is then given by: 

r(t,1) = / S(t, 1)Y(t - T, 1)dT (2) 

T 

In the current work, we approximate the cortical receptive 
fields using two dimensional Gabor functions. Each of the 
Gabor filters is tuned to a specific temporal modulation referred 
to as rate and spectral modulation referred to as scale. The 
bank of modulation selective Gabor filters are derived using 
Equation 3. 

(3) 
where t1 = tcos(ewo.) + jsin(ewo.) and h = -tsin(ewo.) + 
jcos(ewo.). 

are: 
The parameters involved in computings the Gabor filters 

• w: in Hz is the specific rate of temporal modula
tions and Sl: in cycles/octave is the scale of spectral 
modulations. In accordance with neurophysiological 
findings, the rates (w) values used to design the filter 
bank, ranges from 2 to 32 Hz and scale (Sl) ranges 
from 0.25 to 8 cycles/octave. The Gabor filters can be 
downward or upward selective. The upward selective 
filters are denoted using negative rate values. 

• CJtwo and CJ fwo denote the bandwidths of the gaussians 
of the Gabor filters along time and frequency direction 

respectively. The initial spread of all the filters are 
tuned in such way as to include 2 cycles of the 
sinusoid both along time and frequency axis. 

• ewo. specifies the orientation of the main lobe of the 
Gabor filters. The orientation is specified in degrees 
and default value of ewo. is set to zero for all the filters. 

• awo. is an additional gain term used in this work. The 
scalar gain term can be used to suppress or enhance 
the output of the filter. As initial value, awo. is set to 
one for all filters. 

• Symbol A collectively represents these four parame
ters, that is A = (CJtwo,CJfwo,ewo.,awo.). As can be 
seen from Equation 3, the parameters are indexed by 
the rate and scale values of the particular filter. 

The bank of Gabor filters are then convolved with the 
auditory spectrogram to obtain the high dimensional represen
tation. In this work, we perform a two dimensional convolution 
as shown in Equation 4 to obtain a four dimensional tensor 
representation. 

R(t,j,w,Sl) = IY(t,1) 0G(J,t;w,Sl)1 (4) 

When dealing with relatively stationary sounds, a three di
mensions rate-scale frequency (RSF) representation, computed 
using Equation 5 can also be a useful representation of the 
acoustic signal while abstracting the fine details of the temporal 
signal itself. In this representation, the temporal dynamics 
are only captured using the rate axis which represents the 
relatively slow temporal modulations in the signal. Further 
dimensionality reduction can also be obtained by collapsing 
over the frequency dimension, hence resulting in a rate-scale 
representation which details the energy spread at different rates 
and scales. 

T(J,w,Sl) = / R(t,j,w,Sl)dt 

III. ADAPTATION OF CORTICAL FILTERS 

(5) 

The two stages of auditory processing discussed map the 
acoustic signal to a high dimensional feature space capturing a 
rich representation of the acoustic events. Neurophysiological 
findings have shown that during attention, in a task drive 
setting, this high dimensional representation is complemented 
with cognitive mechanisms that further enhance our ability to 
identify and comprehend sound events of interest in the pres
ence of other background sound events. The cortical STRFs in 
fact adaptively reshape [8], [10], [11], in order to accentuate 
the overall representation of the sound event of interest while 
suppressing the background sound. 

Figures 1 and 2 show reproduction of couple of examples 
of plasticity observed in ferrets [11]. Figure 1 shows the STRF 
plasticity observed in ferrets when attempting to detect a tone 
in the presence of modulated noise sounds. As was discussed 
in Section I, during attention (Figure 1 b), there is an increased 
excitatory response at the frequency of the tone, improving the 
ability of the ferret in detecting the tone. 

Figure 2 shows another example of plasticity of STRF 
observed in ferrets. In this case, the ferret is trying to discrim
inate between two tones. The STRF illustrated in this case is 
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Fig. 1. STRF plasticity during tone detection. Red regions indicate excitation 
while blue regions indicate inhibition. Image reproduced from [11] 
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Fig. 2. STRF Plasticity during tone discrimination. Increased excitatory 
response is observed at the target tone while the response at the reference 
tone is suppressed. Image reproduced from [11] 

originally tuned to 250Hz and 500Hz. During behavior, the 
STRF reshapes in a manner that leaves the excitatory field 
at the target as is, while suppressing the reference tone. This 
contrast matched type of behavior of the STRF plasticity aids 
in enhancing the performance of the animal in discriminating 
between the tones. 

In this work, we explore modeling the plasticity behavior 
by retuning the parameters of the Gabor filters. We claim that 
in a task driven setting, by altering the values of the Gabor 
parameters >. = (O"twn,O"fwn,ewfl,O:wfl) as used in Equation 
3, one can achieve the desired objective of plasticity, that is, 
focusing the spotlight on the target sound in the presence of 
background noise. 

In order to illustrate the flexibility offered by the proposed 
system, we set up the task as follows. Let ac (t) be the 
clean target signal and and Yc(t, f) be the corresponding 
auditory spectrogram estimated using Equation 1. Let an(t) 
be the target speech signal plus additive noise, with Yn(t, f) 
being its corresponding auditory spectrogram representation. 
The high dimension tensor representation are Rc and Rn 
respectively obtained on convolving with bank of Gabor filters 

G(t, f, w, wi>') as shown in Equations 6 and 7. 

Rc(t, f, w, 0,) = IYc(t, f) ® G(t, f, w, 0,1>') I (6) 

Rn(r,f,w,0.) = IYn(t,f) ®G(t,f,w,0.I>')1 (7) 

In a task driven setting, the set of parameters>. are retuned, 
marginally from their default values. We denote the new set of 

parameters as 5. and the tensor representation obtained using 

the altered set of filters (Equation 8) as Rn(t,f,w,0.). 

This desired behavior of such an adaptation process would 

be to obtain Rn(t,f,w,0.) such that f(Rc,Rn) > f(Rc,Rn), 
where function f 0 is a measure of similarity. Given that 
relatively stationary additive noise types are being used as 

examples in this work, one can equivalently measure f(Tc, in) 
and f(Tc, Tn), where Tc, Tn and in are the rate-scale fre
quency (RSF) representation obtained using Equation 5. In this 
work, we use cosine similarity between RSF representations as 
a measure of effectiveness of the proposed method. Given that 
the rate-scale-frequency space is nonnegative, the similarity 
measure neatly falls in the range [0 1]. 

IV. ADAPTIV E  DETECTION OF SPEECH TOKENS 

In this section, we study the effectiveness of the proposed 
attention modeling mechanism in the context of detecting 
speech tokes in adverse noisy conditions. Using a repertoire of 
speech token in noise examples, we illustrate the benefits of 
retuning the gain (O:wfl), bandwidth parameters (O"twn, 0" fwn) 
and orientation (ewfl). We will illustrate that upon marginally 
retuning the parameters based on the category of the speech 
token and the noise conditions, a considerable improvement in 
detection of speech tokens can be attained. The speech tokens 
were generated using the PRAAT synthesizer [13]. Different 
kinds of noise from the Noisex database [14] are used as 
additive noise in these examples. 

A. Gain adaptation 

The term O:wfl term introduced in Equation 3 is a scalar 
multiple that can be used to either emphasize or diminish the 
response of a Gabor filter tuned rate w and scale 0,. This 
gain term assists in enforcing prior knowledge about the target 
class in the modulation space. Similar gain based approaches 
have been shown to be useful in identifying the auditory scene 
[15] or denoising noisy speech signals [16]. The gain term is 
especially useful in cases where the target and the background 
are clearly separable in the modulation space. Instead of the 
default value O:wfl = 1; \;fw, 0" the gain values can be retuned 
such that, O:wfl > 1 can be used for those Gabor filters whose 
modulation sensitivity (w, 0,) coincides with that of the target. 
Similarly gain can be retuned to O:wfl < 1 for those Gabor 
filters at whose rates and scales the noise is predominant. 

To illustrate the benefits of retuning gain, we use vowels 
in noise as examples. While cosine similarity measures are 
estimated using rate-scale-frequency (RSF) representations, for 
the sake of illustration, we use the 2 dimensional rate-scale 
representation of the signal, which is the tensor representation 
collapsed across both time and frequency. Figure 3a shows the 
rate-scale representation of the clean vowel ah and Figure 3b 
shows the rate scale representation after adding white noise 
at an SNR of OdB. A gain of O:wfl = 1 was used \;fw,0. in 
obtaining these two representations. As can be seen from both 
these figures, the target and noise are fairly separable in this 
high dimensional space. While for the clean target, lower rates 



and scales dominate, adding white noise introduces energy at 
higher rates and scale corrupting the vowel representation. 

We propose that by increasing the gain at regions where the 
vowel is dominant and deemphasizing the regions where noise 
is dominant, one can achieve a denoised representation of the 
noisy vowel ah shown in Figure 3d. The appropriate choice of 
retuned gain values own are shown in Figure 3c. The retuned 
gain values range from 0.6 to 1.4 as indicated by the colorbar. 
A cosine similarity measure of 0.8712 was estimated between 
the RSF representation of the clean and the noisy vowel on 
using the default bank of Gabor filters. On re-estimating the 
RSF representation of noisy vowel using the adapted filters a 
cosine similarity measure improved to a value of 0.948l. 

Figure 4 shows a similar effect on adapting the gains for 
Vowel 0 in the presence of white noise at an SNR of -5dB. 
In this case the similarity measures improved from 0.8212 to 
0.9l31 on modifying the gain of the filters as indicated in 
Figure 4c. These two examples indicate that for fairly separable 
signals in the modulation space, retuning the gain suffices in 
improving the ability to detect the target even in adverse noise 
conditions. 
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Fig. 3. Gain adaptation for vowel ah: a) The plot shows the rate scale 
representation of target vowel ah in clean conditions. b) The plot shows the 
rate scale representation of the target in white noise at an SNR of OdB. c) The 
plot shows the retuned gain values of filters at different rates and scales. The 
gain values range is [0.6 1.4] as indicated by the bar plot. d) The plot shows 
the rate-scale plot of the vowel in white noise estimated using the retuned 
filters. 

B. Bandwidth adaptation 
Parameters IJtwfl and IJjwfl denote the bandwidths of the 

gaussians that are used to modulate sinusoidal plane as defined 
in Equation 3. Both set of parameters are initialized as shown 
in Equations 9 and 10 accounting for approximately 2 cycles 
of the sinusoids along time and frequency axis. The patch size 
used to perform the 2 dimensional convolution is a fixed factor 
of the bandwidth. Figure 5a shows the a Gabor Filter at a rate 
of 4Hz and scale of 2 cycles/octave with bandwidth at the 
initialized values. On increasing the bandwidth, the gaussian 
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Fig. 4. Gain adaptation for vowel 0: a) The plot shows the rate scale 
representation of target vowel 0 in clean conditions. b) The plot shows the rate 
scale representation of the target in white noise at an SNR of -5dB. c) The 
plot shows the retuned gain values of filters at different rates and scales. The 
gain values range is [0.6 1.4] as indicated by the bar plot. d) The plot shows 
the rate-scale plot of the vowel in white noise estimated using the retuned 
filters 

envelope broadens with energy distributed along more cycles 
of the sinusoids. Figure 5b shows this effect along the time 
axis on increasing the bandwidth to fj t = l.L. The opposite 
effect can be seen in 5c where bandwidth has been retuned to 

A 1 IJt = 2.5w· 
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Fig. 5. Gabor filter patch tuned to 4Hz and 2 cycles/octave tuned to different 
bandwidth. a) at = 2� ' b) at = l.�w' c) at = 2�w 

Figure 6 illustrates the usefulness of adapting bandwidth 
parameters in a task driven setting. Figure 6a shows the rate
scale representation of the diphthong au in clean conditions 



and Figure 6b shows the rate-scale representation on adding 
babble noise at OdB SNR. It can be seen that on adding 
babble noise, rate-scale representation of the target signal gets 
corrupted, introducing energies at high positive rates as well 
energy at 4Hz on the negative rate axis masking the energies 
of the diphthong. 

Figure 6c shows the proposed change in values of CTtwn, 
that is bandwidth of the gaussians along the time axis. The 
parameter value range is [1/2.5w 1/1.5w]. The denominator 
multiplier is indicated by the color bar. It can be seen in Figure 
6e that sharpening of filters at rates and scale with strong target 
presence accentuates the energy of the gaussian around the 
peak of the sinusoid emphasizing the target. On the same note, 
broadening the gaussian at rate and scale with strong noise 
presence dissipates the energy along larger number of cycles of 
the sinusoid. With lack of clear periodicity in noise, the noise 
regions in the rate-scale plot get suppressed. These regions are 
indicated by the magenta ellipse in Figure 6e. 

Figure 6d shows the proposed change in values of CTjwn, 
the bandwidth of the gaussians along the frequency axis. In 
this case the parameter value range is [1/2.5n 1/1.5n] as 
indicated by the colorbar. The energies of the diphthong along 
the positive rate axis is mainly due to the narrowband energies 
of the harmonics in the auditory spectrum. By sharpening 
the filters along the frequency axis, the target representation 
in these areas can be accentuated. Along the negative axis 
though, broadening the filters at rates and scales with strong 
presence of both target and noise was seen to be beneficial. 
While in the case of noise, broadening of filters dissipates the 
energy at these filters, in the case of the target, broadening the 
gaussian seems capture the broader formants better, resulting 
in the accentuation of the target. This region is indicated by 
a black ellipse in Figure 6e. A cosine similarity measure of 
0.S226 was estimated between the RSF representation of the 
clean and the noisy diphthong ay on using the default bank 
of Gabor filters. On retuning the filter bandwidths, the cosine 
similarity between the clean RSF representation and the new 
RSF representation improved to 0.SS63. 

C. Orientation adaptation 

The parameter ew0. offers another layer of flexibility in 
reshaping the Gabor filters. Figure 7a shows a Gabor filter 
tuned to 4Hz and 2 cycles/octave at e4,2 = 0 Figure 7b and 7c 
show the same filter rotated by + 10 and -10 degrees by setting 

e4,2 to ;8 and �; respectively. 

Figure S illustrates the benefit of tuning the orientation for 
the task of diphthong ay in the presence of babble noise at 
OdB SNR. Figure Sa shows the rate-scale representation of 
diphthong ay in clean condition, while figure Sb shows the 
rate scale representation of the speech token in babble noise at 
OdB SNR. In both these cases, ew0. = 0 for all filters. In clean 
conditions, as can be seen in figure Sa, energy at low rates 
and scales dominate the rate-scale representation. Due to the 
gliding of the formants, the diphthong is also characterized by 
energies at higher scale values at rates 2Hz and 4Hz. These 
definitive characteristics are masked on adding noise (figure 
Sb). In presence of such directionally in the spectrum, one can 
attempt to re-orient the filters along the direction of the target 
to enhance the target representation. In the instance of strong 
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Fig. 6. Bandwidth adaptation for diphthong au: a) The plot shows the rate 
scale representation of target diphthong au in clean conditions. b) The plot 
shows the rate scale representation of the target in babble noise at an SNR 
of OdB. c,d) The plot shows the retuned (ytwn and (y fwn values of filters at 
different rates and scales. The bandwidth values range is [1/2.5w 1/1.5w] 
and [1/2.50 1/1.50] . The bar plots indicate the denominator multiple. e) 
The plot shows the rate-scale plot of the au in babble noise estimated using 
the retuned filters. The black ellipse highlights the enhanced target regions 
and the magenta ellipse indicates the noise suppressed regions. 

directionality exhibited by noise, filters can be retuned to orient 
away from the noise, thus inhibiting the filter response. Figure 
Sc shows the proposed retuning of ew0. by at most S degrees in 
either direction. Figure Sd shows the rate-scale representation 
of the noisy signal on using retuned filters. It can be seen 
that the signature regions of the diphthong get emphasized, as 
indicated by the black ellipse. While regions indicated using 
the magenta ellipse show considerable suppression of noise 
representation, Further, on estimating the cosine similarity, 
an increase in cosine similarity from 0.S3l3 to 0.S714 was 
observed. 
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Fig. 7. Gabor filter patch tuned to 4Hz and 2 cycles/octave at different 
orientation. a) e = 0, b) e = -1r /18, c) e = 1r /18 



Fig. 8. Theta adaptation for diphthong ay: a) The plot shows the rate scale 
representation of target diphthong ay in clean conditions. b) The plot shows 
the rate scale representation of the target in babble noise at an SNR of OdB. c) 
The plot shows the retuned ihwn values. The retuned orientation range is [-8 
8] degrees as indicated by the bar plot. d) The plot shows the rate-scale plot 
of the ay in babble noise estimated using the retuned filters. The black ellipse 
highlights the enhanced target regions and the magenta ellipse indicates the 
noise suppressed regions. 

V. CONCLUSION 

In this work we examined the usefulness of incorporat
ing plasticity for detecting speech tokens in the presence of 
background noise. In particular, we made a case for em
ploying parameterized Gabor filters to model plasticity. Using 
specific examples and modulation space representations, we 
have illustrated the flexibility offered by the parameter tuning 
approach. An improvement in objective similarity measure 
was also observed on using the proposed method. While in 
this work, the parameters have been retuned individually for 
specific examples, the technique can be extended to scenarios 
where an optimal set of parameters from Gabor filter parameter 
space are obtained automatically to enhance target represen
tation/detection. Such a process can be employed to address 
broader problems like speech activity detection, scene analysis 
and speech recognition. 
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