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Abstract—A key component in computational analysis of the
auditory environment is the detection of novel sounds in the
scene. Deviance detection aids in the segmentation of auditory
objects and is also the basis of bottom-up auditory saliency,
which is crucial in directing attention to relevant events. There is
growing evidence that deviance detection is executed in the brain
through mapping of the temporal regularities in the acoustic
scene. The violation of these regularities is reflected as mismatch
negativity (MMN), a signature electrical response observed us-
ing electro-encephalograpy (EEG) or magneto-encephalograpy
(MEG). While numerous experimental results have quantified the
properties of this MMN response, there have been few attempts
at developing general computational frameworks of MMN that
can be integrated in comprehensive models of scene analysis.
In this work, we interpret the underlying mechanism of the
MMN response as a Kalman-filter formulation that provides a
recursive prediction of sound features based on the past sensory
information; eliciting an MMN when predictions are violated.
The model operates in a high-dimensional space, mimicking the
rich set of features that underlie sound encoding up the level
of auditory cortex. We test the proposed scheme on a variety
of simple oddball paradigms adapted to various features of
sounds: Pitch, intensity, direction, and inter-stimulus interval.
Our model successfully finds the deviant onset times when the
deviant varies from the standard in one or more of the calculated
dimensions. Our results not only lay a foundation for modeling
more complex elicitations of MMN, but also provide a versatile
and robust mechanism for outlier detection in temporal signals
and ultimately parsing of auditory scenes.

I. INTRODUCTION

As we hear our surrounding acoustic scene, the auditory
system is continuously tracking the events in the scene
and classifying them as standards and deviants based on a
notion of regularity. There is evidence that this informa-
tion extraction occurs regardless of our paying attention to
the sounds around us. In electro-encephalograpy (EEG) and
magneto-encephalograpy (MEG) recordings of the brain, the
determinant of regularity appears as a negative difference in
the N1 responses between the standard and deviant sound.
This difference is called the mismatch negativity (MMN) and
has been studied since its discovery over 30 years ago [1].
However, while there is an extensive literature on what type of
stimuli elicit the MMN response, the mechanisms underlying
it are still only theories.

MMN can be interpreted as a physiological index of audi-
tory saliency. It has been shown that MMN can be observed
in asleep and comatose states, suggesting that it is a pre-
attentive response. [2] [3] This coincides with the notion of

bottom-up saliency, which is assumed to occur prior to top-
down influences. [4] [5] Additionally, although MMN has been
primarily studied in the auditory system, there is evidence for
a visual counterpart; the modality that is mainly considered
for saliency in the brain. [6] The computational uses of an
understanding of the underlying mechanisms of MMN become
apparent with this drawn parallel.

From a computational perspective, we can view the mecha-
nism of MMN extraction as a outlier detection scheme. Given
the input sound signal, the system is able to find which sound
events do not fit in with the perceived standard in the signal.
This is in fact what is physiologically extracted in the brain
and the time instance of the deviant sound is reflected in
the elicitation of the MMN; the same type of information
that is being captured in previous auditory saliency maps
in the literature. [7] The knowledge of this process as it
occurs in the brain would lead us to build efficient models
for deviance detection that would fit in greater scene analysis
models. [8] [9] [10] Since this information is yet unknown,
we will build our computational model based on one theory
of MMN elicitation that, while it does not provide a low-level
explanation of the processes in the brain, has common points
with the overall frameworks of the most prominent theories in
the literature. In this work, we are not presenting a new theory
of MMN, but rather a concrete computational mechanism that
implements the selected scheme.

There are three theoretical models of MMN proposed in the
literature that we will consider. First, the original assumption
of MMN elicitation, which is based on a memory trace in the
brain. [11] The representations of incoming stimuli as they
emerge in the brain are stored in a sensory memory trace. New
representations as they appear are compared to the memory,
and an MMN is elicited if there is a mismatch. The second
theory of MMN, which was proposed concurrently as the first
but had been pushed aside until recent experimental evidence,
is the adaptation model. [12] According to this model, MMN
can be explained as simple as neuronal adaptation that occurs
already in the brain and no separate mechanism is necessary.
It is characteristic of neuronal responses to be attenuated as
they are constantly stimulated. Thus the standard in the scene
will have a suppressed response. The deviant in the scene, due
to its nature of being different from the standard, will activate
a separate set of neurons, which will result in an increased
neuronal response, and this sudden difference is referred to
as MMN. The third, more recent, theory (“predictive coding”)
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Fig. 1: The advance of a Kalman filter. First the initial state and error covariance are estimated from a buffer of samples. Using
these, the next state and error covariance are predicted according to the Kalman model. This prediction is updated with the
incoming real measurement of the state. The update is such that it minimizes the mean-square error between the prediction
and measurement. These updates are once again used to predict the next state, and the filter iterates the same way with each
time increment.

can be seen as a comprehensive explanation of MMN consid-
ering the range of stimuli that elicit MMN that the previous
models have a difficult time explaining. The predictive coding
model assumes that as we hear the sound, some notion of
regularity is extracted in the brain, which adapts over time to
the received input. The MMN is elicited when a sound occurs
violates this notion of regularity. [13] This scheme is supported
by the general notion that predictive coding is a submechanism
of perception in the brain. [14] The model we implement here
is based on this framework. Our model is merely an alternative
interpretation of this framework with the goal of integration
into larger computational models. Different interpretations of
this framework for various applications can be found in the
literature. [15] [16]

II. THE KALMAN-MMN MODEL

We base our implementation on the Kalman filter due to
it being straightforward to implement and interpret, fast and
efficient, requiring little memory, and robust to noisy real-
world data. The Kalman filter is the basic block that realizes
the notion of predictive coding. It is a discrete-time linear
dynamical model on a Markov chain; with added Gaussian
noise. The filter is a recursive advance that predicts the value
of a state, along with error covariance (measure of the accuracy
of the estimate), and refines the estimate based on measure-
ments of the state. This is essentially what the predictive
coding scheme is and it should be evident that the Kalman
filter provides a direct implementation of the framework. The
possibility of a Kalman filter type of mechanism existing in
the brain has been previously demonstrated. [17] [18]

The underlying process of a Kalman model is given in 1.
X is the state that is being tracked. This may be understood
as a feature of sound that is tracked in the brain, eliciting
the MMN response when a deviance is detected. Y is the
real measurement of this state X . The recursive Markov
nature of the filter is demonstrated by the state at time t
depending solely on the state at time t− 1. The measurement
is inherently a function of the real state value. Both the state

and measurement are perturbed by noise, respectively w and
v. F and H represent time-dependent system matrices that tie
the elements of the model together. The Kalman filter advance
is demonstrated in Fig.1.

Xt = Ft−1Xt−1 + wt−1

Yt = HtXt + vt
(1)

Let us assume that we already have a feature dimension
that we are working on, such as time of onset. Our stimulus
may be an oddball paradigm with a regularly repeating tone
and a deviant tone that is delayed. The time of onset An for
each tone can be calculated recursively as a function of the
time between consecutive tones Bn. The step increment in this
setup represents the count of tones. The system described can
be modelled as in 2, where wn takes care of small jitter in the
regularity. Our measurement in this model Yn is simply the
time of onset, complemented by a small measurement noise.
We model all of the noise variables as Gaussian white noise
with distinct variances.

An = An−1 +Bn−1 + wn−1

Yn = An + vn
(2)

Given these equations we can directly fit them into the
Kalman model framework with the adjustments given in 3.

Xn =

[
An

Bn

]
, Fn =

[
1 1
0 1

]
, Hn =

[
1 0

]
(3)

The system matrices are constant in our case. Given Q,
the system noise covariance and R, measurement covariance,
we can derive the Kalman gain for this system that gives the
MMSE estimate, which we denote Kn. P̂n is the state pre-
diction error covariance matrix. X̂n represents the a posteriori
estimate of the state Xn. Putting these all together, we have
the final recursive system that will be hereafter referred only
as the “Kalman”, presented in 4. Intermediate values such as



a priori state estimate and innovation have been incorporated
into the equations for conciseness.

Kn = (FP̂FT +Q)HT (H(FP̂FT +Q)HT +R)−1

X̂n = Fn−1X̂n−1 +Kn(Yn −HFX̂n−1

P̂n = (I −KnH)(FP̂n−1F
T +Q)

(4)

Even though we derived this model with one specific feature
in mind, the same set of equations adapt seamlessly to any
feature. We will simply denote Bn to be the value of the
feature at some time instance. For features other than time
onset, we can have the step n be real time increments. The
initial values of the system are calculated from the first few
samples of the feature signal. The variances of the noise
parameters are tuned to match the results from the literature,
shown in Section III.

Now that we have our building block for the model, we
can use it to implement a system that will output MMN for
the various conditions presented in the literature. [19] The
Kalman-MMN model begins with putting the input sound
signal through feature detection that extracts features such
as frequency, intensity, duration, location, etc. The prediction
system will work separately on each one of these features.
Additionally, one tracker will work on all of the features
simultaneously to detect complex invariances. In this work,
we will not concern ourselves with the extraction of these
features, but assume that we have a set of numbers for the
extracted feature. Our goal is to demonstrate that given that
the features are extracted, we will be able to produce the MMN
response. The working of the tracking system will be outlined
below.

First, the standard of the incoming sound feature is detected
within an initial buffer. For each detected stream, two kalman
trackers are initialized: One tracks the incoming feature value,
one tracks the timing of the values. So, every “value” Kalman
will be predicting only one value, and every “time” Kalman
will be predicting the onset times of only one value in the
feature stream.

At each time, the incoming value is compared with all of
the predictions. If no tracking filter has predicted this value,
MMN occurs, and a new stream is initialized so that the
value may form a new stream if it occurs again not long
after. If the value was predicted by a Kalman, it will also be
compared against the “time” Kalman for that stream. MMN
is elicited if the time occurrence is far from the prediction
of the “time” Kalman. The decision of whether an input
value fits into the prediction of a Kalman depends on the
measurement innovation covariance, a measure of how well
the predictions are matching the input. This is a direct function
of the estimated error covariance, which is updated at every
time step. The result of this is that if the innovation is always
small, the tolerance for fitting a Kalman will get smaller over
time. But if the input signal is very noisy, the tolerance will
grow.

Finally, a memory cleanup exists to remove the tracking of

Fig. 2: The full Kalman-MMN model.

the streams that have not been updated for a long time. This
entire system is summarized in Fig.2.

III. RESULTS

We demonstrate the results of the model on some selected
experimental stimuli in the literature that have shown the
elicitation of MMN for their stimuli. We will follow the
outline presented in [19] that groups the data in the literature
into classes of stimuli that elicit MMN. All stimuli are of
regularly repeating tones in an oddball paradigm. The classes
are as follows. Simple invariance occurs when the standards
are the same in all features, and the deviant is different in
one feature. This can be likened to a sequence of letters
such as AAAAB. Pattern invariance is when there is a
pattern of tones regularly repeating instead of a single tone,
and the deviance is the breaking of the pattern, such as
ABABABABBA. Hypercomplex invariance has the standard
tones having a few possible combinations of values among
features, and the deviant has a combination previously unseen,
such as (A,C)(A,C)(B,D)(B,D)(A,C)(A,D). Complex
invariance is the existence of simple invariance among one
feature, and the lack of any standard on other features. The
deviant will be on the feature that the simple invariance was
on, such as (A,A)(B,A)(C,A)(D,A)(D,A)(B,C). The last
class considered is abstract invariance, which is concerned
with relationships between tones rather than the actual feature
of the tones. An example would be that pairs of stimuli are
presented where the second tone has a higher pitch than
the first. The deviant would have a decreasing pitch rather
than increasing. We will not cover this type of invariance
here because it cannot be summarized with just one example,
however, we can still model this type of invariance with
the Kalman-MMN model if we are able to determine the
relationship between stimuli. In the previous example, we can



(a) Simple invariance sequence 1..1221..12. The input value is either
1 or 2. This is the values among time of an abstract feature. MMN
is elicited from the value tracking Kalman.

(b) Pattern invariance sequence 12...12121221. The input value is
either 1 or 2. This is the values among time of an abstract feature.
MMN is elicited from the time tracking Kalman.

(c) Simple invariance stimuli used in [20]. The standard stimulus
(P=0.9) was a 700Hz tone. Block of ISI 350ms and intensity 55dB
chosen. The deviant stimulus (P=0.1) only differed in frequency by
50Hz.

(d) Pattern invariance stimuli used in [21]. Tone sequences consisted
of two tones that alternated regularly. Occasionally, one of the stimuli
were repeated. In one condition, the two tones were separated by six
semitones: 841Hz and 1189Hz.

Fig. 3: Demonstration of the Kalman-MMN model running on sequences where the invariance is in only one feature. The
model computes all separate features, along with integration of features, but they are not shown because the Kalman’s only
track the same value among those dimensions and there is no MMN output. Shown with the red dots is the actual value in the
sequence at that time instance. The time starts at 6 because the values before then are used to determine the standard of the
sequence, and the prediction begins at time point 6 (the buffer size is arbitrary). The colored circles are the predicted values
by a Kalman, each color representing a different Kalman. The black circles are the time instances where the model finds a
mismatch.

simply track the pitch difference between stimuli rather than
the pitch values. With this adjustment, it turns into a simple
invariance problem.

Let us explain how each of these cases work out with the
Kalman-MMN model. First, we code the simple invariance as
a series of tones that are the same on an abstract dimension,
with a value of 1. The deviant will have the value 2. This is
the same as the character string example, except we have now
replaced the letters with numbers so we can mathematically
track them. The first few iterations of the Kalman-MMN model
are shown in Fig.3(a). At time 12, when the value changes
from 1 to 2, there is only one Kalman running, tracking value 1
and it correctly recognizes that there is a mismatch. Following
this, a new Kalman is created tracking value 2. It stops tracking
value 2 when it does not reoccur for a while, so when we get
the third 2, it elicits an MMN again. It should be noted that
the size of this tracking memory is not constant throughout all
examples and can be modified as necessary. Estimating what
this value should be is beyond the scope of this work.

In Fig.3(c) we have the same paradigm but now it is working
on real feature values as used in the referenced study rather
than the example values of 1 and 2. The result is the same as
the example run of the model.

The next case is pattern invariance. The run of the model
for the abstract case is shown in Fig.3(b). There is no MMN
elicitation at the value Kalmans (one Kalman tracking the
value 1, one Kalman tracking the value 2) but there is on
both time Kalmans. This is because due to the breaking of the

pattern, the onset times of both of the unique values have been
disrupted from their regularity, so each time Kalman associated
with one of the values gives an MMN elicitation. A side point
demonstrated in this example is that, due to our determining
of the standard before the estimation begins, we are already
expecting both 1 and 2 as possible values and the estimation
starts off with two value Kalmans rather than one. Contrast
this with the simple invariance case where we expected only
one value at the beginning of estimation.

Fig.3(d) the same paradigm is shown on real feature values
as used in the referenced study rather than the example values
of 1 and 2. The result is again the same as the example run
of the model, but noisier due to the more complicated nature
of the real stimuli vs. the abstract stimuli.

The following cases take multiple features into consider-
ation when defining the standard and deviant. The results
of the model for hypercomplex invariance for the abstract
case is shown in Fig.4(a). The first two rows of the value
Kalmans have no MMN elicitations because all of the values
shown are possible expected values among their separate
dimensions. In the feature integration Kalman, however, we
see the MMN output. In this dimension, the value being
tracked is multidimensional. One Kalman is tracking (2,3) and
one Kalman is tracking (1,2). The read value at time 13 fits
neither, so it is recorded as an outlier.

The results for this case on real values are shown in Fig.4(c).
Again the tracking is noisier due to the nature of the data, but
the MMN output at correct places are also apparent here.



The last case is complex invariance. It should be evident
that for our model complex invariance is almost the same as
simple invariance. This is because we extract many features
and follow them all at once, no matter where the invariance is.
The difference between the two is the assumption in simple
invariance that the other features will have the same value in
the standard and deviant, whereas in complex invariance, they
may be varying with no pattern. This does not computationally
make a difference for the Kalman-MMN model. Since the
values are greatly varying in the buffer, the standard at the
beginning of estimation will have a large expected variance.
This means that even though they are different values, they will
not be regarded as outliers in the Kalman filter. So again, only
the feature that has the standard will elicit an MMN response.
This is shown in Fig.4(b) and Fig.4(d). Additionally, note that
the estimate value for the no-standard feature is varying over
time, adapting to the input. Since the variance of values is
retained over time, the tolerance remains high.

IV. DISCUSSION

In this section we take a look at how our implementation
compares to the MMN frameworks described in Section I.

Although some attributes of our procedure are common to all
predictive coding models, here we illustrate the points that are
specific to the implementation presented in this work.

Similar to the memory trace model, we detect transient
events along with looking for outlier values in the features of
the incoming sound. However, the memory trace model holds
these incoming values in an “auditory memory” and explicitly
compares against memory content. Here, we do not actually
save the value that the Kalman system is tracking, it is implicit
in the system matrices of the Kalman setup; we merely check
whether the incoming value fits the prediction of a tracker.

Although our model is not based on neuronal adaptation
explicitly, we may draw similarities on the general procedure
to this framework. Just as neurons that are continuously firing
for standards adapt over time, our Kalman trackers get better
prediction and lower tolerance the more they are updated.
A deviant stimulates a new set of neurons that were not
previously activated; and in our model, a new Kalman begins
responding to the deviant value. In our model, as is also the
case in the adaptation model, the concept of N1 and MMN is
essentially the same.

(a) Hypercomplex invariance sequence (2,3)(2,3)(2,3)(1,2)(1,2)(1,2)
(2,2). The input value among each abstract feature is 1, 2 or 3.
MMN is elicited from the value tracking Kalman on the integration
of features.

(b) Complex invariance sequence (3,1)(4,1)(1,1)(2,1)(4,1)(3,1)(1,1)(2,
1)(2,1)(1,1)((1,2). The input value among each abstract feature is 1,
2, 3 or 4. MMN is elicited from the value tracking Kalman on the
second feature.

(c) Hypercomplex invariance stimuli used in [22]. Two standard
tones (P=0.45 each) were 932Haz and 80dB; and 739Hz and 60dB.
Deviants have the frequency of one and the intensity of the other
(P=0.05 each).

(d) Complex invariance stimuli used in [23]. 90% of the tones were
100ms in duration, 10% were 170ms. In one condition the tones
varied over a range of tonal frequencies. Thus there was no “standard”
tone.

Fig. 4: Demonstration of the Kalman-MMN model running on sequences where the invariance is in multiple features. Only
the relevant feature dimensions are shown. In all figures, the top two rows are demonstrations of the separate features, and the
last row shows the integration of the presented features. The figure notations are identical to those used in Fig.3.



From the perspective of general predictive coding schemes,
we can see that even though we do not have an explicit
hierarchical structure, the two figures in Fig.2 can be seen
as lower level (first figure) and higher level (bottom figure
- Kalman section) processing. A model employing Bayesian
processes has been previously proposed [24] which is more
concerned with a physiological explanation, whereas we are
concerned with efficient implementation and use in scene
analysis frameworks.

A related note can be made about the attention framework
in [25], which our model readily fits into. Similarly to that
framework, the basis of our prediction (and therefore the
“MMN” generation) depends on the standard formation. We
can accordingly incorporate effects of attention on our model:
Attention can be seen as an external input altering the method
of standard formation; after that the proceedings of the model
need not change.

V. CONCLUSION

This work presents a model that is biologically motivated,
yet versatile and easy enough in implementation to incorporate
into other computational models that might require deviance
detection in sound. (auditory scene analysis models, compu-
tation of saliency, etc.)

Our model can also be seen as an initial step to building
a computational model of MMN based on Kalman filters. By
tuning the model to match the results of the numerous studies
in the MMN literature, we may be able to obtain a system
that accurately captures the essence of MMN production. The
end goal would be to obtain a system that replicates the
experimental results on the given stimulus, which would aid
in further elucidating the properties of the MMN response.

This work can be interpreted as providing support for the
predictive coding theory of MMN elicitation. We have shown
that following the predictive coding framework, we are able to
match the results of many experiments in the literature; making
up for the shortcomings of both the memory trace model and
adaptation model by following a union of the two models.
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