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Abstract—The auditory system is flooded with information
throughout our daily lives. Rather than processing all of this
information, we selectively shift our attention to various auditory
events - either events of interest (top-down attention) or events
that capture our attention exogenously (bottom-up). In this
work, we are concerned with aspects of human attention that
are bottom-up stimulus-driven. Saliency of an auditory event is
measured by how much the event differs from the surrounding
sounds that precede it in time. To calculate this, we propose
a novel auditory saliency map that is defined only over time.
The proposed model is contrasted against previously published
auditory saliency maps which treat the two-dimensional auditory
time-frequency spectrogram as an image that can be analyzed
using visual saliency models. Instead, our proposed model capi-
talizes on the rich high-dimensional feature space that defines
auditory events; where each acoustic dimension is processed
across multiple scales. These normalized feature maps are then
combined over time into a single temporal saliency map. The
peaks of the temporal saliency map indicate the locations of the
salient events in the auditory scene. We validate the accuracy
of the proposed model in simulated test scenarios of simple and
complex sound clips. By exploiting the unique aspects of auditory
processing that cannot be readily captured by visual processes, we
are able to outperform other auditory saliency models; all while
highlighting the commonalities and differences between the two
modalities in processing salient events in everyday scenes.

I. INTRODUCTION

How do our brains cope with the myriad of information our
sensory systems are faced with on a daily basis? One factor
that alleviates the problem is that we have the remarkable
ability to quickly recognize an object in the environment that
does not blend in. We can detect a red bird in a bush, a baby
crying in a classical concert, or a foul smell in the house easily.
We do not process every face in a crowd at once; instead
our attention quickly shifts to the few faces that are either
the most different, or most interesting to us. This helps us
filter the incoming sensory information in a way that allows
us to make the best decision about how to act. It has been
found that neural mechanisms exist to carry out this process
of filtering relevant information from the scene to be analyzed
more intensively. [1] This fight for the spotlight of attention is
based on both exogenous properties of the object (bottom-up
saliency) as well as cognitive processes (top-down). [2] Top-
down attention comes into play mainly when there is a task to
be completed, whereas bottom-up saliency is fixed throughout
changes in task or situation. [2], [3]

The first computational model of bottom-up saliency was
proposed by Koch and Ullman in 1985 [4] and further de-
veloped by Itti et al. [5] for the visual system. The basis of
the model was related to the “feature integration theory” [6],
where various features are extracted from the spatial input.
Saliency information that is extracted from each feature is then
combined to produce a spatial map of saliency. The saliency
map encodes the bottom-up conspicuity of each location in the
visual scene. This framework was shown to replicate human
overt and covert attention [7]. It is a fast parallel-processed
mechanism; and top-down influences are not difficult to be
combined with the bottom-up system. Since its proposal, the
saliency map framework for the visual system has been greatly
extended upon.

In the auditory modality, only a few such systems have
so far been proposed. The first model, by Kayser et al. [8]
treats the auditory input spatially by considering the time-
frequency representation of an auditory signal (“the auditory
image”) as the input of the saliency model. Thereafter, a
saliency mechanism closely following the framework of Itti is
applied. This mechanism is able to match experimental results
of simple salient stimuli, such as finding a salient natural tone
among noise. However, its performance is inherently limited
in that it only extracts visual features from the auditory image,
which is not enough to capture a lot of significant information
from an auditory signal. The second model, by Kalinli et al.
[9] builds on Kayser’s model by adding two more features that
are extracted from the auditory image, and using a different
normalization scheme. While this definitely improves the type
of saliency of auditory stimuli that can be captured by the
model, it is still bounded by the same problem as Kayser’s.
The last model, by Duangudom et al. [10] focuses on spectro-
temporal receptive field (STRF) output computed from the
auditory image as the feature base of the system and slightly
expands the normalization procedure. However, the model is
oversaturated by STRF output in various scales and rates, and
does not represent a complete account of sound perception in
the brain.

In this paper, we propose an alternative biologically plausi-
ble method of capturing bottom-up auditory attention. We stay
within the boundaries of the original saliency framework by
Itti; however, we take a slightly different approach to treating
incoming auditory information than was executed in previous

978-1-4673-3140-1/12/$31.00 ©2012 IEEE



auditory saliency models. Our key contribution is that we treat
an auditory scene as a single dimensional temporal input at all
times, rather than treating it as an image. This is not to say we
do not use the frequency-time representation: We do. However,
it is only one feature component of the system, and even then,
we treat every frequency channel as a temporal signal and
do not use contrasts between adjacent frequency channels.
With our newly proposed features for use in auditory saliency
extraction, we follow the original framework of finding salient
points, which are in the end combined to yield a single
temporal auditory saliency map.

II. PREVIOUS AUDITORY SALIENCY MAPS

The structure of the original saliency map framework in [5]
is as follows. The original image is filtered at various levels
to provide multiscale features, usually from scale 1 to scale
8 where the image at each (i+1)th scale is half of the size
of the image at (i)th scale. All of these features are subjected
to center surround differences by cross-scale subtraction of a
subset of pairs of features. This results in “feature maps”. The
feature maps are then each normalized so that they accurately
suppress the background in a scene, at the same time boosting
the salient information. The normalized feature maps are added
across scales to produce one ‘“‘conspicuity map” for each
feature. These conspicuity maps are averaged to form the final
saliency map. Thus, the size of the resulting saliency map is
a scaled version of the size of the original image. Therefore it
can be directly mapped to the visual space to find the location
of the salient event in the scene.

Kayser’s model first forms the spectrogram of the auditory
signal. The spectrogram is treated as the auditory image and
the rest of the processing will closely follow the framework
explained above. Three features are extracted from the spec-
trogram: Intensity, frequency contrast, and temporal constrast.
Since all of these features are features of the spectrogram
rather than directly on the auditory signal, every feature in
scale 1 is of the same size as the original spectrogram. Center
surround differences are calculated in the same manner as
Itti’s model. The normalization process is the similar in theory
as the one used in [5]. Following, the conspicuity maps are
averaged to form the final saliency map. The most salient event
can be found as the time instance where the maximum of the
saliency map occurs.

Kalinli’s model builds on top of the Kayser model by adding
orientation and pitch information. Orientation information is
extracted from the spectrogram in 45 and 135 degree angles.
Pitch is calculated following the temporal hypothesis of pitch
extraction and then mapped to the frequency axis of the
spectrogram to provide a feature map the same size as the
other maps. The rest of the processing is the same as Kayser’s
map, except for the normalization which is done as the iterative
normalization described in [11], which we also use here for
the time dimension.

Duangudom’s model uses time-frequency energy, temporal
modulation, spectral modulation, and spectro-temporal modu-
lation. The center-surround stage is removed, and only normal-
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Fig. 1.  Architecture of the temporal saliency model. Features shown as a
line are one-dimensional, features shown as a block are two-dimensional. The
dimensions of different features and feature maps may be different.

ization remains after feature extraction. The normalization is
done in the same method as [5] (Model 1). A variation is also
examined, in which normalization is done on local patches of
maps instead of globally (Model 2), which results in slightly
higher correlation to human reports of saliency.

Kayser has tested his method on simple sounds among
noise, and show that his detection results match psychoacous-
tic experiment results of perceived human saliency. Kalinli
has used the model to detect prominent syllables in speech,
for which detection results of 60-80% are obtained, where
performance is calculated based on how well it matches the
manually labeled data. Duangudom has tested on same type
of stimulus as Kayser, with reports of lower performance
(Correlation mean across subjects for Model 1=0.48, Model
2=0.53) than Kayser has reported (r=0.56, p<0.01).

III. A TEMPORAL SALIENCY MAP

The model we propose in this paper uses 5 features: Wave-
form envelope, spectrogram, rate, bandwidth, and pitch. The
features envelope and pitch are always kept one dimensional
throughout processing. The other features are first computed in
two dimensions: They are still treated as an entity that varies
primarily among time, however the feature is computed for
multiple frequencies/octaves to obtain the highest amount of
information.

The waveform envelope is obtained by the Hilbert transform
of the original waveform. The main advantage of including the
envelope as a feature is two-fold: It is easier to detect loud
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Fig. 2. Saliency results for a timbre-varying target. The background

instrument is a violin and the foreground instrument is a flute. The left
figures are, from top: Envelope, frequency, bandwidth, rate, pitch features;
followed by saliency results of our model. The right figures are the five
conspicuity maps belonging to the feature on the left; followed by saliency
results of Kayser’s model. The top three peaks of our model correspond to
the beginning, middle and end of the target note. The top peaks of Kayser’s
model all correspond to background notes.

events with the waveform, and also the shape of a tone helps
to characterize its timbre. The envelope is computed by first
taking the magnitude of the Hilbert transform of the data, and
then running a Butterworth filter of cutoff 60Hz and order
6 through it. The waveform at scale 1 is convolved with a
5-sample length Gaussian and decimated to half length. This
process is repeated until all 8 scales are obtained.

The auditory spectrum of sound used mimics the informa-
tion processing of the early auditory system. [12] The center
frequencies of the bandpass filters convolved with the input are
evenly distributed on a logarithmic scale. The filtered signal is
put through a mechanism including high-pass filtering, non-

linear compression, and low-pass filtering, in simulation of
inner hair cells. The final output is the integration of a lateral
inhibitory network. [13] Our spectrogram is computed with
time windows of length 2ms with no overlap and 128 channels
over 5.4 octaves. In our experiments, we use data with a
sampling rate of 16kHz, which gives us center frequencies
ranging between approximately 100Hz and 4kHz. The high
windowing rate is chosen to give us better resolution for
further rate processing. The spectrogram is convolved with a 2-
D Gaussian of 5 samples in either direction, and downsampled
to obtain all scales.

Bandwidth and rate information are computed from the
spectrogram by filtering it with cortical bandpass filters in time
and frequency channels. The computation of these features
mimic the response of neurons at the mammal auditory cortex,
which are tuned to a range of spectral resolution and temporal
modulation. [14] It has been found that the auditory system
uses these spectrotemporal modulations, which are shown to
capture properties of speech intelligibility for humans [15].
The characteristic ripple frequencies to compute the bandwidth
feature are selected uniformly between 272 and 2* cycles per
octave. The frequencies of the filters for the rate feature are
selected uniformly between 2° and 2%, each at up and down
directions. The spectrogram at every scale is filtered by the
appropriate filters for that scale. The rate filter frequencies
are adjusted at every level due to downsampling, the high
frequencies are not computed at that level. This results in
different lengths for the second dimension in the rate feature.

Pitch is obtained from template-matching. For each time
window we select the pitch as the maximum of the cross-
correlation lag. This also gives us a saliency score, which
corresponds to the level of the correlation function. To reduce
random noise effects, we discard the pitch information of
the time values which have a saliency that is lower than
the difference between the mean and standard deviation of
all saliency scores along time. We take the logarithm of
the remaining pitch values and take their derivative so that
resulting high peaks correspond to changes in pitch. The scales
of the pitch feature are obtained identical to the envelope
feature.

After obtaining these features in 8 scales, center-surround
differences are found, mimicking the properties of local cor-
tical inhibition. The process of calculation is across-scale
subtraction between a center (fine) scale and a surround
(coarse) scale, with the result being rectified. The fine scales
are selected as ¢ € {2, 3,4} and the coarse scales are s = c+d
where d € {3,4}; giving us 6 feature maps for each feature.
All of these feature maps are normalized so that the minimum
value across the map is 0, and the maximum value, summed
for all frequencies or bandwidths, at each time instance is 1.
For envelope and pitch, this just means that the feature map is
scaled between 0 and 1. However, the two dimensional features
will be scaled between 0 and a number between 0 and 1. The
previous models all used scaling between 0 and 1 for this point,
however, the features they use are all of the same dimensions,
whereas all of our features have different dimensions. Since the



final salient score will be found by taking the maximum of the
sum across the dimension that is not time, if we were to scale
all maps between 0 and 1, when summed across the second
dimension, the two dimensional maps would naturally produce
a higher number, which does not necessarily correspond to a
higher saliency. This problem is compensated for when we do
this adaptive normalization.

These feature maps are now subjected to iterative nonlinear
normalization [11] to boost salient parts and suppress smooth
parts. We do not use frequency contrast because we are only
concerned about the information among time, rather than the
adjacency of the values in the second dimension. All feature
maps (M) are convolved with a one-dimensional Difference-
of-Gaussian filter (DoG) of length 50ms for the excitatory
part with equally long inhibitory parts. The result of the
convolution is added to the map, and the 2%th value of the
map at the beginning of the normalization (C;,,5) is subtracted.
Negative values of the result are mapped to 0. Concisely, the
following transformation is applied at each iteration, for 10
iterations:

M « |M + M % DoG — Cinpn|>0

The normalized feature maps are combined across scale
into a single conspicuity map for each feature. The across
scale addition is made by interpolating every map into a
single scale and adding them. The two dimensional maps are
averaged in their second dimension to provide a map that
varies only in time, so that it will be compatible with the other
temporal features. These conspicuity maps, which are now all
the same one dimensional size, are averaged to provide the
final temporal saliency map.

IV. RESULTS

We tested our model on a set of stimuli made up of
single tones of various musical instruments being played. The
instruments used are violin, flute and harmonica. The length
of the stimulus is set at 5 seconds, each containing 10 notes
of length 1 second, overlapping with each other every 0.5
seconds. In each scene, only one aspect of musical instrument
tone is varied: Timbre, pitch, or loudness. Our goal is to
show that the features chosen in this study are able to capture
these perceptual properties of sound, laying a foundation for
selecting saliency among these dimensions which are most
recognized by humans. In this section, we will investigate a
few stimuli to enlighten the working of the model.

First, let us look at a timbre difference in the target note.
In this example, the background notes are violin, and the
foreground note is harmonica, which is the 8th note out of
10 notes in the scene. The loudness of each note is constant
and the notes vary only slightly in a range of 5 semitones.
The temporal saliency map correctly finds the location of the
target note in this case, as seen in Figure 2. We can also see
that Kayser’s model is unable to find the location of the target
note, the saliency is relatively low during the duration of that
note. We can look at our 5 conspicuity maps to see where
the saliency is coming from. The loudness map has found the
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Fig. 3. Saliency results for a pitch-varying target. The target note has a pitch
that is 5 semitones higher than the highest pitch of the background notes. The
figures are the same order as Figure 2. The top peak of our model correspond
to the time shortly after the target note began playing. Kayser’s model has
not found any significantly salient note.

most salient location as the 7th note. The frequency map has
selected the target note as most salient. The bandwidth map
has found the beginning and ending locations of the target
note as most salient. The rate map has also found the target
note as salient. The pitch feature has not actually found any
significant difference, we can see that the differences are no
bigger than 3 semitones, but the normalization procedure has
boosted these small differences as if they are salient. We will
discuss this issue in the next section. For now, we can simply
note that frequency and rate are the main contributors for
the final saliency score. For this case of timbre difference,
frequency, bandwidth and rate features have all contributed
to finding the location of the salient note, even if it is not
perfectly reflected in their respective conspicuity maps.
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Fig. 4. Saliency results for a loudness-varying target. The ratio of the target
to the background is 10db. The figures are the same order as Figure 2. The
top two peaks of our model correspond to the beginning and ending times
of the target note. Kayser’s model has selected the less loud sections of the
scene as more salient.

Next, let us look at what happens when there is a pitch
difference. When the target note has a lower pitch, both
our system and Kayser’s system do well. Kayser can do
well even without pitch information simply due to frequency
contrast because the fundamental frequency of that note will
be lower than any harmonics of other notes so there will
always be a clear difference at that time. However, it is not
so straightforward when there is a higher pitched note mixed
in among notes with lower pitch. In this example, seen in
Figure 3, we are using flute notes. The stimulus setup is the
same as the previous example, and now our 8th note has
a pitch that is 5 semitones higher than the masking notes.
From the conspicuity maps, we see the main contributors to
the saliency at the correct point are pitch and envelope. The
other features have found a previous note with higher energy

Our model Kayser’s model
Hit at 1st peak 70% 15%
Hit at 1-3 peaks 100% 40%
1st peak | 1st peak | 1-3 peaks
Hit for timbre 33.3% 0% 0%
Hit for pitch 87.5% 37.5% 75%
Hit for loudness 83.3% 0% 33%

Fig. 5. Detection rates of the target musical notes. Background notes vary
only slightly in pitch, while the foreground note can be differing in instrument
(timbre), pitch, or loudness. A hit occurs when a peak of the saliency map
corresponds to the time of the target note being played.

as more salient. Although this was successfully suppressed by
the normalization, it has still produced a very high saliency,
close to the maximum. Kayser’s model was unable to find
the correct note, with many peaks throughout time around the
same saliency level, as would be expected from the image
properties of this spectrogram.

Finally, we look at an example of what happens when
there is a loudness difference. This scene is made up of
harmonica notes, with the target to mask ratio (TMR) being
10dB. As can be seen from the plots in Figure 4, the envelope
expectedly gives the highest saliency for the duration of the
target note, with the other features that consider intensity also
giving high values at the boundaries of the target note. The
pitch coincidentally had a 4 semitone difference at the time
of the high TMR note, and this small difference is again
highly boosted in the system. Interestingly, Kayser’s map
could not find this difference, which should be straightforward
to find when the spectrogram is treated as an image. Its time
and frequency contrast features have overruled the intensity
feature, so it found the relatively more silent parts of the scene
more salient. However, this does not correspond to what is
salient for a human in this case, and indeed TMR is one of
the most easily detected dimensions of saliency for humans.

We ran a test on 20 variations of the stimulus described
above: Timbre is varied 6 times (violin, flute, harmonica pairs),
pitch 8 times (5st and 10st differences, low and high) and
TMR 6 times (7dB and 10dB). A hit is defined as a peak in
the saliency map that corresponds to the location of the target
note at any instance while the note is playing. We calculated at
which peak the target note is found at when peaks are ordered
by magnitude. Detection results are presented in Figure 5.

V. DISCUSSION

Out of the tested dimensions of human perception of
saliency, we can see from the example results how our system
is able to perform better for auditory saliency detection.
Clearly, not all examples are able to yield the same result;
mostly due to complications in calculating features. However,
we see that the most important part of the mechanism to auto-
matically detect saliency is the normalization and combination
part. After the feature extraction stage, the biological system is
able to easily detect the components that stand out and should
be salient. Computationally, this task is not trivial.



Even from the three examples we have pointed out in the
previous section, we can see various problems in normalizing
features. For example, if we are to look at only one feature
instead of the general picture, we can see that the pitch feature
is always detecting some point as salient even if the relative
difference of pitch is not high. Our background varies within
5 semitones, so it is natural to find small differences in pitch
within the background. However, the system does not know
that these small differences should not be boosted, unless
we were to treat the pitch dimension separately. This is a
limitation of the normalization procedure used; it will always
boost outliers regardless of scale.

The normalization problem is also apparent in the timbre
example, where we clearly see a large difference in the
bandwidth feature. However, this is not accurately reflected
in the conspicuity map due to the smooth fade-out and low
energy being suppressed by the Difference-of-Gaussian filter.
The result is that even though bandwidth successfully found
the target, it has a lower peak than other features have, so its
final influence is not very high.

Even though we have not done a comparison with Kalinli’s
model, we can claim the results will not be very different
from Kayser’s. This is due to the simple fact that the second
model has only added pitch and orientation information, and
uses the same normalization we have used. In our case of
musical notes, which tend to have a flat “image”, orientation
will not give any significant results. Additionally, even without
the extra pitch information, Kayser’s model does generally
well in the case of lower pitch. The addition of the pitch
feature will cause an improvement when the target has a higher
pitch, however it will not help with other types of saliency.
The different normalization scheme may be an improvement
over Kayser’s, but from our examples and results we can see
that our features capture information Kayser’s features could
not find; the normalization will not help when there is no
significant information in the features. We have not done a
comparison with the Duangudom model since its performance,
as reported, is not greater than Kayser’s.

The main implication of these results is that, while our
newly proposed feature set is sufficiently rich, the normal-
ization scheme of the visual saliency map may not be the best
solution for the auditory saliency problem. As humans, we
are able to see from individual features where the saliency
lies; however, the current normalization method is not able
to capture the information we see, suppressing and boosting
incorrect parts instead. This framework depends on selection
of parameters for its performance. We have only slightly
altered the parameters of the original visual model, but have
confirmed experimentally that varying parameters does not
increase overall performance. This tells us that the issue is
more fundamental, and that a method more fitting for an
auditory paradigm might be necessary.

VI. CONCLUSIONS

We have presented a novel saliency extraction mechanism
from an auditory scene. Following the visual saliency map

frameworks, which the previous auditory saliency maps have
also not strayed from, we extract multiscale features in parallel
from the auditory signal. Center surround differences are
subjected to an iterative normalization, which allows us to
recombine the feature streams into a single saliency map. We
have proposed for the first time to extract the saliency among
the time dimension only, allowing us to have one dimensional
features, along with features whose spatial dimension does not
have to be the same. Results on complex auditory scenes were
presented and contrasted with performance from a previous
auditory saliency model, allowing us to demonstrate why our
model is superior to previous models. Our results show that
although we use a rich feature space that is able to capture
significant properties of sound, the normalization method that
works well on visual scenes may not be the optimal choice for
the auditory scene. Future work on this model should take this
into consideration and build a normalization mechanism fitting
for the auditory system to complete a biologically inspired
auditory saliency model.
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