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Abstract-It is well known that speech sounds evolve at 
multiple timescales over the course of tens to hundreds of 
milliseconds. Such temporal modulations are crucial for speech 
perception and are believed to directly influence the underlying 
code for representing acoustic stimuli. The present work seeks 
to explicitly quantify this relationship using the principle of 
temporal coherence. Here we show that by constraining the 
outputs of model linear neurons to be highly correlated over 
timescales relevant to speech, we observe the emergence of neural 
response fields that are bandpass, localized, and reflective of the 
rich spectro-temporal structure present in speech. The emergent 
response fields also appear to share qualitative similarities those 
observed in auditory neurophysiology. Importantly, learning is 
accomplished using unlabeled speech data, and the emergent 
neural properties well-characterize the spectro-temporal statistics 
of the input. We analyze the characteristics and coverage of 
ensembles of learned response fields for a variety of timescales, 
and suggest uses of such a coherence learning framework for 
common speech tasks. 

I. INTRODUCTION 

With no supervision, the auditory system is tasked with 
representing sound in such a way that we can separate 
competing sources, discriminate among a variety of acoustic 
classes, and, in general, process complex auditory scenes. 
However, the principles governing how the auditory system 
extracts useful information from the environment remain un
clear. A general proposal is that the system uses knowledge 
of physical constraints of the acoustic soundscape and the 
statistics of environmental sounds to solve these complex 
tasks. This knowledge is believed to be reflected in the sensory 
processing and neural encoding of incoming sounds. The 
statistics of natural sounds are quite complex and particularly 
so for speech, the most important communications sound for 
humans. Well-known results from psychoacoustics [1] and 
more recently in physiology [2] have shown that speech sounds 
are processed at multiple concurrent timescales, from the 
segmental level (",,20-50 ms) to suprasegmental (",,150-300 

ms) levels. Somehow, the neural code needs to capture these 
different dynamics while still yielding a stable perception of 
the environment. 

Recent evidence from neurophysiology suggests that sus

tained neural firings by central auditory neurons form an im
portant part of the coding strategy for representing the acoustic 

environment [3]. To what extent these responses capture the 
relevant temporal modulations of speech remains unclear. In 
this paper, we study a method to explicitly encode the notion 
of sustained neural responses over speech-relevant timescales 
using the principle of temporal coherence [4]. By enforcing 
the outputs of model neurons to be highly correlated over 
specific time intervals, we show the emergence of receptive 
fields that are bandpass, highly localized, and reflective of the 
spectro-temporal structure of the stimulus, much like those 
observed in physiological studies [5], [6]. We then analyze 
the spectro-temporal characteristics of the emergent ensembles 
at a variety of timescales relevant to speech. Finally, we note 
that learning is accomplished using unlabeled speech data, and 
the emergent neural properties appear to well-characterize the 
statistics of the input. Such a framework has implications for 
robust processing of speech signals and we suggest uses of 
the emergent ensembles for common speech tasks. 

We begin by presenting background and previous work in 
Section II. This is followed in Section III by a description of a 
quantitative model of temporal coherence and an optimization 
procedure for enforcing temporal coherence using speech 
stimuli. In Section IV we present the main results of this work, 
followed by suggestions for applications to common speech 
tasks in Section V. 

II. BACKGROUND 

It is widely believed that sensory representations over many 
modalities and timescales are shaped by the environment in 
which an organism operates. However, since sensory systems 
are often not given explicit supervision for learning how to 
represent and discriminate among competing stimuli, deter
mining the underlying principles governing choice of a sensory 
code remains an open question. A general approach that has 
found success particularly in the visual and auditory domains 
involves quantifying the relationship between environmental 
statistics and sensory representation by design of a suitable 
cost function. One can then study how the solution to the 
objective function relates to known properties of the sensory 
modality [7]. In vision, for example, Olshausen and Field [8] 

demonstrated that learning to represent static natural images 
using a sparse code yields a set of localized and oriented 
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Gabor-like basis functions resembling the shapes of receptive 
fields observed in simple cells of the visual cortex. In audition, 
Lewicki [9] proposed that the auditory system uses what he 
termed an efficient code for representing natural sounds in 
the auditory periphery. There he demonstrated that modeling 
efficiency by enforcing statistical independence on the output 
of model cochlear filters in response to natural sounds yields 
an analysis filterbank with properties remarkably similar to 
those observed in auditory physiology. 

While computational models of sensory representations at 
the cochlear level have began unraveling the principles guid
ing peripheral processing, the relationship between acoustic 
signals and representation in central auditory areas remains 
unclear. For instance, Hromadka et at. [to] presented evidence 
suggesting that auditory cortex is optimized to use a sparse 
code by showing that at any instant, the ensemble response to 
a variety of acoustic stimuli involved only a small percentage 
of neurons eliciting brief, transient firing rates. This finding 
appears to be at odds with results reported by Wang et at. [3] 

showing that while population responses may indeed show 
transient firing rates, subsets of neurons will exhibit strong, 
sustained responses when presented with preferred stimuli. 
Furthermore, by also noting a lack of stimulus synchrony 
for these persistent neurons, Wang et at. have argued that a 
sustained firing rate represents a transformation of the acoustic 
stimulus and not merely a preservation of the temporal dynam
ics of the input sound. It is precisely this idea that motivates 
the present work. 

Assuming that the notion of sustained neural firing rates 
forms part of the underlying auditory code, it is then necessary 
to consider the timescales over which this behavior may relate 
to the temporal statistics of speech stimuli. Evidence from 
physiology [2], [11] and psychoacoustics [1] suggests that 
speech cues are decoded primarily based temporal modulations 
at the segmental level, ranging from "'20-50 ms, as well as 
at the suprasegmentallevel, ranging from "'150-300 ms. The 
segmental level would thus capture pitch and formant (place 
of articulation) cues whereas the suprasegmental level captures 
syllabic and prosodic cues. Indeed, systematic degradations 
of temporal modulations at both these timescales significantly 
impair the ability of listeners to comprehend speech [12], [13]. 

In this work, we seek to understand if a relationship 
exists between the temporal statistics of speech and the use 
of sustained neural responses as a coding strategy in the 
central auditory system. To probe this question, we explicitly 
quantify neural persistence using temporal coherence, which 
has previously been shown to relate the temporal statistics of 
natural image sequences to receptive field characteristics in 
primary visual cortex [4]. We present an adapted version of 
this model for processing acoustic stimuli, and explore the 
effect on the receptive fields of model auditory neurons when 
explicitly enforcing sustained responses on a neural ensemble. 

III. MODEL 

A typical assumption made when studying the mapping 
between an acoustic signal s(t, J) and the firing rate r(t) of a 

central auditory neuron is that the transformation is linear [5], 

i.e. , 
r(t) = L L s(t - m, J)h(m, J) (1) 

f m 

where h(t, J) is the spectro-temporal receptive field (STRF) of 
the neuron, represented as an LTI filter in time and frequency. 
For discrete-valued signals and filters, we can stack s(t, J) 
and h(t, J) columnwise to obtain vector representations s(t) 
and h, respectively, and compactly write the firing rate as 

r(t) = hT s(t). (2) 

Furthermore, we can express the response r(t) 
[rl(t) r2(t) ... rK(t)] of an ensemble of K neurons by con
catenating the STRFs in to a matrix H := [hI h2 ... hK] and 
writing 

(3) 

To quantify the notion of a sustained firing rate over an interval 
[t - 6.T, t], we adapt the model of [4] and define temporal 

coherence as 
K AT 

J := L L arEt H(t)r�(t - T)] , (4) 
k=lr=1 

where Ed·] denotes expected value over time. Here the notion 
of coherence is quantified by correlation between signal ener
gies over a coherence interval specified by 6.T. Hence, if the 
rk(t) vary smoothly over the coherence interval, as would be 
the case for a sustained neural response, we would expect J to 
be large. The weights ar are chosen to reflect the intuition that 
recent observations likely have more influence on the current 
output than those from the past; in this work the ar are set to 
be linear. 

Thus, a statement about enforcing sustained responses over 
an interval [t - 6.T, t] corresponds to maximizing temporal 
coherence. We can therefore define the following optimization 
problem: 

(5) 

subject to 
Edr�(t)] = 1, V k 
Et[rk(t)rl(t)] = 0, Vk-=l-l 

(6) 

for k, l E {1, 2, . . .  , K}.  We impose these constraints to 
(1) bound the output of the model neurons and prevent the 
trivial solution rk(t) = 0 and (2) minimize redundancy of the 
solution by requiring that the responses of different neurons 
be uncorrelated. 

Optimization of the above nonlinear program is accom
plished using a variant of the symmetric orthogonal projection 

algorithm presented in detail in [4]. In essence, learning the 
ensemble of STRFs H that maximize temporal coherence is 
accomplished via gradient ascent on Eq. 4 with a suitable pro
jection of the sequence of updates H(n), n = 1, 2, ... ,N, so 
as to satisfy the constraints in Eq. 6. We refer the reader to [4] 

for basic implementation details. To accommodate learning on 
potentially large datasets, we updated the procedure to use 
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Fig, 1: Examples of emergent STRFs for coherence intervals of 10 and 250 ms, 

stochastic gradient ascent using smaller batches of training 
data. 

IV. RESULTS 

A. Emergence of localized spectra-temporal receptive fields 

For the following experiments, the input speech stimuli 
were obtained from the TIMIT speech corpus with wave
forms sampled at 8 kHz, For each utterance, an auditory 
spectrogram was computed yielding a representation of the 
acoustic signal in time and (logarithmic) frequency [14]. The 
auditory spectrograms were then segmented and vectorized as 
described above. Each segment covered 250 ms in time and 
six octaves in frequency (62.5-4000 Hz), and a segment was 
extracted every 5 ms from the original spectrograms, In total, 
25k (columnwise) samples generated from equal amounts of 
male and female utterances were used as training data. A 
set of K = 400 STRFs were initialized at random and 
optimized via the procedure discussed in the previous section, 
Empirically, we found that using 5k sample batches with 30 
iterations through the complete training set yielded suitable 
results, We considered coherence intervals in the segmental 
and suprasegmental range (10-500 ms), as well as an extended 
interval for b.T at 2.5 sec to observe any changes for long 
integration windows. 

Examples of the resulting STRFs for b.T = {10, 250} 
ms are shown in Fig. 1. Each patch shown represents the 
tuning of an STRF over 250 ms in time and six octaves in 
frequency (62.5-4000 Hz). The red and blue colors indicate 
that the presence or absence, respectively, of energy in a 
particular region causes a strong neural response. One will 
readily observe a variety of STRF tunings: sensitivity to pitch 
and harmonicity; sensitivity to temporally fast and spectrally 
broad sounds as with plosives and fricatives; selectivity to 
highly localized and narrowband regions of energy; and di
rectionally sensitive tuning to spectro-temporal transitions as 
observed with formants, for example. These general classes of 
STRFs are also qualitatively similar to observations made in 

neurophysiology [5], [6]. In addition to the diversity in shapes 
of the emergent STRFs, we also note the diversity of phases of 
some of the basic shapes, indicating broad ensemble coverage 
of time and frequency. 

B. Analysis of Emergent Ensembles 

To examine how the structure of the emergent ensembles 
changed with choice of coherence interval, we varied b.T to 
enforce coherence at those timescales important for speech, 
i.e. , segmental scales on the order of tens of milliseconds and 
suprasegmental scales on the order of hundreds of millisec
onds. In the context of a linear model, it was anticipated that 
to maintain persistence for increasing b.T, the STRFs must 
account for more energy in time and frequency and conse
quently may necessarily become broader in both dimensions. 
The first observation we made to this effect was that temporal 
bandwidths of the STRFs in each ensemble tended to increase 
with increasing b.T. This was quantified by first performing 
a least-squares fit of a Gaussian envelope to each STRF in a 
given ensemble, summing the envelope along the spectral axis 
to yield a smooth temporal profile, and calculating the 10-dB 
excitatory bandwidth of the temporal profile. The distribution 
of temporal bandwidths is shown in Figure 2. As observed, 
increasing the coherence interval induces a corresponding 
increase in temporal bandwidth. No significant changes in 
spectral bandwidth were observed. 

To further quantify apparent structural variations we ob
served with varying b.T, we manually labeled each STRF 
according to one of six broad classes we determined to vary 
across ensembles. Examples of each of these classes are 
shown in Fig. 3 and included the following types: localized 
(local), spectral (spec), directional (dir), temporal (temp), 

noisy (noise), and complex (cplx). 

Given the assignments, we then sought to determine if there 
was an "optimal" b.T for which diversity across each of 
the classes was somehow balanced to maximize sensitivity 
to a variety of acoustic classes. To address this question, 
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Fig. 2: Distributions of STRF temporal bandwidths with 
increasing D.T. 

Fig. 3: Examples of broad classes of STRFs that varied with 
different choices of D.T. 

we considered how class membership within an ensemble 
changed with D.T. Shown in Fig. 4 are the percent of STRFs 
for a particular D.T labeled according to the broad classes 
described above. There are a few basic observations. First, 
the shorter coherence intervals (D.T = 10, 25, 50) ms tend to 
be dominated by highly localized STRFs, perhaps reflecting 
sensitivity to more segmental cues. Second, we observe that 
the percent of noisy STRFs is largest for D.T = 2.5 sec, 
indicating an overall loss of structure for longer coherence 
intervals. Third, there is a pooling of local maxima and minima 
for the spectral, complex, and directional classes for D.T 

between 50-500 ms, suggesting a potential tradeoff between 
sensitivity to segmental and suprasegmental cues in this range. 
Finally, we note that there does not appear to be much variation 
with regard to the temporal STRFs across D.T. 

Since the previous two analyses focused on the structural 
variations of the emergent ensembles, we finally sought to 
compare variations in the statistics of the outputs of the neural 
ensembles by applying speech samples to their input once 
they had been trained according to the coherence objective. 
We used a small held-out speech set, also from the TIMIT 
corpus, comprising spectro-temporal segments from 50 male 
and 50 female utterances. We used the speech segments as 
input to each ensemble and considered the question of how 
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Fig. 4: Percent membership with respect to each of the broad 
classes as described in the text with increasing D.T. 

long a neuron tended to exhibit a sustained response once it 
became active. For a given D.T, the k'th neuron was defined 
to be "active" when the absolute value of its firing rate Irk(t)1 
exceeded a fixed threshold (chosen to be +1 std. dev. of the 
k'th STRF output), and we collected duration statistics for 
all STRFs. The K = 400 STRFs in each ensemble were 
sorted by median activation time, and in Fig. 5 we report 
the distribution of median activations for the top 5% "most 
persistent" neurons for varying D.T. Indeed, we observe an 
increase in duration of sustained responses of a subset of each 
ensemble with increasing D.T, with a peak at 250 ms in the 
supra segmental timescale. 
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Fig. 5: Median activation times of the top 5% "most persistent" 
STRFs for increasing D.T. 

V. DISCUSSION AND CONCLUSIONS 

As demonstrated, maximizing temporal coherence using 
unlabeled speech stimuli yields diverse ensembles of STRFs 
which appear to capture the relevant structure of speech sounds 
both in time and frequency. We also note that by having 
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directly enforced sustained responses in an ensemble of model 
neurons, the trends observed across !:l.T in both the broad 
STRF assignments as well as the activations of the "most 
persistent" neurons suggest that the proposed model does 
indeed capture the relevant timescales for processing speech 
sounds. Current work is focusing on procedures for automated 
clustering of the STRF ensembles to eliminate any potential 
bias in the manual annotations, but the reported assignments 
capture in spirit the trends we observed when comparing 
emergent ensembles across !:l.T. 

An immediate benefit for speech systems may be gained by 
the basic observation that often the STRFs are highly localized, 
especially for short !:l.T, which may prove useful for robust 
signal detection in noise. Furthermore, as observed in Fig. 5, 
the tendency of a neuron to remain active with increasing 
!:l.T may prove particularly beneficial when the input speech 
is subjected to temporal or channel distortions. Finally, as 
the STRFs discussed in this paper are learned entirely on 
unlabeled data with a balance between male and female read 
speech, it remains to be seen how the emergent ensembles 
may be biased to particular genders, speakers, speaking styles, 
and acoustic channels, knowledge of which in most cases is 
beneficial for common speech tasks. 
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