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A B S T R A C T

Stethoscopes are used ubiquitously in clinical settings to ‘listen’ to lung sounds. The use of these systems in
a variety of healthcare environments (hospitals, urgent care rooms, private offices, community sites, mobile
clinics, etc.) presents a range of challenges in terms of ambient noise and distortions that mask lung signals
from being heard clearly or processed accurately using auscultation devices. With advances in technology,
computerized techniques have been developed to automate analysis or access a digital rendering of lung
sounds. However, most approaches are developed and tested in controlled environments and do not reflect
real-world conditions where auscultation signals are typically acquired. Without a priori access to a recording
of the ambient noise (for signal-to-noise estimation) or a reference signal that reflects the true undistorted
lung sound, it is difficult to evaluate the quality of the lung signal and its potential clinical interpretability.
The current study proposes an objective reference-free Auscultation Quality Metric (AQM) which incorporates
low-level signal attributes with high-level representational embeddings mapped to a nonlinear quality space
to provide an independent evaluation of the auscultation quality. This metric is carefully designed to solely
judge the signal based on its integrity relative to external distortions and masking effects and not confuse an
adventitious breathing pattern as low-quality auscultation. The current study explores the robustness of the
proposed AQM method across multiple clinical categorizations and different distortion types. It also evaluates
the temporal sensitivity of this approach and its translational impact for deployment in digital auscultation
devices.
1. Introduction

Lung sounds have been used for the diagnosis of pulmonary diseases
for centuries since the invention of stethoscopes [1]. With advances in
digital sensing and analysis technologies, Computerized Auscultation
Analysis (CAA) is becoming more popular and opening new frontiers
for telemedicine, automated diagnostics, and versatile healthcare [2,
3]. Rapid progress in deep learning techniques have revolutionized a
number of fields from computer vision to audio system [4–6], and have
contributed to important breakthroughs in computerized analysis of
adventitious lung sounds as pathological indicators [7–11]. Access to
digital auscultations is also facilitating the incorporation of lung sound
recordings into electronic health records and long-term monitoring and
longitudinal analysis of health data [12]. Such data is paving the way
for new possibilities for continued monitoring and further mining of
biomarkers and pulmonary sounds using deep learning technologies.

One of the limiting factors hampering progress in the field of mining
digital auscultations is data access and curation. The issue of data
is further compounded by the complexity and variability of clinical
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settings that stem from the clinical environment, the devices used,
as well as the training of the user. When a physician or healthcare
worker uses a stethoscope to ‘listen’ to breathing patterns from the lung,
much of the ambient environment is being picked up by the sensor
of the device. While a physician relies on their medical training to
ignore these ambient sounds and focus on the breathing patterns, a
computerized system requires additional processing in order to prop-
erly access these unadulterated lung sounds. Despite technological
advancement, data curation remains a major bottleneck particularly in
the field of digital auscultation. In addition to challenges commonly
faced with developing machine learning tools for medical screening
and diagnostics, the field of sound auscultation poses unique hurdles
with regard to the very nature of the signals acquired. One of the main
goals of ‘listening’ to body sounds is to identify abnormal breathing
patterns that are indicative of pathological conditions such as pneumo-
nia or bronchiolitis. These abnormal lung sounds such as wheezes (long
whistling sounds) and crackles (series of short explosive sounds) often
share spectrotemporal characteristics that are very similar to ambient
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noise making the two easily confusable or causing masking of abnormal
patterns by background noise.

Under controlled-environments, a number of studies have shown
that adventitious lung sounds have well understood properties that can
be used for screening or diagnosis of specific lung pathologies [13–
15]. However, auscultations collected in busy clinical settings tend to
show a great deal of variability depending on the ambient conditions
at the time of recording [16]. Moreover, lung sound recordings are col-
lected in a wide range of clinical settings which can induce variability
due to differences in setting (physician’s office, ER, rural clinic, etc.),
differences in devices and sensors, and the temperament of patients
especially when dealing with infants. This variability ultimately results
in a great deal of inconsistencies in auscultation quality. When an
expert ear is present (healthcare worker, physician), they can evaluate
this quality on the spot and make adjustments when possible (move
the position of stethoscope on the body, calm the patient down, close a
door if needed). However, this human interpretation can be a limiting
factor in order to curate data for automated processing and develop-
ment of diagnostic technologies establishing a need for auscultation
standardization [17]. The issue of the standardization of data quality
can be a stumbling block in order to automate both the acquisition as
well as preprocessing of large amounts of data, both for development
of learning algorithms as well as potential use for medical records and
long-term tracking.

One of the challenges facing the issue of data standardization is that
there is no agreed-upon definition as to what constitutes ‘‘high-quality’’
data in the domain of digital auscultations. While several denoising
algorithms exist to tackle the noise problem, it is important to have
a metric to gauge the quality of processed signals. A suitable quality
metric is necessary for evaluating denoising algorithms, as well as
appraising the utility of the signal in making a final diagnosis. There are
a few quality assessments focusing on heart auscultation which further
emphasize the importance of assessing the quality of the signal used
for the disease detection [18–20]. In the case of pulmonary signals,
obtaining an effective quality metric comes with additional consid-
erations. Since abnormal lung sounds have similar spectrotemporal
properties to ambient noise, the metric should not flag an abnormal
lung sound as low quality (or noisy) thereby disposing of critical diag-
nostic information. In previous work [21], we developed a pulmonary
auscultation quality metric derived from select spectral features and
data driven features using a linear regression model. In the present
work, we extend this framework by considering a larger set of highly
informative spectro-temporal features informed by feature selection
techniques. Moreover, realizing the non-linear trends of the ‘‘quality’’
space, we focus the mapping of a no-reference auscultation metric on a
nonlinear transformation of signal properties. We further show how this
quality metric follows the expected trends across different view points
of clinical assessment like level of agreement, surety, and level of in-
terpretability of the data. In addition, we analyze the robustness of this
metric across different types of noises, as well as explore the temporal
sensitivity of the metric in flagging a sudden-onset noise, which could
assist the user to recollect the auscultation data immediately.

The paper describes the data and proposed framework for the
Auscultation Quality Metric (AQM) in Sections 2 and 3. Section 4
analyzes the importance of features included in the algorithm. Section 5
discusses the results of experiments with different environments and
ambient settings. The trends in AQM across several clinical viewpoints
are presented in Section 6. Section 7 explores the temporal sensitivity
of the proposed method relative to transient maskers and Section 8
presents further discussion and implications of the proposed scheme.

2. Data and methods

2.1. Data acquisition and preprocessing

The analysis is based on signals collected by the Pneumonia Etiology
2

Research for Child Health (PERCH) study group [22]. Data is collected
using a Thinklabs ds32a digital stethoscope at a rate of 44.1 KHz and
acquired at 9 sites spanning over 7 countries (The Gambia, Mali, Kenya,
Zambia, South Africa, Bangladesh, and Thailand) during the period
between 2011–2014. PERCH lung sounds are often masked by ambient
noises expected in pediatric settings such as musical toys, background
chatter in the waiting room, children crying, vehicle sirens, and mo-
bile or other electronic interference. Subjects are pediatric patients
between 1–59 months old, hence intense crying often contaminates
the recordings. All signals are pre-processed by applying a low pass
fourth-order Butterworth filter with a cutoff at 4 kHz, downsampled to
8 kHz, centered to zero mean and unit variance, and denoised using
a noise-cancellation algorithm to deal with ambient noise, cries, and
heart sound contamination [23].

After pre-processing, a panel of eight listening experts (six pedi-
atricians and two pediatric-experienced physicians) assessed the aus-
cultations. In addition to identifying pathological indicators -if any-,
the panel provides additional descriptors about each recording: clinical
interpretability, presence of crying, presence of signal clipping. A total
of 13.3 hours of auscultation sounds (out of 40.42 hours of recordings)
are flagged as not clinically interpretable by at least one reviewer.
In case two reviewers assigned to a recording mark it as clinically
not-interpretable, it is delegated for further arbitration by up to two ad-
ditional reviewers. The listening panel further annotates interpretable
signals as either normal sounds or adventitious lung sounds (containing
either wheezing or crackles or both) following their definitions in
the American Thoracic Society guidelines, as well as flag segments of
intense crying in the recorded auscultations. Additionally, the panelists
assign a level of certainty to all annotated normal/abnormal labels
by marking them as ‘‘definite’’, ‘‘probable’’ and ‘‘non-interpretable’’
(see [24] for details on annotation methodology).

In addition to these markers, we conduct a second listening panel
asking two expert physicians to rate the quality of a recording. The
experts evaluate 92 randomly selected lung sound recordings compris-
ing definite interpretable signals as well as noisy versions that are
deliberately corrupted with controlled levels of noise using the BBC
sound effects database (chatter and crowd noises) [25] at signal to noise
ratios of −5, 10, and 20 dB. The rating of the lung sound quality is on

scale of 1 (clinically completely uninterpretable) to 5 (the highest
uality). The data comprises 10–20 seconds audio clips.

.2. Data selection for quality assessment

Segments for which a majority of expert listeners agree on the clini-
al diagnosis with high confidence as normal or abnormal are defined as
High Quality’ database (a total of 11.5 h) of auscultation signals. One
f the key aspects of a deployable auscultation quality metric is to not
iscard the abnormal lung sounds as poor quality while acknowledging
hey share spectral properties with the ambient noise. To attain this,

subset 𝛤𝐻𝑄
𝐸−𝑇 𝑟𝑎𝑖𝑛 (40%) of this database with an equal number of

ormal (no acute lower respiratory infections) and abnormal (acute
ower respiratory infection indicators such as wheezes and crackles)
ases is used to learn the data driven quality features which capture the
high-quality’ profile. A random subset of the high quality data (20%)
𝐻𝑄
𝑅−𝑇 𝑟𝑎𝑖𝑛 is further systematically corrupted with noise from BBC sound

effects database [25] and white noise. All the noises are added to the
auscultation audio with signal to noise ratios from −5 dB to 40 dB
in gradual increments of signal to noise ratio for training the quality
metric regression network in a cross-validation fashion. We ensure that
equal proportions of BBC ambient sounds, BBC speech sounds, and
white noise are used to capture the entire surround noise profile in
the Auscultation Quality Metric training. This metric is then tested on
the rest of the high quality data (5.52 h). The evaluation data set also
includes data with inconclusive agreement among reviewers (7.6 h) as
well as 8 hours of auscultation data in which the pediatric patient was

noted to be crying.
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Fig. 1. Overview of the Auscultation Quality Metric algorithm: A short-time analysis of the auscultation waveform is performed over a moving window. Each segment is then
converted to an auditory spectrogram followed by two analysis streams: an Acoustic analysis of spectral and temporal signal attributes, and an Embedding analysis of learned
higher-level interpretations of the signal space. These attributes are integrated using a non-linear quality network to formulate the final Auscultation Quality Metric.
2.3. Statistical analysis

The quality metric analyses are done on many clinical and care-
fully perturbed subsets of the entire auscultation data to evaluate its
robustness. To this end, we report the mean values and standard errors
of quality metric samples of each of these subsets. We then compare
each of the samples statistically against a normal clean subset. As the
samples failed normality tests, we perform Wilcoxon Rank Sum Test to
report the statistical significance of t-tests.

3. Auscultation quality metric (AQM)

Given an auscultation signal 𝑥(𝑡), the proposed quality metric per-
forms a quality analysis along two parallel paths (Fig. 1): (1) an acoustic
analysis which extracts low-level spectrotemporal profiles of the signal,
and (2) an embedding analysis which extracts high-level descriptors of
auscultations including normal and pathological patterns. These paths
are integrated using non-linear regression.

3.1. Acoustic analysis

The audio waveform 𝑥(𝑡) is segmented into 𝑊 segments 𝑥1, 𝑥2,… ,
𝑥𝑊 using a 2 seconds rectangular moving window with 50% overlap.
Each segment is mapped onto a time–frequency spectrographic rep-
resentation 𝑆𝑤(𝑡, 𝑓 ) as proposed in Chi et al. [26], then are further
processed to extract spectral and temporal characteristics of the signal
as outlined in Algorithm 1 (see [27] for more details). The specific
features of interest are:

• Average spectral energy (𝐸[𝑆]): is obtained by considering the
average adjacent frequency bin energy content in an auditory
spectrogram.

• Scale Average Energy (𝐸[�̂�]): represents the average energy
spread in the spectrogram over a bank of 28 log-spaced spec-
tral filters parameterized by the spectral modulation 𝛺 ranging
between 0.25 and 8 cycles/octave.

• High Modulation Rate Energy (𝐻𝑅): reflects the roughness of
the signal and is analyzed by averaging the energy content in
temporal modulation frequencies 𝜔 above 30 Hz.

• Low Modulation Rate Energy (𝐿𝑅): is derived from the energy
content in temporal modulation frequencies between 1 and 30 Hz.
3

• Pitch (𝐹𝑜): is calculated by selecting the best match of the spectral
profile of each time slice (𝑆𝑤(𝑡𝑜, 𝑓 )) from a set of pitch templates
(𝑇𝑘) and generating a maximum likelihood estimate to fit a pitch
frequency (𝑃𝑘) to the selection [28].

• Bandwidth (𝐵𝑊 ): quantifies the range of frequencies with non-
zero content in the signal and is computed as the weighted
distance of the spectral profile from its centroid.

• Spectral Flatness (𝑆𝐹 ): reflects the degree of uniformity in the
frequency response of a signal and is formulated as the geometric
mean of the spectrum divided by its arithmetic mean [29].

• Spectral Irregularity (𝑆𝐼): represents the variability in the fre-
quency content of the signal and is calculated as the difference in
strength between adjacent frequency channels.

3.2. Embedding features

A four-layer convolutional neural network autoencoder is trained
unsupervised on 𝛤𝐻𝑄𝑇𝑟𝑎𝑖𝑛 dataset which is considered clinically highly
interpretable to obtain a profile of high quality lung sounds. The
network comprises 80 3 × 3 kernel filters in the first two layers mapping
to feature space (encoder) and 80 2 × 2 kernel filters reconstructing
the spectrogram from feature space (decoder). ReLU activations in the
network ensure the non-linearity of feature space. This network is
trained using Adam optimizer at a learning rate of 0.001. The training
dataset 𝛤𝐻𝑄

𝐸−𝑇 𝑟𝑎𝑖𝑛 having an equal number of normal and abnormal lung
sounds ensures that adventitious breathing patterns are acknowledged
as ‘high-quality’ by the network instead of misrepresenting them as
poor quality. Once trained, two parameters are extracted from this
network as depicted in Fig. 1, and used to supplement the acoustic
features:

• Mean Feature Error (𝜇): A dense low dimensional embedding
(32 × 32) is obtained by passing the input spectrogram 𝑆𝑤(𝑡, 𝑓 )
(32 × 128 dimensions) through the first two layers of the CNN
Autoencoder. An average of all the training embeddings acts
as the high-quality ‘template’ of the auscultation data in the
feature space. The L2 distance of the unsupervised features of
the test signal from this average feature template is taken as the
corresponding Mean Feature Error.

• Reconstruction Error (𝜖): Given the Autoencoder is trained on
clean data, a good quality lung sound would be closer to high-
quality training data and gives better reconstruction. The L2
distance of the reconstruction with the original spectrogram in-
dicates the reconstruction error of the test recording on the
high-quality network and acts as the second embedding feature.
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Table 1
Mean and Standard Error of ratio of Absolute Error Values before and
after feature shuffling to evaluate the importance of each feature.

Shuffled feature Ratio of AE 𝑃 -Value

𝐸[𝑆] 16.74 ± 0.095 0
𝐸[�̂�] 5.90 ± 0.025 2.6𝑒−4

𝐻𝑅 10.69 ± 0.080 0
𝐿𝑅 9.76 ± 0.055 3.4𝑒−31

𝐹𝑜 4.17 ± 0.029 0.013
𝐵𝑊 16.04 ± 0.085 0
𝑆𝐹 3.09 ± 0.020 1.15𝑒−6

𝑆𝐼 5.7 ± 0.050 1.01𝑒−8

𝜇 6.6 ± 0.052 1.75𝑒−80

𝜖 1.96 ± 0.009 𝑒−3

3.3. Quality network

Both signal-centric and learned features (using the autoencoder) are
weighted non-linearly to get an overall quality metric. The ten features
are first mapped onto a log-scale and are further integrated using multi-
variate non-linear regression performed by an artificial neural network
(ANN) with ten input nodes and one output node, with a sigmoid
activation to scale outputs between 0 (clinically uninterpretable) and
1 (perfect quality). To train such a network in a supervised fashion,
regression labels for 𝛤𝐻𝑄

𝑅−𝑇 𝑟𝑎𝑖𝑛 are used ranging from 0 to 1 with 0
assigned to signals corrupted at −5 dB signal-to-noise ratio and 1 to
the un-corrupted high-quality lung sounds. The intermediate labels
between 0 and 1 gradually reflect increasing levels of signal to noise
ratios between −5 dB and 30 dB.

Throughout the analysis presented in this work, we map each
2 seconds signal segment onto an AQM score. For longer signals, AQM
scores are calculated using a moving window with 50% overlap, then
averaged across all windows of the signal to yield a single score. An
alternative approach of averaging the acoustic and embedding features
across the entire duration of the signal, and then mapping to a single
AQM score yields quantitatively similar results and is not presented
here.

4. Feature importance analysis

The choice of AQM features is carefully designed to balance signal
profile and informative representations that do not discard adventitious
auscultation events. To evaluate the contribution of each feature to the
final ‘quality metric’, we analyze feature importance using a permuta-
tion analysis [30]. Given the non-linear nature of the quality space, a
feature contributes both individually and through its interactions with
other features. Therefore, permutation analysis correctly captures the
importance addressing both these contributions. The approach system-
atically shuffles a given feature and explores the statistical impact of
such manipulation on AQM outcomes. If a feature does not contribute
significantly to the quality metric computation, there would be no
incremental difference in the error from true label before and after
shuffling a particular feature across the entire test set. Moreover, the
sample distributions of quality metric scores would not be significantly
different. Table 1 reports the tabulation of mean and standard errors
along with statistical significance of disruption by shuffling each of the
proposed features in the model. A ratio mean greater than 1 ensures the
incremental nature of error when shuffling a certain feature and hence
validates its importance. Moreover, to confirm this ‘positive contribu-
tion’ per feature is significant, the 𝑝-values reported in Table 1 are the
results of paired t-test on AQM samples before and after shuffling a
certain feature.
4

Fig. 2. Sensitivity of the obtained quality metric with the signal to noise ratio (SNR)
across a plethora of noises (both linear and non-linear).

5. Sensitivity to ambient noise

5.1. Additive distortions

Signal to Noise Ratio is the most commonly used metric to quantify
noise content in a signal. While this estimate requires information
about the energy of the noise signal, this is not readily available
in auscultation recordings. An evaluation of the relationship between
AQM and signal to noise ratio can be done with controlled con-
tamination where we systematically corrupt high quality lung sounds
with varying degrees of noise levels, using both stationary and non-
stationary profiles. We consider white noise as well as plausible noises
in a clinic or ER setting (chatter and ambient noises [25]). Fig. 2(a)
shows the correspondence between AQM and SNR levels for all 3
noise types. All 3 conditions (ambient noise, speech, and white noise)
reveal a high linear correlation of 0.787, 0.9289, and 0.9439 (𝑝-values:
5𝑒−4, < 𝑒−10, and 2𝑒−4) respectively. The high non-stationary nature
of ambient noise backgrounds creates highly variable signal profiles
which vary the masking levels in any given segment hence allowing
the auscultation to ‘peak through’ some moments of the signal leading
to a less linear correspondence between AQM and SNR values, which
are both averaged across many segments of 2 s-long signals.

5.2. Nonlinear distortions

The analysis also explores nonlinear clipping which is common
during lung sound collection, arising from excessive friction of the
transducer/diaphragm against the chest or clothing. The distortion is
further exacerbated with uncooperative patients, particularly in pedi-
atric settings. Due to its very transient nature, clipping shares a lot of
spectrotemporal characteristics of crackle sounds [31], so false classi-
fication of a normal as adventitious is more likely with a prominent
presence of clipping distortions. We evaluate the sensitivity of AQM
with increasing degrees of clipping, by gradually saturating the signal
envelope energy at different percentiles. Fig. 2(b) reveals a drastic
drop of AQM values following an initial clipping, then a gradual drop
afterward. It is worth noting that even at dramatic levels of clipping
(close to 0), zero crossings in the signal are still preserved hence
allowing some level of signal information to be maintained, though
at low AQM values of 0.2. The estimated AQM values across these
different ratios of clipping also exhibit a high linear correlation of
0.9570 (𝑝-value < 𝑒−10).

5.3. Inherent patient distortions

A third factor highly affecting auscultation quality is the state
of the patient, where agitation and crying (particularly in pediatric
patients) can affect signal integrity. Auscultations in presence of crying
are particularly challenging because signal profiles reveal music sound
characteristics that are easily confusable with wheezing sounds. Fig. 3
highlights the difficulties with this type of interference and shows an
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Fig. 3. Example of Wheeze and Cry spectrograms to visualize the similarity in spectral
cues between an abnormal lung sound and an inherent patient distortion that is not
disease indicative.

Fig. 4. Comparison of the performance of AQM across a multitude of clinical
annotations: agreement, abnormality, and the presence/absence of cries.

example of a wheezing segment on the left and a crying segment
visually depicting a similar spectral profile over time. Quantitatively,
these two examples reflect acoustic properties that make them hard to
distinguish. For instance, the empirical percentile (w.r.t the training
feature sample space used to obtain AQM) for Bandwidth is 9% for
the wheeze segment and 11% for the crying segment. Similarly, Pitch
values are highly confusable (Wheeze: 22% & Cry: 28%) showing that
both segments share similar spectro-temporal traits that make them lie
closer to the empirical acoustic distributions used to train the AQM
network. In contrast, the embedding analysis provides a counter-point
to highlight differences between these segments. In the example shown
in Fig. 3, the embedding ‘Mean Error’ reveals a closer match of the
wheezing segment (21%) vs a clear distinction with the crying segment
(72%) relative to training sample distributions. In order to quantify the
effect of crying segments in the entire dataset, we use annotations from
the expert listening panel identifying crying segments (see Methods
in Section 2), and evaluate the distribution of AQM values for cry
segments. Fig. 4-fourth box reports the variability of signal quality of
auscultation segments contaminated by severe crying, with a mean of
0.87 and a variance of 0.011. Comparing the signal quality of crying
segments against normal high-quality auscultations shows a statistically
significant difference (𝑝-value: 2.92𝑒−69 using the Wilcoxon rank sum
test).
5

Fig. 5. Evaluation of proposed nonlinear quality metric against Expert Clinical Opinion
(dashed line). AQM obtained by linear regression on a narrower feature set analyzed
in [21] is reported as a solid line.

6. Clinical evaluation

6.1. AQM clinical validation

To further validate the AQM predictions, we compare AQM scores
against the judgments of a panel of expert listeners on a quality scale
of 1 to 5. Fig. 5 reports the average score of expert opinions versus
AQM values on the same auscultation signals; and yields a high Pearson
correlation of 0.831 (p = 1.39𝑒−30). This correlation improves on a
published linear quality metric [21] which yields a correlation of 0.76
(𝑝 < 10−4) further supporting the need for a nonlinear mapping of
acoustic and embedding features into a quality space.

6.2. Quality of normal and abnormal auscultations

Fig. 4 reports the quality measures of the high quality data by
contrasting the average scores of normal versus abnormal lung sounds,
as evaluated by the panel of expert listeners. Both classes yield average
AQM values above 0.9 though there is a statistically significant differ-
ence between normals (mean 0.92) and abnormals (0.902) (Wilcoxon
rank sum test, 3.6𝑒−4). The slight drop in AQM values for abnormals is
expected given that they share spectral profiles of noise signals, though
the AQM also relies on high-level embeddings which maintain high
scores for both groups of signals.

6.3. Clinical disagreement

We also analyze the relationship between auscultation quality and
the clinical disagreement between expert reviewers. In many instances,
reviewers disagreed on whether a signal is normal or contained ad-
ventitious segments. The AQM score population mean of the record-
ings with disagreement is 0.9045 and is significantly lower (Wilcoxon
Rank Sum test 𝑝-value: 3.63𝑒−12) than the normal population with
clinical consensus (Fig. 4). Comparing the quality of disagreed record-
ings with abnormal recordings, the aggregate quality of abnormals is
slightly lower than the disagreed recordings (the difference in pop-
ulation means is 0.0026) and this difference is not significant. The
presence of ‘abnormal-like’ patterns might explain the disagreement in
the diagnosis in the first place. However, the AQM still maintains a high
value of > 0.9 confirming that the quality metric is primarily driven by
signal quality rather than clinical evaluation of the signals.
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Fig. 6. Analysis of variation in AQM score with a decrease in interpretability measured
by the number of annotators that have marked a recording clinically uninterpretable.

6.4. Non-interpretable auscultations

The presence of various forms of distortions and masking can render
an auscultation signal clinically uninterpretable. While this notion of
clinical interpretability is not binary, it partially reflects the integrity
of the auscultation signal in addition to the inherent variability in
human hearing and individual training of medical experts. We analyze
the drop in AQM values with degree of uninterpretability defined by
the number of expert reviewers marking a lung segment not clinically
interpretable. A signal where 4 reviewers agree as not clinically viable
is deemed more uninterpretable as compared to a signal where only
one reviewer expressed dissatisfaction with the signal quality. Fig. 6
reveals a gradual drop in signal quality with an increased level of
uninterpretability. A bootstrapping analysis to evaluate the inclination
slope across 50 random sub-samplings of pools of 100 recordings
reveals a statistically-significant negative drop −0.2208 ± 0.05.

7. Temporal sensitivity

One of the main uses of an auscultation quality measure is the
ability to flag a segment on the fly (while being recorded) and urge the
clinician to re-acquire the signal under better circumstances (calming
down the patient, moving to a quieter room, stabilizing the stethoscope
better). Given an analysis segment of 2 s with 50% overlap, we consider
a sudden onset of noise and evaluate whether the AQM shows a con-
comitant drop. Fig. 7-inset shows a noise profile at −5 dB introduced
in a high quality signal. We evaluate the ‘response time’ of the AQM
over a wide range of such signals with noise introduced at 𝑡0 = 0 s.

For this experiment, we corrupt signals with noises from BBC
Database and white noise at a −5 dB signal-to-noise ratio. A random
onset after the first two and before the last four seconds of the signals is
chosen for this corruption. Ensuring the first two seconds always have
‘high-quality’ helps capture the fall in AQM scores by starting at an
optimal value. Since the window is of 2-seconds, having noise contam-
ination at least twice its size would confirm the complete overlap of the
moving window and noise contaminated signal achieving the minimum
possible AQM. This is validated by the statistical insignificance of
the minimum AQM of signals corrupted with noise durations above
4 seconds and of signals completely corrupted. In Fig. 7, we notice the
average trend of AQM moving score from two-seconds before the onset
of noise. An average 60% drop in the AQM score is observed within
2.3 seconds of onset.
6

Fig. 7. Aggregate analysis of the sensitivity of the obtained AQM to the onset of
corruption in recordings. An example of an audio waveform with such corruption from
the onset is presented in the inset.

8. Discussion

The need for an auscultation quality metric stems from the presence
of extreme variability in the data collection of auscultation signals
and a lack of standardization. Although the denoising algorithms try
to suppress the environmental noise, extreme noises like the subject’s
cry, reverberation, and electronic stethoscope sounds in a busy clinical
environment are not completely eliminated [16]. It is to be noted that
several other metrics like Segmental Signal to Noise Ratio, Normalized
Covariance Metric, and Coherence Speech Intelligibility Index II like
in the case of [32] evaluate the quality of lung sounds. But all these
metrics would need access to the noise channel which is an impractical
expectation to have for the recorded auscultation signals. The designed
quality metric is working on par with these noise-dependent criteria
in our analysis without actually looking at the original signal on our
artificially corrupted dataset.

Which aspects of auscultation are important for quality judgment? Eight
spectrotemporal features are chosen to best capture the quality profile
of a recording in conjunction with its spectral properties. In [33],
the authors observed a much better classification for normal and ab-
normal lung sounds on features that capture the rate-scale cortical
representation of the recording. To capture this comprehensive profile
of differences in normal and abnormal lung sounds, we look at both the
rate of change of frequency content and how narrowband or broadband
(scale) the spectral content is. Therefore, along with the entire spectral
energy of the recordings which tends to be higher in the presence
of noise, we also consider the energy content at different scales and
rates. Pitch is considered as one of the features because it best captures
background chatter, a common environmental noise. Prolonged abnor-
mal lung sounds with a duration of more than 250 ms (wheezing) fall
under narrowband processes while short explosive sounds (crackles)
were found to be broadband signals. Bandwidth is included to account
for this vast range of clean abnormal signals. Spectral Flatness is the
ratio of a geometric mean and an arithmetic mean. Since geometric
mean is at least as large as the arithmetic mean, a maximum Spectral
Flatness measure of one is obtained only when each frequency channel
has the exact same response over time (ex: white noise). Auscultation
signals by themselves have a frequency range of 100 to 1000 Hz
with a dip at 600 Hz. Considering the cut-off frequency of recordings
is 4000 Hz, their profile is in no way uniform. In the presence of
high-frequency noises, the frequency content gets flatter increasing the
computed spectral flatness. In the same vein, we design data-driven
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features to encapsulate the contrast with low-quality auscultations from
high quality sounds (both normal and abnormal). For an autoencoder
capturing the profile of high-quality data, we expect a higher recon-
struction error (𝜖) when a poor quality signal is sent. Similarly, given
the compact nature of feature space, the mean feature profile of high
quality signal and a poor quality signal feature would be farther apart
and this distance is reflected by Mean Feature Error (𝜇).

8.1. Conclusion

In this work, we improve upon the features looked at to give a better
assessment of auscultation quality and more importantly, obtain the
auscultation metric in a non-linear fashion. This is evaluated by ana-
lyzing the Quality Metric on unseen non-additive noises like clipping
in the artificially contaminated analysis. We further look at the trends
of the obtained metric on clinical observations of expert annotators
indicating the degree of intelligibility of the recordings or the presence
of cries. Since abnormal lung sounds share similar spectrotemporal
properties as the ambient noise, a slight decrease in their auscultation
quality scores is observed compared to those of the normal recordings.
But the overall scores are still high indicating a high quality signal.
Similar to the former analysis, when looking at the degree of agreement
amongst the reviewers on the final assessment of the type of lung sound,
recordings with disagreement have slightly lower scores compared to
the highly agreed upon data but higher than those of agreed upon
abnormal lung sounds indicating adventitious like activity paved way
to a slightly lower AQM. However, disagreement on data does not
necessarily imply poorer quality which is validated by the overall
higher quality metric. We delve into the direct correlation between
low-quality scores and high clinical uninterpretability. The temporal
sensitivity of the developed AQM is reviewed so that it can be used as
a real-time indicator for the data collector to recollect a signal, in the
case of integrity corruption. This no-reference nonlinear auscultation
specific quality metric is robust to a plethora of environmental noises,
complies with the clinical adjudication, and is sensitive to temporal
corruptions ensuring its deployment potential to act as an entity to
oversee auscultation collection.
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Algorithm 1 Algorithm for Spectral Features
1: for 𝑤 = 1 ∶ 𝑊 do
2: for 𝑡 = 1 ∶ 𝑇 do
3: Initialize Spectral Aggregates

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑀𝑒𝑎𝑛 = 0

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑀𝑒𝑎𝑛 = 1

𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 = 0

𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐷𝑖𝑓𝑓 = 0

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 = 0

4: for 𝑓 = 1 ∶ 𝐹 do
5: Compute Spectral Aggregates

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑀𝑒𝑎𝑛 +=
𝑆𝑤(𝑡, 𝑓 )

𝐹

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑀𝑒𝑎𝑛 ∗= 𝑆𝑤(𝑡, 𝑓 )
1
𝐹

𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 += 𝑆𝑤(𝑡.𝑓 )2

𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐷𝑖𝑓𝑓 += (𝑆𝑤(𝑡, 𝑓 + 1) − 𝑆𝑤(𝑡, 𝑓 ))2

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 += 𝑓 ∗ 𝑆𝑤(𝑡.𝑓 )2

6: end for
7: for 𝑓 = 1 ∶ 𝐹 do
8: Compute Spectro-temporal Features

𝑬[𝑺] += 1
𝑊

𝑆𝑤(𝑡, 𝑓 )

𝑬[�̂�] += 1
𝑊

8
∑

𝛺=0.25
𝑆𝑤(𝑡, 𝑓 ) ∗ ℎ(𝑓,𝛺)

𝑬[𝑯𝑹] += 1
𝑊

∑

𝜔=30
𝑆𝑤(𝑡, 𝑓 ) ∗ 𝑔(𝑡, 𝜔)

𝑬[𝑳𝑹] += 1
𝑊

30
∑

𝜔=1
𝑆𝑤(𝑡, 𝑓 ) ∗ 𝑔(𝑡, 𝜔)

𝑩𝑾 += 1
𝑊

|𝑓 − 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠
𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 | ∗ 𝑆𝑤(𝑡, 𝑓 )

𝐹 ∗ 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑀𝑒𝑎𝑛
9: end for

𝑺𝑭 += 1
𝑊

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑀𝑒𝑎𝑛
𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑀𝑒𝑎𝑛

𝑺𝑰 += 1
𝑊

𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒

10: end for

𝑭𝒐 += 1
𝑊

𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑘𝑆𝑤 .𝑇𝑘

11: end for

Appendix. Acoustic feature extraction algorithm

See Algorithm 1.
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