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ABSTRACT

Sentiment analysis has traditionally leveraged information
from text data. More recently, it has become increasingly
clear that multimodal data provides a rich space to drasti-
cally boost interpretation of human sentiments by harnessing
information across multiple modalities. In this study, we in-
corporate pre-trained feature extractors and propose a multi-
task training strategy to improve modality representations for
Multimodal Sentiment Analysis (MSA). The experimental
results on the CH-SIMS v2 dataset demonstrate the superior
performance of the proposed system compared to existing
state-of-the-art methods, validating the effectiveness of our
proposed approach. Furthermore, our framework reduces re-
liance on textual data, achieving competitive outcomes even
when utilizing only auditory and visual modalities.

Index Terms— Sentiment Analysis, Multimodal Fusion,
Transfer Learning

1. INTRODUCTION

Sentiment analysis, a rapidly evolving field in the realm of
artificial intelligence, enables the interpretation of subjective
information within textual data. In recent years, this disci-
pline has taken a step forward, leading to the emergence of
Multimodal Sentiment Analysis (MSA). MSA extends be-
yond mere textual analysis to incorporate other modalities
such as audio and visual cues, thus providing a comprehen-
sive understanding of the user’s sentiment [1]. This is particu-
larly pertinent in the context of opinion videos where different
modes of expression converge to form a holistic perspective.
With the boom in digital content, especially in the form of
videos, understanding user sentiments is no longer confined
to text but has transcended to include auditory and visual ele-
ments.

As in any emerging field, various exciting aspects of MSA
are being established. In some studies, different modalities
and corresponding features have been identified as useful for
MSA [2, 3]. New datasets consisting diverse categories of
modal data from various sources and carefully curated an-
notations have been published to further the efforts in MSA
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research [1, 4, 5, 6, 7]. Deep MSA models with state-of-the-
art structures have been developed to enhance the efficiency
and accuracy [8, 9, 10, 11, 12]. As performance improves,
various MSA applications, including human-computer inter-
action (HCI), emotion recognition, educational feedback, and
recommendation systems, have been introduced [13, 14].

Despite this growing interest, MSA studies remain lim-
ited in a number of ways. First, there is a predominant
over-reliance on the textual modality. Some studies show a
significant drop in classification accuracy when the textual
modality is absent [15, 16]. This phenomenon, called text-
predominance, violates the motivation behind integrating
multimodal resources [4]. Nonetheless, some studies even
follow the text-centric strategy to design multimodal fusion
strategies [17]. While the textual modality provides rich in-
formation that directly reflects the underlying emotional state
of a subject, text-predominance highly constraints the appli-
cability of MSA systems, effectiveness and reliance on poten-
tially noisy textual inputs. For instance, the textual modality
is sometimes imperfect because of meaningless interjection
words or automatic speech recognition errors. Furthermore,
as stated in [5], unimodal sentiment is not always consistent
with the unified multimodal sentiment.

A true multimodal approach to sentiment analysis must
leverage the richness of data from multiple modalities and
ensure effective integration without favoring one modality
over another. The text-predominance issue in MSA involves
challenges related to utilizing auditory and visual modali-
ties, which can be summarized as follows: (1) Inadequate
optimization of auditory and visual representations in MSA:
Previous studies rely on low-level hand-crafted acoustic and
facial features for auditory and visual information encoding
[6, 15, 16], while high-level textual embeddings from pre-
trained language models are widely used as textual features
[5, 17]. While these hand-crafted audio and visual features
are rich in elements conducive to sentiment analysis, learning
sentiment cues is substantially easier from high-level tex-
tual embeddings generated by pre-trained language models
[5, 15]. This discrepancy creates an imbalance in feature
representation, causing MSA models to overly depend on
textual features rather than considering auditory and visual
cues holistically. Improved feature extraction and sentiment
cues learning for auditory and visual modalities are necessary
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to address this challenge. (2) Constraints in emotional cues
from auditory and visual behaviors: Limited emotional cues
in auditory and visual modalities, such as neutral expres-
sions and monotone speech, may not sufficiently contribute
to overall sentiment understanding. Discordance between
unified multimodal annotations and single modality senti-
ments further complicates the learning of visual and auditory
features. Introducing unimodal annotations and incorporat-
ing subtasks for unimodal sentiment recognition can enhance
the learning of emotion-laden auditory and visual representa-
tions. To address this, researchers have proposed introducing
unimodal annotations and adding subtasks for unimodal sen-
timent recognition, enhancing the learning of emotion-laden
auditory and visual information [5, 6, 18].

In this work, we propose a new perspective for multi-
modal sentiment analysis1, and our contributions are sum-
marised as follows: (1) To improve the representation of
auditory and visual modalities, we use pre-trained speech
and video models to operate on par with text channel for a
true multimodal integration. (2) To address the issues of con-
vergence imbalance and overfitting when jointly fine-tuning
multiple large models, we propose a two-step multi-task
training strategy: each feature extractor is first fine-tuned on
unimodal sentiment analysis, and these feature extractors are
then frozen and incorporated into the multimodal sentiment
analysis system. (3) We conduct a series of ablation studies
to verify the efficacy of the proposed MSA method and to
investigate the factors influencing MSA performance.

2. RELATED WORK

2.1. Feature Extractors and Pre-trained Models

In a typical MSA application, the first step involves fea-
ture extraction to get essential information from raw multi-
modal data. In recent years, large pre-trained models have
demonstrated their efficacy in providing crucial features for
downstream tasks such as textual sentiment analysis, speech
emotion recognition, and human action recognition. When it
comes to MSA, for textual data, embeddings from pre-trained
models like BERT are commonly favored over predefined
features [19]. However, when dealing with auditory and
visual data, a static set of hand-crafted features is usually
employed for each modality. In the case of audio, Librosa
and openSMILE are often utilized to extract features such
as Chroma, MFCC, and PLP cepstral coefficients [20, 21].
For visual data, OpenFace has gained popularity for its abil-
ity to record facial landmarks, head poses, and gazes within
videos [22, 23]. Some recent Speech Emotion Recognition
studies have applied pre-trained speech models [24, 25] , but
the potential of pre-trained speech and video models remains
largely untapped in MSA applications.

1Source code: https://github.com/JHU-LCAP/BoostingMSA

2.2. Multimodal Fusion Methods

With the embeddings extracted for all modalities, the down-
stream task is handled by a fusion method that learns the
interaction among the modalities. Depending on the task
at hand, one of two possible fusion methods is generally
adopted, either global-scaled, or sequential fusion methods
[26]. Global-scaled fusion aims to understand multimodal
interactions by observing only the global embeddings from
the various modalities. One example of global-scaled fusion
method applies tensor computations [26]. This approach
might incorporate low-rank tensor approximations and reg-
ularization, creating expressive feature embeddings without
extra training parameters. Compared with global-scaled fu-
sion methods, sequential fusion methods based on recurrent
neural networks and cross-attention transformers are utilized
to simultaneously capture both global and local informa-
tion to improve the efficiency of multimodal fusion [27, 28].
While these methods have exhibited excellent performance,
they require additional trainable parameters and could cause
performance degradation when using pre-trained models [25].

3. METHODOLOGY

3.1. Model Pipeline

As illustrated in Fig 1, the proposed MSA framework in-
cludes three main components: unimodal feature extractors,
multimodal feature fusion blocks, and decision-level fully-
connected blocks for sentiment predictions. In the initial
phase, individual signals are processed by their corresponding
feature extractors, leveraging pre-trained models. Next, the
fusion module combines high-level embeddings from differ-
ent modalities into a comprehensive multimodal embedding,
allowing the model to capture interactions and dependencies
across modalities. In the final stage, unimodal features are fed
into their respective prediction blocks for unimodal sentiment
analysis, while the multimodal embeddings are used by the
multimodal prediction block for the multimodal sentiment
prediction.

3.2. Feature Extractors

To address the text-predominant problem, we expand upon
the use of pre-trained language models by incorporating pre-
trained speech and video models in our MSA system. The
configuration of our feature extractors is as follows:

Text: In line with [17, 5], we utilize the pre-trained BERT
model for processing transcriptions. Each transcription, in-
cluding a [CLS] token designed to learn the global context
of the sentence, is first tokenized by the BERT tokenizer and
then fed to the BERT model to obtain sequential embeddings.
We employ the last hidden layer of BERT for both unimodal
and multimodal sentiment analysis.
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Fig. 1. (a) The framework of multimodal multi-task MSA. FC network denotes the fully connected neural network. The
variables yk, where k ∈ m, t, a, v, represent the sentiment scores for each unimodal or multimodal task. (b) Three fusion
methods used in this study.

Audio: We deploy HuBERT, a large-scale pre-trained
speech model [29] with demonstrated efficacy in speech
emotion recognition [30], as our auditory feature extractor.
Audio waveforms are resampled to 16kHz and padded and
then processed by the pre-trained speech model. Similar to
the text model, we use the embeddings from the last layer. To
create global embeddings for the entire audio clip, we apply
average time pooling to the sequential embeddings.

Visual: Since facial expressions are usually considered
to have rich emotional information and there could be multi-
ple speakers in the video scenes [5], we first employ TalkNet
[31] as an Active Speaker Detection (ASD) tool to extract the
speaker’s facial video within each video clip. We then use
the Video Swin Transformer [32], pre-trained on the Kinet-
ics dataset [33], as our visual feature extractor. This choice
is driven by the Kinetics dataset’s diversity in human-centric
actions, including facial expressions like laughing and crying.
We opt for a 128 × 128 resolution for the facial video and a
frame rate of 10 fps, balancing performance and computa-
tional demands. To extract time sequence embeddings and
global embeddings for the entire video clip, we apply average
spatial and temporal pooling, respectively.

3.3. Multimodal Fusion Network

Fusion mechanisms have been recognized as a crucial com-
ponent in previous MSA frameworks. In the proposed sys-
tem, we explore the performance of three representative fu-
sion strategies when using the proposed feature extractors.

SF: Concatenation Fusion, referred to as Shallow Fusion

due to its simplicity, is a basic strategy that concatenates
global features from different modalities. It represents one of
the most straightforward fusion methods, extensively used in
various multimodal fusion studies. In our MSA system uti-
lizing shallow fusion, we concatenate the global embeddings
from the three feature extractors to form the multimodal
feature, which is then passed to the subsequent prediction
block.

TFN: The Tensor Fusion Network [8] explicitly models
both view-specific and cross-view dynamics by creating a
multidimensional tensor based on the outer product, which
can capture interactions across one, two, or all three modal-
ities. Like Shallow Fusion, TFN does not introduce any
additional trainable parameters.

MulT: The Multimodal Transformer [28] employs di-
rectional pairwise cross-modal attention to facilitate frame-
level interaction among the three modalities. This approach
encourages interaction between two multimodal sequences
across different time steps, utilizing pairwise cross-modal
attention to subtly adapt one modality’s streams to another.
In the case of fusing three modalities, the Multimodal Trans-
former requires six bimodal cross-attention blocks and three
unimodal self-attention blocks, which results in a large num-
ber of additional trainable parameters compared to both SF
and TFN.

3.4. Multi-task Learning

In our approach, besides the primary unified multimodal sen-
timent prediction, we utilize three unimodal sentiment pre-
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diction subtasks connected to each feature extractor for joint
optimization of feature extractors. These subtasks aim to en-
hance the MSA system’s ability to recognize fine-grained sen-
timents, while also assisting large pre-trained models to better
adapt to the scenarios in which unimodal and multimodal sen-
timents are not consistent and prevent overfitting. We use the
L1 loss for supervision for both the unimodal tasks and the
main multimodal task as follows:

Lk =
1

N

N∑
i=1

|ŷik − yik| (1)

where k ∈ m, t, a, v, N is the number of supervised in-
stances, y is the ground truth sentiment, and ŷ is the model
prediction.

When it comes to the joint multi-task training, the three
subtasks and the main task are trained simultaneously. The
final sentiment regression loss is formulated as the weighted
average of the unimodal and multimodal tasks:

L=

∑
k

αkLk (2)

where α is the hyper-parameter controlling the contribution
of unimodal and multimodal tasks.

However, directly fine-tuning large pre-trained models
through joint multi-task learning can lead to convergence
imbalance and overfitting which can limit the performance
of fusion methods with additional trainable parameters. To
overcome these challenges, we propose a two-step fine-tuning
strategy. In the first stage, the pre-trained models are indi-
vidually fine-tuned for their respective unimodal sentiment
analysis tasks. In the second stage, the pre-trained models are
frozen and integrated into the fusion model for multimodal
sentiment analysis, with only the parameters of the fusion
block and the fully connected block for the main task being
updated.

4. EXPERIMENTS

4.1. Datasets

We leverage two datasets to evaluate the proposed MSA sys-
tem and compare it with existing state-of-the-art methods.

4.1.1. MOSI

The MOSI dataset introduced by Zadeh et. al. [6] contains
videos sourced from the YouTube platform. The videos have
varying lengths, ranging from 2 to 5 minutes, and the dataset
contains a total of 93 videos. These videos are mainly videos
uploaded by YouTube users to express their opinions on dif-
ferent topics. Despite having diverse ethnic backgrounds, all
speakers communicated in English. Along with the raw clips,
each of the clip underwent manual transcription to extract

spoken words. Finally, a single sentiment label linearly rang-
ing from -3 to +3 is given to each clip by averaging human
annotators’ responses.

4.1.2. CH-SIMS v2

Liu et. al. [4] introduced the second version of the CH-SIMS
dataset. It contains 4402 supervised and 10161 unsupervised
video segments. The average length of the segments is around
4.4 seconds. The sentiment annotations are ranging from -1
to +1. Unlike the MOSI dataset, which only assigns one mul-
timodal sentiment label per video clip, CH-SIMS v2 provides
additional sentiment labels corresponding to the three modal-
ities, enabling multi-task learning. These videos, drawn from
various Chinese TV shows, offer diverse content, characters,
and background scenes, making the dataset ideal for validat-
ing the strength of the proposed MSA system and conducting
ablation studies.

4.2. Experimental Details

All experiments are conducted on a single NVIDIA RTX
3090 GPU. Models are trained using the Adam optimizer
with learning rates set to 10−5 for pre-trained feature extrac-
tors and 10−4 for the other components. The checkpoints
for BERT and HuBERT are from HuggingFace [34], and the
checkpoint for the Video Swin Transformer is from [32].

To evaluate MSA frameworks, results are analyzed in both
classification and regression tasks. For classification, binary
classification accuracy (Acc2) and F1 score are used to gauge
the accuracy of basic sentiment polarity prediction, i.e., pos-
itive or negative classification. For the CH-SIMS v2 dataset,
we additionally utilize Acc2 weak to evaluate model perfor-
mance with weak emotion instances labeled within the range
[-0.4, 0.4]. For regression tasks, we report the mean absolute
error (MAE) and Pearson correlation (Corr).

4.3. Performance Comparisons

We evaluate the performance impact of different feature ex-
tractors by grouping state-of-the-art MSA frameworks into
two categories: those using baseline feature extractors and
those employing our proposed feature extractors. In the base-
line systems, BERT handles textual modality, while hand-
crafted features as outlined by [5, 35] are used for auditory
and visual modalities. In our proposed system, we employ
BERT, HuBERT, and Video Swin Transformer for textual, au-
ditory, and visual modalities respectively. The results on the
CH-SIMS and MOSI datasets are demonstrated in Table 1 and
Table 2.

Here, we consider two specific frameworks: MAG-BERT
[36] and AV-MC [4]. MAG-BERT integrates a Multimodal
Adaptation Gate (MAG) with BERT to enable multimodal in-
formation fusion. While it exhibits top-level performance, it
also has a text-predominance issue as it overlooks the roles
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Table 1. Performance comparison of multimodal sentiment analysis on CH-SIMS v2.0 dataset.
Fusion Method Subtask Acc2↑ Acc2 weak↑ F1↑ MAE↓ Corr↑

Baseline Feature Extractors: BERT[T] Hand-crafted[A] Hand-crafted[V]
SF Single-task 73.95 69.13 73.84 0.381 52.19

TFN Single-task 76.51 66.27 76.31 0.323 66.65
MulT Single-task 79.50 69.61 79.59 0.317 70.32

MAG-BERT Single-task 79.79 71.87 79.59 0.334 69.09
SF Joint Multi-task 78.04 71.59 78.44 0.326 65.80

TFN Joint Multi-task 80.26 71.07 80.33 0.318 70.54
MulT Joint Multi-task 82.76 73.41 82.51 0.293 70.32

AV-MC Mix-up + Joint Multi-task 82.50 74.54 82.55 0.297 73.17
AV-MC (Semi) Mix-up + Joint Multi-task 83.46 74.54 83.52 0.286 76.04

Proposed Feature Extractors: BERT[T] HuBERT[A] Swin[V]
SF Single-task 82.12 73.00 82.09 0.287 72.63

TFN Single-task 82.12 73.26 82.14 0.288 71.63
MulT Single-task 82.02 72.23 81.98 0.279 76.03

SF Joint Multi-task 86.06 78.14 85.99 0.252 78.35
TFN Joint Multi-task 85.95 77.37 85.94 0.240 80.69
MulT Joint Multi-task 83.72 75.06 83.68 0.272 73.14

SF Two-step Multi-task 86.17 79.69 86.17 0.252 78.28
TFN Two-step Multi-task 86.80 78.66 86.77 0.249 79.98
MulT Two-step Multi-task 87.02 80.20 87.01 0.246 80.05

Table 2. Performance comparison of multimodal sentiment
analysis on MOSI dataset.

Fusion Method Acc2↑ F1↑ MAE↓ Corr↑
Baseline Features & Single Task Training

SF 79.39 79.45 0.945 67.5
TFN 78.02 78.09 0.971 65.2
MulT 80.21 80.22 0.912 69.5

MAG-BERT 83.41 83.47 0.761 77.6
Proposed Features & Single Task Training

SF 83.53 83.55 0.785 75.8
TFN 82.01 81.99 0.866 69.9
MulT 80.64 80.72 0.905 66.7

of auditory and visual modalities during the fusion stage [17].
AV-MC, on the other hand, employs data augmentation via
mix-up [37] for hand-crafted audio and visual features, and its
variant AV-MC (Semi) further incorporates semi-supervised
data for pre-training. Despite its use of a straightforward
shallow fusion strategy, it represents a state-of-the-art MSA
framework for the CH-SIMS v2 dataset.

Table 1 outlines the results of the experiments conducted
on the CH-SIMS v2 dataset. The key observations include:
(1) In both multi-task and single-task scenarios, models with
our proposed feature extractors significantly outperform sys-
tems using baseline feature extractors. Particularly, MAG-
BERT exhibits inferior performance due to the inability to
utilize multimodal annotations. Although AV-MC achieves
some improvements through data enhancement, it still lags

behind the proposed method. (2) Under the single-task or
joint multi-task training, global-scaled fusion methods SF and
TFN perform better with pre-trained models while sequential
fusion method MulT excels with handcrafted features. (3)
The two-step multi-task training, proposed for the pre-trained
feature extractor, further improves the MSA performance. In
this scenario, MulT outperforms SF and TFN. (4) Systems
engaged in multi-task settings, whether joint or two-step, per-
form superior to those in single-task settings. (5) Multi-task
training also improves Acc2 weak scores and regression per-
formance, signifying the importance of unimodal annotations
for fine-grained sentiment analysis.

Table 2 presents the experimental results on the MOSI
dataset. As the MOSI dataset does not supply unimodal
sentiment annotations, the systems are trained using multi-
modal sentiment annotations. The system integrating our pro-
posed feature extractors with Shallow Fusion demonstrates
marginally superior classification performance compared to
benchmarks but falls short in terms of regression perfor-
mance. Given the experiments conducted on the CH-SIMS
v2 dataset, we believe the performance can be enhanced
further if unimodal annotations were accessible.

5. ABLATION STUDIES AND DISCUSSIONS

5.1. Comparison of Feature Extractors

Tables 1 and 2 highlight that by employing our proposed fea-
ture extractors—pre-trained models for all modalities—we
achieve superior MSA performance compared to conven-
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Table 3. Results for the ablation study on feature extractors
for unimodal sentiment analysis on CH-SIMS v2.0 dataset.

Feature Extractor Acc2↑ F1↑ MAE↓ Corr↑
Textual Input → Textual Sentiment

� BERT 88.48 88.50 0.240 78.26
BERT 90.06 90.07 0.228 79.91
Auditory Input → Auditory Sentiment

openSMILE 60.09 59.67 0.425 23.17
� HuBERT 72.04 72.05 0.329 51.71

HuBERT 79.45 79.44 0.277 65.85
Visual Input → Visual Sentiment

OpenFace 78.02 77.90 0.312 58.73
� Swin3D 73.52 73.43 0.353 46.09

Swin3D 86.76 86.73 0.247 74.72

tional baseline feature extractors. This reflects a general
enhancement in the performance of all the frameworks. To
verify the contribution of each modality, we conduct experi-
ments on each individual modality subnet.

Table 3 exhibits the performance increase for each modal-
ity when employing our proposed feature extractors. Here,
the snowflake symbol � indicates a pre-trained model of
which the parameters remain frozen. A pre-trained model
without the snowflake symbol signifies that it undergoes fine-
tuning. For all modalities, the fine-tuned pre-trained models
yield the best results. Specifically, for the audio and visual
modalities, there are notable improvements in both classifi-
cation and regression scores when a fine-tuned pre-trained
model is used instead of hand-crafted features.

5.2. Comparison of Unimodal, Bi-modal and Tri-modal
Sentiment Analysis

In this study, all MSA frameworks tested in Tables 1 and 2 are
tri-modal, utilizing data from three modalities. However, in
scenarios where comprehensive multimodal data is not avail-
able, the performance of existing MSA frameworks could be
significantly impacted, particularly when textual data is ab-
sent. The feature extraction strategy we propose aim to ad-
dress this issue by improving the representation of auditory
and visual modalities to approximate the textual representa-
tion. We evaluate the MSA framework using various combi-
nations of unimodal, bi-modal, and tri-modal features. The
feature extractor undergoes direct fine-tuning for unimodal
cases, while two-step multi-task training and the MulT fusion
are applied for bi-modal and tri-modal cases.

The results in Table 4 demonstrate that tri-modal features
achieve the best performance, indicating the advantages of
utilizing multiple modalities in MSA. Even though the tex-
tual modality plays an important role in MSA, the absence of
textual modality does not lead to a huge decrease in perfor-
mance. This suggests that the text-predominance issue can be
alleviated by incorporating the proposed feature extractors.

Table 4. Unified multimodal sentiment analysis using uni-
modal, bi-modal and tri-modal features on CH-SIMS v2.0
dataset.

Modality Acc2↑ F1↑ MAE↓ Corr↑
T → M 80.00 79.88 0.339 64.66
A → M 78.72 78.50 0.317 64.76
V → M 78.29 78.02 0.340 62.64

T+A → M 83.51 83.50 0.283 70.95
T+V → M 85.31 85.33 0.261 77.96
A+V → M 81.80 81.79 0.302 69.80

T+A+V → M 87.02 87.01 0.246 80.05

5.3. Effectiveness of Multi-task Training

Table 1 highlights the benefits of multi-task training for MSA
systems. The benefits of multi-task training over single-task
training are evident in both systems using hand-crafted fea-
tures and those using pre-trained models. In addition to be-
ing able to significantly improve binary accuracy, multi-task
training brings significant improvement to the regression met-
rics, which implies that multi-task has an important role for
fine-grained sentiment recognition.

5.4. Comparison of Multimodal Fusion Strategies with
Pre-trained Feature Extractors

As discussed in Section 4.3, under single-task and joint multi-
task training with the proposed feature extractors, frameworks
employing global-scaled fusion methods exhibit superior per-
formance compared to systems utilizing sequential fusion
methods. However, in the case of two-stage multi-task train-
ing where the pre-trained models are frozen, the sequential
fusion method MulT provide better performance. This find-
ing suggests that MulT’s additional trainable parameters
render the model susceptible to overfitting when combined
with trainable pre-trained feature extractors. Nevertheless,
employing the two-step multi-task training approach, which
freezes the fine-tuned feature extractors during fusion model
training, helps mitigate overfitting and unlocks the full capa-
bilities of MulT.

6. CONCLUSIONS

The proposed framework effectively improves auditory and
visual feature representations and achieves state-of-the-art
performance on the CH-SIMS v2 dataset. Key findings from
our experiments include the performance gains obtained by
using the proposed feature extractors, the superiority of multi-
task training over single-task training, and the improvement
led by the two-stage multi-task training strategy when em-
ploying pre-trained feature extractors. In the future, we would
like to design efficiency fine-tuning method for pre-trained
feature extractors on datasets without unimodal annotations.
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[21] Florian Eyben, Martin Wöllmer, and Björn Schuller,
“opensmile - the munich versatile and fast open-source
audio feature extractor,” in Proc. ACM Multimedia
(MM). ACM, 2010, pp. 1459–1462.
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