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Studies of auditory scene analysis have traditionally relied on paradigms using artificial sounds—and conventional
behavioral techniques—to elucidate how we perceptually segregate auditory objects or streams from each other. In
the past few decades, however, there has been growing interest in uncovering the neural underpinnings of auditory
segregation using human and animal neuroscience techniques, as well as computational modeling. This largely reflects
the growth in the fields of cognitive neuroscience and computational neuroscience and has led to new theories of how
the auditory system segregates sounds in complex arrays. The current review focuses on neural and computational
studies of auditory scene perception published in the last few years. Following the progress that has been made
in these studies, we describe (1) theoretical advances in our understanding of the most well-studied aspects of
auditory scene perception, namely segregation of sequential patterns of sounds and concurrently presented sounds;
(2) the diversification of topics and paradigms that have been investigated; and (3) how new neuroscience techniques
(including invasive neurophysiology in awake humans, genotyping, and brain stimulation) have been used in this
field.
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The study of auditory scene analysis, pioneered by
Bregman and others,1–4 has traditionally sought to
reveal the principles underlying how listeners segre-
gate patterns coming from different physical sound
sources and perceive distinct sound patterns. We dis-
tinguish two types of psychological representation:
(1) auditory objects, which are typically relatively
brief and temporally continuous (e.g., perception
of a single word, musical note, or frog croak); and
(2) auditory streams, which are series of events that
are perceived as connected to each other across time
(e.g., perception of a sentence, melody, or series
of croaks from a single frog). Decades of work
have revealed notable parallels between the psy-
chological principles underlying visual and audi-
tory scene analysis; both rely to varying degrees on
Gestalt principles.5–8 In particular, Gestalt psychol-
ogy highlights our perceptual ability to segregate

entire scenes (both auditory and visual) into figure
and ground elements based on specific patterns in
various stimulus features.5,9,10

Complementing these findings are parallel efforts
to unravel the neural and computational mecha-
nisms of auditory scene analysis in the auditory
system. Much is known about how the brain pro-
cesses individual events and features. Specifically,
studies using traditional neurophysiological meth-
ods, such as single-unit recordings, shed light on
the tuning properties of neurons at various stages
of the auditory pathway. Similarly, theoretical mod-
els inspired by these findings (e.g., theories based on
tonotopy, forward masking, and adaptation in single
neurons11–13) have been developed to explain per-
ception. However, by placing too much emphasis on
feature analysis, a danger is that too much of the for-
est is being missed for the trees. Therefore, we believe
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that also studying how patterns are computed in the
brain will lead to important insights into the pro-
cesses of segregation and object formation.

Recently, progress has been made in the study of
auditory scene analysis by integrating psychophys-
ical, neural, and computational approaches, result-
ing in a more complete understanding of complex
scene parsing. To some extent, these studies take a
fresh look at auditory scene analysis (e.g., by using
more complex time-varying stimuli). Moreover,
the use of a wide array of neuroscience techniques
(including genetics and both noninvasive and
invasive electrophysiology in humans and other
species) allows us to ask new questions or answer
old ones that have not been solved using older
techniques. Recent findings are complementing our
understanding of the complex processes underlying
auditory scene analysis and are becoming test
beds for true neuromechanistic theories. Beyond
understanding the parsing of auditory scenes,
recent advances in the field are also connecting
with theories of consciousness typically developed
by vision scientists, thus contributing to the debate
about common principles of consciousness in the
brain that might apply across modalities.

Naturally, much work remains to further our
understanding of the neural mechanisms of audi-
tory scene analysis. Thus, in the remainder of this
paper, we will provide further detail about new
developments in the field of auditory scene analysis.
We review individual studies that have been pub-
lished relatively recently in some detail and attempt
to integrate their findings with older findings and
theories, while also pointing out how future studies
could make further progress to move beyond our
current limited understanding. It should be noted
that, despite the increased prevalence of studies
using neural and computational approaches, there
are many more empirical studies than quantitative
theoretical studies. Even rarer are computational
models that explain what particular neurophysio-
logical mechanisms implement particular compu-
tations. We describe one such model in this paper—
on bistable perception.

Stimulus-driven segregation mechanisms
in the ascending auditory system

Sequential segregation
Sequential auditory scene analysis refers to the abil-
ity to hear two separate sequences (or streams) of

sounds when two or more different sounds are pre-
sented in a repeating fashion.14,15 A well-studied
stimulus for this consists of low (A) and high
(B) tones that are alternated in time repeatedly,
often with every other high tone omitted (ABA–
ABA– . . . )3 or in a repeating fashion (ABABAB . . . )
(Fig. 1A, left). Such patterns are usually first heard
as one stream of sounds, but after several repetitions
listeners often report hearing segregated patterns of
low and high tones (A–A–A– . . . and B–B– . . . ).16

While most of our knowledge about auditory stream
segregation comes from studies of such simple tone
patterns, more recent studies have used a wider vari-
ety of stimuli, which has led to fundamentally new
ideas about the computational and neural bases of
sequential segregation.

A tacit assumption on the part of many in the field
is that segregating sound sources requires cues that
facilitate the differentiation of target sounds from
the background.17 A longstanding theory about the
neural basis of segregation invokes the tonotopic
organization (neural maps based on frequency) of
the auditory pathway in a major role.12,18,19 Specifi-
cally, this theory posits that segregation of auditory
streams depends on the activation of sufficiently
distinct neural populations somewhere along the
auditory hierarchy, including as early as the cochlea,
auditory nerve, and cochlear nucleus.12,20 As acous-
tic cues are revealed over time, the separation of neu-
ral populations driven by each source would allow
processes downstream to integrate events from these
sources into distinct perceptual streams. In con-
trast to frequency-based segregation, neural pop-
ulations that encode features such as bandwidth,
amplitude modulation, and spatially informative
cues are likely to facilitate segregation in the mid-
brain, thalamus, and auditory cortex. Evidence from
single-unit electrophysiological recordings from the
cochlear nucleus all the way to the primary auditory
cortex has found activation of distinct neural pop-
ulations in a manner that would support percep-
tual segregation of auditory objects.20–22 Studies in
humans using functional magnetic resonance imag-
ing (fMRI), electroencephalography (EEG), and
magnetoencephalography (MEG) are also consis-
tent with the role of feature selectivity and tono-
topic organization along the auditory pathway in
facilitating stream segregation.23,24

One of the main limitations of this population
separation theory is that it does not take into account
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Figure 1. Examples of classic paradigms and newer techniques used in studies of auditory scene perception. (A) Left: schematic
shows high and low notes repeating over time. Middle: a newer stimulus (stochastic figure ground (SFG)) employs a sequence of
random inharmonic chords. If a subset of these tones repeats or changes slowly over time (shown in red), they pop out as a “figure.”
Right: example neural response for active (blue) and passive (red) conditions listening to SFG stimuli reproduced from Ref. 77. (B)
Left: schematic of harmonic complex with a mistuned component. Middle: schematic of double harmonic complex tones (HCT)
reproduced from Ref. 65 (Fig. 1A). Two HCT stimuli (solid blue and dashed red lines) are presented simultaneously. The neural
frequency response function (i.e., tuning curve) is shown in black. Right: An example rate-place neural response to concurrent
harmonic stimuli reproduced from Ref. 65 (Fig. 5a) from a recording site exhibiting phase-locked activity.

the relative timing of the activation of these neu-
ral populations as the scene is processed over time.
A more recent theory emphasizing the importance
of temporal coherence complements the popula-
tion separation theory by incorporating both the
selectivity of neuronal populations in the auditory
system and information about the relative timing
across neural responses25 (for older examples of the
importance of timing for segregation, see Ref. 5).
It has been proposed that the temporal coherence
mechanism tracks the evolution of acoustic fea-
tures over the course of hundreds of milliseconds
and that sounds that covary in time should be
grouped together. In tracking temporal trajectories
of sound features, temporal coherence extends the
concept of common onset (i.e., frequency compo-
nents that start together group together26). The the-
ory posits that sound patterns that unfold in a tem-
porally correlated fashion over hundreds of millisec-
onds are likely to be perceived as a group.27 The idea
of temporal coherence has been tested in computa-
tional models that have indeed shown its potential
role in using cues emanating from a target source
and segregating it from other sound streams that are
incoherent (uncorrelated) with it.28,29

Recent neurophysiological evidence has provided
support to the claim that the population separa-
tion theory is indeed insufficient to explain percep-
tual separation of auditory objects.28 This evidence
based on single-unit recordings in awake nonbehav-
ing ferrets suggests that temporal coherence may be
computed downstream from the primary auditory
cortex. Along the same lines, recent work in humans
using fMRI found no evidence of coherence-related
blood oxygen–level dependent (BOLD) activity in
the primary auditory cortex but reported signifi-
cant activation of the intraparietal sulcus (IPS) and
the superior temporal sulcus.30 The experimental
paradigm in this study employed a novel stimulus,
known as stochastic figure ground (SFG), which
consists of randomly selected inharmonic chords
comprising several pure tones. When a number of
these tones are changed coherently over time (by
keeping them fixed or changing them slowly over
several consecutive chords), a spontaneous figure
pops out against the random background (Fig. 1A,
middle). An EEG study using a slightly modified ver-
sion of the SFG stimulus reported evidence of early
and automatic computations of temporal coherence
that peaked between 115 and 185 ms31 (Fig. 1A,
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right). Linear regression revealed a clear neural sig-
nature of temporal coherence in the passive listen-
ing condition that localized bilaterally to temporal
regions. This evoked response was corroborated in
an MEG study, in which the response pattern was
stable even in the presence of noise, although its
amplitude and latency varied systematically with the
coherence of the figure.32

While temporal coherence computations
appeared to evoke neural activity in the temporal
cortex during passive listening, its basic profile was
maintained even under attentional control (Fig. 1A,
right). O’Sullivan et al.31 reported a similar response
pattern, but with a longer persistence, a later peak,
and greater amplitude in an active condition during
which listeners were engaged in detecting the figure
patterns, compared with a passive condition in
which participants ignored the stimuli. The topo-
graphies of both active and passive responses were
similarly localized to bilateral temporal regions,
suggesting a common locus for coherence com-
putation that is modulated by attention. Together,
these studies indicate that temporal coherence
can be computed to some extent without focused
attention, but that paying attention enhances
processing. Furthermore, numerous studies point
to a role of the planum temporale and the IPS in
the computation of temporal coherence. However,
recent work suggests a possible contribution of
the auditory cortex during performance of a task
involving temporal coherence as a mechanism
for auditory object segregation. In an EEG study,
human listeners engaged in target detection amid a
competing background showed covariation of neu-
ral signatures, likely arising from both within and
outside the auditory cortex.33 Along the same lines,
preliminary work in awake behaving ferrets trained
to attend to a two-tone ABAB sequence revealed
cortical responses with notable changes in the
bandwidth of receptive fields of single neurons con-
sistent with the postulates of the temporal coherence
theory.34 It remains unknown to what extent these
neural responses reflect coherence computation
taking place at the level of the auditory cortex versus
projections from other brain areas. The engagement
of participants in a task suggests the engagement
of a broader neural network, potentially spanning
the planum temporale and the IPS, two loci
linked to temporal coherence processing.26,31,32

However, the exact neural circuitry underlying such
computations remains unknown.

Concurrent segregation
Complementing sequential segregation processes
are mechanisms that facilitate the grouping of
acoustic components that are simultaneously
present into auditory objects.35,36 A popular lab-
oratory paradigm used to investigate concurrent
segregation presents a harmonic complex consist-
ing of simultaneous pure tones (e.g., 100, 200, 300,
400 Hz) with a common fundamental frequency
(f0, e.g., 100 Hz). Such a complex tone is almost
always heard as a single auditory object and bears
important similarities to naturalistic sounds, such
as vowels and many musical sounds.37 Both the f0

and the harmonics are strong determinants of the
pitch of a complex tone, with the perceived pitch
typically matching the pitch of a pure tone that has
the same frequency as f0.38

Concurrent segregation paradigms present var-
ious stimuli that can result in segregation into
two objects. One variant is the mistuned harmonic
paradigm, which presents a single complex har-
monic tone in which one of the pure tones is changed
in frequency by some percentage such that it is no
longer an integer multiple of the f0 (Fig. 1B, left).
This can result in the perception of two auditory
objects, especially when the mistuning is relatively
large: one object corresponding to the tuned por-
tions of the complex and a second object corre-
sponding to the mistuned tone.39,40 Another variant
is the concurrent harmonic sounds paradigm, which
simultaneously presents two separate complex har-
monic tones, each with a different f0 (Fig. 1B, mid-
dle). The larger the difference in f0, the more likely
that the two sounds can be heard separately.41 Sim-
ilarly, the double vowel paradigm presents two con-
current harmonic sounds, but the amplitudes of
the individual tone frequencies are shaped with a
multipeaked function in order to approximate the
formants in natural spoken vowels.42–44

A number of different computational mecha-
nisms have been proposed to play important roles
in concurrent segregation (for a review, see Ref. 41).
These include place models that estimate the f0

using peaks in the output of a cochlear frequency–
based filter, autocorrelation models that use tempo-
ral fluctuations in the peripheral neural activity, and
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models that suppress activity corresponding to one
of the sounds in order to better perceive the nonsup-
pressed sound. Importantly, these different mech-
anisms are not mutually exclusive and have been
combined in some models of segregation (e.g., see
Refs. 42, 45, and 46). Additionally, models of mis-
tuned harmonic perception have proposed the idea
of harmonic templates with slots corresponding to
expected values of integer multiple harmonics47 or
the importance of regular spacing of harmonics48,49

to explain why, if a harmonic is mistuned enough,
it will pop out as a separate auditory object.

Much like sequential segregation, it is clear that
concurrent segregation is likely to be achieved
through a number of transformations of sensory
input in subcortical and cortical regions of the
auditory system. Invasive neurophysiological stud-
ies have provided evidence for temporal fluctuations
in neural activity, starting in the auditory nerve and
continuing up to the primary auditory cortex, that
could be used to estimate the presence of multi-
ple harmonic sounds.50–55 Meanwhile, noninvasive
neurophysiological studies of the auditory cortex
have identified a so-called object related negativity
(ORN). The ORN increases in amplitude when cues
for segregating concurrent sounds are more potent
and occurs regardless of attention.56–64

A more recent study of concurrent harmonic
tones in the monkey primary auditory cortex
provides evidence that neurons in this region show
action potential firing in response to lower har-
monics of the tones, as well as beat frequencies that
result from interactions of harmonics that are close
in frequency.65 This demonstrated the importance
of low-frequency harmonics in segregation (Fig. 1B,
right). Furthermore, the f0s of both tones could be
estimated by temporal fluctuations in firing rate that
matched the frequencies of the two f0s. This suggests
that the auditory cortex can help identify the pres-
ence of two concurrent tones on the basis of pitch.
Interestingly, this study also varied whether the two
tones had synchronous onsets and found that the
neural representations of the two concurrent tones
were enhanced when they were asynchronous, as
would be expected owing to the importance of this
cue, as discussed above. A model of neural pro-
cessing of the concurrent tones was able to closely
reproduce the patterns of firing rate to different har-
monics, and these patterns were used in a template-
matching procedure that was able to accurately

estimate the f0s of the concurrent tones. Finally,
this study found lower-frequency activity (i.e.,
local-field potentials) that was potentially related to
the ORN discussed above. In particular, responses
were isolated by comparing presentation of con-
current complex tones with an f0 difference of four
semitones to presentation of a single complex tone.
As expected from human ORN studies, the con-
current tones elicited a more negative response at
time points after the initial onset response to the
tones, compared with the presentation of a single
tone. Important issues for future research include
the nature of the relationship between the action
potential firing and the ORN and the role each
plays in the behavioral ability to segregate sounds.

Another recent study of concurrent sound seg-
regation examined subcortical and cortical neural
activity measured using scalp electrodes in humans
during a mistuned harmonic task.66 Subcortical
frequency-following responses (FFRs), likely aris-
ing from the inferior colliculus,67 showed less phase
locking with larger mistunings, and less phase lock-
ing was negatively correlated with perception of
two objects. As in previous studies,56,57 ORN ampli-
tude increased with larger mistuning. An additional
later negative response around 500 ms (N5) after
the tone onset also occurred, which was largest
for clearly tuned or clearly mistuned tones but
smaller for more ambiguous tones. As with behav-
ior, brain stem phase locking was negatively cor-
related with ORN amplitude.66 Regression analysis
showed that ORN and N5 amplitude and latency
were better predictors of behavioral judgments of
one versus two objects and reaction times, com-
pared with brain stem phase locking. While this
could be due to cortical processing being more
directly related to conscious perception and behav-
ioral responding, it is also possible that this is due
to greater signal-to-noise ratios associated with cor-
tical activity in comparison with brain stem activ-
ity, when measured at the scalp. The authors also
used a model of auditory nerve activity to esti-
mate neural representations of harmonicity (i.e.,
the extent to which a set of concurrent pure tones
reinforced the same f0 for different levels of mis-
tuning of the second harmonic of complex tones).
This simulated quantity was able to predict behav-
ioral judgments of one versus two objects as well as
ORN amplitude, consistent with the importance of
some sort of place-based or time-based harmonic
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template-matching process in detecting pop-out of
mistuned harmonics.

Higher-level aspects of auditory scene
analysis

Attention
One construct intimately related to studies of audi-
tory scene analysis is attention. Attention can favor
detection or tracking of a particular sound target,
presumably by enhancing neural activity related
to processing events associated with the target.68,69

Numerous studies have indeed shown that atten-
tion plays a crucial role in scene analysis, with some
evidence even suggesting that attention may be a
prerequisite for segregation, although this is still a
topic of debate.70–73

At the neurophysiological level, attention has
been shown to induce rapid changes to neural
responses at the level of the primary auditory cor-
tex, altering the brain’s responses to sensory cues
in a direction that boosts the representation of
task-relevant sounds.74,75 In the context of audi-
tory scene analysis, we have only recently begun
understanding the impact of these rapid changes

on neuronal properties for parsing complex scenes.
One recent study on speech segregation recorded
cortical activity using high-density intracranial elec-
trode arrays in human participants undergoing clin-
ical treatment for epilepsy.76 This provided the rare
opportunity to shed light on both the spatial and
temporal characteristics of attention-related neural
processing in listeners. Listeners were presented with
two simultaneous utterances from different speakers
with distinct pitches (male versus female), spectral
profiles (vocal tract shape), and speaking rates. By
maintaining the acoustic stimulus and manipulat-
ing which speaker was the target of attention, the
experimental paradigm elucidated how much of the
neural response was driven by acoustic properties
of the signal versus perception-driven or attention-
driven factors. The study employed a powerful new
decoding technique77–80 that estimates the input
stimulus from the neural data using a reverse analy-
sis method (Fig. 2A). This technique offers a theoret-
ical approach to solve a decoding problem: estimat-
ing the stimulus on the basis of neural responses. By
combining neural recordings obtained in response
to the same input stimulus, one can compose the

Figure 2. (A) Diagram of stimulus reconstruction technique, adapted from Ref. 148. The envelope of the speech from an attended
speaker is decoded from the neural response. (B,C) Figures reproduced from Ref. 76. The plot shows correlation coefficients between
the spectrogram of single speaker and reconstructed spectrograms of speaker mixture under different attentional conditions in
correct and error trials. The time course of an attentional modulation index (AMI) calculated on the basis of the correlation between
reconstructed spectrograms from mixtures and the original attended speaker spectrogram. Positive values of the AMI indicate shifts
toward the target, while negative values indicate shifts toward the masker.
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total effective stimulus that excites the neural popu-
lation. In the context of attention paradigms, reverse
analysis helps discern which of two concurrent
speakers the subject was attending. The decoding
problem is typically optimized to maximize the cor-
relation between the reconstructed decoded signal
and the speech envelope of the attended speaker.
Using this technique, the findings revealed that
neural responses in the nonprimary auditory cor-
tex (posterior superior and middle temporal gyrus)
were driven almost solely by the attended speaker.
Specifically, stimulus reconstruction using neural
responses to speech mixtures produced audible pat-
terns that mostly reflected the attended speaker
while suppressing irrelevant competing speech.
However, on trials in which participants failed
to track the correct target, stimulus reconstruc-
tion contained a greater presence of the nontarget
speaker (Fig. 2B). An analysis of the time courses of
attention-induced neural modulations revealed that
error trials showed early and inappropriate atten-
tional focus on the wrong speaker (Fig. 2C).

Similar observations have also been reported
in other work using noninvasive techniques, such
as MEG and EEG. The powerful stimulus recon-
struction approach has enabled the tracking of
attentional selection during sound mixtures. Recent
work77 has even shown that one can decode single
trials of EEG activity to determine the attentional
state of listeners in complex multispeaker environ-
ments. The analysis revealed a strong correlation
between stimulus-decoding accuracy and partic-
ipant behavior, hence establishing a link—albeit
indirect—between behavior and brain responses in
cases of sustained attentional deployment.

The distributed nature of neural circuitry under-
lying attentional selection during concurrent speech
processing has been investigated in another recent
study using intracranial electrode recordings.80

The study revealed a strong modulation of neural
responses in lower-level auditory cortex in the
area of the superior temporal gyrus (STG); in
particular, the neural response reflected a mixture
of two concurrent speech narratives with a bias
toward the attended target. The analysis of neural
responses, both in low-frequency phase profiles
(corresponding to time scales of fluctuations of the
speech envelope) and high gamma power, appeared
to maintain representations of the sound mixture,
again with a bias for the target. The authors of the

study argued that this modulation at the level of
STG can be taken as evidence for an early selection
process. This process is possibly then complemented
by further selection in high-order regions, such
as the inferior frontal cortex, anterior and inferior
temporal cortex, and inferior parietal lobule. This
selection process entrains low-frequency responses
to the attended speech stream, allowing segregation
from the interfering stream. This entrainment
appeared to improve over the time course of the
stimulus, suggesting a dynamic modification of the
selection process as the auditory system refined its
representation of the attended target.

Formation of auditory objects
Most neuroscience studies of auditory scene analy-
sis have focused on how various stages of the audi-
tory system process stimuli that physically vary in
terms of how likely they are to be perceived as
segregated. As a result, we know far less about the
neural processes that most directly give rise to con-
scious percepts of auditory objects and streams.
A major challenge to addressing this question is
difficulty in directly relating perception and brain
activity. In nonhuman animals, it is difficult and
time consuming to train participants to report their
perception, although there have been some suc-
cessful efforts in purely behavioral studies to con-
vincingly measure animals’ perception81–83 (for a
review, see Ref. 84). Intrancranial recordings in ani-
mals during behavioral performance are important
because, in humans, the low spatial resolution of
noninvasive recordings makes it difficult to iden-
tify the potentially small populations of neurons
and subtle changes in activity that correlate with
perception.85–90

A further limitation in the literature is that
relatively little is known about the role of subcorti-
cal brain areas in conscious perception of auditory
objects and streams. A recent study recorded the
brain stem FFR and the middle-latency response
(MLR) that come from the primary auditory cortex,
using scalp electrodes in humans while they per-
formed an auditory stream–segregation task with
low and high tones.91 Unlike the responses typi-
cally measured in human studies of streaming,72,86,92

both the FFR and MLR are brief enough to be
elicited by each tone with little to no response over-
lap in time. Consequently, the authors were able
to show that the FFR and MLR of particular tones
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in the ABA– pattern were larger when participants
reported hearing two segregated streams compared
with when they heard one integrated stream. The
authors also examined the time course of amplitude
change of the FFR and MLR, showing that both
the FFR and MLR changed in amplitude around
the time of perceptual switches. A cross-correlation
analysis indicated that MLR changes preceded FFR
changes, suggesting a possible role for top-down
projections from the auditory cortex to subcortical
regions around the time of changes in conscious
perception. The precise role of such projections
remains unknown, although a number of theories
of conscious visual perception point out impor-
tant roles for top-down activations and other forms
of connectivity.93–96 There is also some behavioral
evidence for top-down processing during auditory
perception.97

At the cortical level, Ding and Simon98 evaluated
criteria for whether the auditory cortex processed
auditory objects while participants were listening
to competing speech streams (i.e., two different
people talking at the same time). Using a reverse
decoding method (Fig. 2A) that reconstructs the
temporal envelope of the signal from the neural
response,31 the study revealed that cortical activ-
ity selectively tracks the spectrotemporal proper-
ties of the attended stream even in the presence
of concurrent background speech that is spectrally
overlapping with the target. Furthermore, the study
showed that the neural representation of the tar-
get speech is robust against changes in the inten-
sity of the background speaker. This reinforces the
distinction between acoustic-driven neural activity
and object-based or perception-based representa-
tions. Specifically, the invariant encoding of the
target speech regardless of manipulations of the
background is consistent with the ideas of Griffiths
and Warren,99 who claimed that auditory objects
result from encoding individual sound sources as
segregated from background sounds. These find-
ings using two concurrent speakers are consistent
with target-focused attentional responses reported
using other complex scene paradigms, including
speech with interfering background noise100 and a
regular tone stream in the presence of background
tone clouds28 or in the presence of competing tone
streams with different presentation rates.101 More-
over, the auditory object representation appears
to evolve at successive stages of auditory process-

ing with greater correspondence to perception (as
opposed to stimulus encoding) at later stages of pro-
cessing.

While the studies reviewed above suggest the
importance of rhythmic brain activity that phase
locks with the rhythm of auditory patterns, there is
very little causal (as opposed to correlational) evi-
dence tying such brain responses to processes of
scene segregation and perception. A recent study,
however, provided evidence that rhythmic brain
activity is indeed important for auditory segregation
of tone patterns102 (for additional commentary, see
Ref. 127). They used rhythmic patterns of transcra-
nial electrical current stimulation directed through
both auditory cortices that was either in phase or out
of phase with an isochronous pattern of target tones
embedded in background noise. When the electrical
current stimulated the auditory cortex in phase with
the tones, participants were better able to detect the
target tones, compared with when the current was
out of phase with the tones.

Another novel approach to studying auditory per-
ception that was recently used is the analysis of how
variation in genotypes predicts perception.103 In this
study, the authors qualified the dopamine-related
catechol-O-methyltransferase (COMT) gene and
the serotonin 2A receptor (HTR2A) gene in healthy
volunteers, who also performed several auditory and
visual bistable perception tasks, including auditory
stream segregation. However, instead of quantify-
ing the likelihood of perceiving one or two objects
or streams, this study measured the number of
switches between percepts during prolonged expo-
sure to stimuli (cf. Refs. 104 and 105). The number
of perceptual switches in different tasks was signifi-
cantly correlated both within and across modalities,
suggesting common or similar brain mechanisms
underlying the tendency to switch. For auditory
bistable tasks, the number of perceptual switches
was greater for those with the COMT genotype
that had two copies of the Met allele, compared
with those with one or no Met allele. However, for
the visual tasks, there was no difference between
people with different COMT genotypes and there
was only a marginal effect of HTR2A genotype for
one of the visual tasks. This suggests that the two
genes investigated in this study may not play sub-
stantial roles in the common mechanisms underly-
ing bistable perceptual switching across the senses
that were suggested by the correlations in behavior.

46 Ann. N.Y. Acad. Sci. 1396 (2017) 39–55 C⃝ 2017 New York Academy of Sciences.



Snyder & Elhilali Neural bases of auditory scene perception

However, it is currently unclear which brain areas
exhibit differences in dopamine and serotonin func-
tion that might be associated with altered perceptual
switching.

The dynamics of bistable perception in the con-
text of auditory stream segregation were further
explored in recent work by Rankin et al.,106 which
described one of the only recent neuromechanistic
models of stream segregation and bistable percepts.
This study simulated activity underlying behavioral
responses of listeners using alternating ABA– tone
sequences, particularly the alternation between per-
cepts of one stream versus two streams as the stim-
ulus unfolds over time. Unlike previous models of
bistable auditory perception, in which stimulus ele-
ments were first mapped into discrete perceptual
units before some form of competition between
these units takes place (e.g., Ref. 107), the Rankin
et al. model operated directly on the stimulus
features and incorporated a number of processes
possibly related to neuronal competition and per-
ceptual encoding. The model’s architecture incor-
porated a tonotopic organization with recurrent
excitation (using NMDA-like synaptic dynamics) to
embody neuronal memory and stability of percepts
as the stimulus evolves over time. It also included a
form of global inhibition, empirically found to best
predict the relationship between the frequency dif-
ference between the high and low tones and the
relative durations of the integrated and segregated
percepts. The model sheds light on the dynamic
nature of neuronal responses in the auditory cor-
tex and the role of multiple mechanisms with dif-

ferent time constants in giving rise to bistable
percepts with two-tone ABA triplet sequences.
The interplay of adaptation, especially at interme-
diate and long time constants with the presence
of intrinsic noise, explains the ambiguous inter-
pretation of tone sequences presented over long
times as switching between a grouped single-stream
percept and a segregated two-stream percept. This
back-and-forth toggling between a segregated and
a grouped percept while listening to tone sequences
can be conceptually viewed as the brain’s way of
weighing evidence about both interpretations of the
scene. A recent study by Barniv and Nelken108 pre-
sented a theoretical formulation in support of this
evidence-accumulation view.

Informational masking
Informational masking (IM) is a perceptual phe-
nomenon describing how the brain fails to detect
suprathreshold target tones relative to other masker
tones, even though they are not processed by the
same channels in the periphery as maskers.109–111

In one IM paradigm, a sound target is embedded
in a cloud of maskers that does not overlap with
the target in time or frequency, yet can mask its
presence depending on the choice of parameters of
the stimulus (e.g., density of masker tone cloud,
spectral separation between target and neighboring
maskers) (Fig. 3A).

Though extensively used in studies of auditory
perception and masking, IM has become a pop-
ular tool to probe perceptual awareness of audi-
tory objects. Its appeal in studies of auditory scene

Figure 3. (A) Schematic of an informational masking stimulus. It consists of a tone cloud of masker notes with tone frequencies at
randomly chosen time and frequency values. A repeating target note (shown in red) sometimes stands out from the background if
no masker is present within a fixed frequency distance from the target (called a spectral protection region around the target). (B,C)
Figures reproduced from Ref. 112. (B) A surface map of BOLD response for trials where the target was detected (TD) versus not
detected (TN). (C) MEG source waves averaged across subjects and hemispheres for detected (solid lines) and undetected (dashed
line) target tones. The figure highlights long-latency negativity (ARN) only for detected targets.
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analysis is that the physical stimulus can remain
unchanged while evaluating neural responses in
cases where the target is detectable versus nonde-
tectable. In doing so, we can begin to dissociate
the neural responses driven by the physical cues in
the stimulus versus perceptual abstractions of such
a stimulus. In one study,112 fMRI and MEG tech-
niques were combined to provide a high-resolution
temporal and spatial description of the emergence
of auditory awareness in the auditory cortex. BOLD
activity revealed a differential increase in neural
activity in the auditory cortex (Fig. 3B): detected
targets induced stronger activity than undetected
targets in medial Heschl’s gyrus (thought to be the
location of the primary auditory cortex in humans).
These undetected targets themselves induced greater
activity in the posterior STG (containing portions
of the secondary auditory cortex) than a random
masker baseline without any target. Importantly, the
contrast of neural activity between perceived and
undetected targets in the auditory cortex supports
claims of cortical involvement in conscious percep-
tion. The BOLD responses localized this effect to
the primary auditory cortex and away from the sec-
ondary areas, although a region of interest–based
analysis suggested activation of both the primary
and secondary auditory cortices.112

To further reveal the involvement of the auditory
cortex in conscious perception of targets, analysis
of MEG recordings in the same study confirmed
a specific neural signature for target detection
consisting of a long-latency negativity called the
awareness-related negativity (ARN) first reported
by Gutschalk et al.113 (Fig. 3C). This relatively
long response to detected targets could reflect the
auditory cortex receiving recurrent projections
from higher-order cortical areas, in line with similar
ideas about the visual system mentioned earlier.93,95

This idea of recurrent feedback could help account
for conflicting notions about the nature of sound
representation in the primary auditory cortex, and
particularly the extent to which neural responses
in the core auditory cortex reflect sensory features
or higher-level processing.114 In particular, if the
auditory cortex is principally encoding parameters
of the stimulus, then possible recurrent feedback
from higher-order cortical areas could modulate
neural activity in the primary cortex in a manner
that reflects higher-level perceptual representations
and awareness of elements in the scene. This would

agree with the delayed latency of the ARN typically
observed around 150 ms. However, a major con-
founding factor is that of attention, which not only
modulates responses in the auditory cortex but may
also affect processing of a target sound in an IM
paradigm.

Most studies of IM and some on auditory stream
segregation have focused on auditory cortex activity
without looking for activity in wider cortical or sub-
cortical areas. However, a recent study found single
neurons in monkey claustrum—an area previously
theorized to be involved in consciousness115—that
reflected whether a target tone was or was not pre-
sented in background noise.116 Other studies have
found activity in parietal and frontal areas,117,118

which could reflect activation of attention networks.
These, along with the studies on stream segregation
discussed above, suggest the importance of consid-
ering multiple brain areas and their interactions in
comprehensive theories of the neural basis of audi-
tory scene analysis.

Understanding processing of realistic
auditory scenes

While there is increasing interest within the
research community in using more complex stimuli
in studies of auditory scene perception, most
stimuli remain relatively impoverished in that they
rely on different configurations of tones or noises.
In recent years, however, several lines of research
have begun to illuminate perception of complex
auditory scenes that bear more resemblance to real
soundscapes (e.g., Refs. 119–121). A topic that has
been studied by a few different research groups
is change deafness, the failure to notice when a
sound is added, removed, or replaced in a scene
composed of multiple sounds (Fig. 4A; see reviews
in Refs. 69, 122, 123). Typical studies of change
deafness present several recognizable sounds at the
same time, followed by the same set of sounds again
or with one of the original sounds changing. An
ERP study on change deafness found that the long-
latency sensory N1 response (at around 120 ms) to
the onset of the second scene was larger when listen-
ers successfully detected changes, compared with
when they did not detect changes.124 In this study,
a later P3b response was also larger for cases with
detected compared with undetected changes. These
N1 and P3b modulations may reflect perceptual
awareness of the change and subsequent memory
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Figure 4. (A) Schematic of recognizable sounds used in change deafness experiments. A set of sounds are played at the same
time and after a brief delay, the same set of sounds are played with no change, or one of the sounds is changed (as shown with
dog turning into phone ringing). (B) Electrical brain responses (reprinted from Ref. 128 with permission from Elsevier) showing
P3a and P3b responses that are enhanced on trials with a detected change, compared with trials with no change or a nondetected
change (note positive voltage is plotted downward). (C) Topographies of the difference between detected and nondetected changes
in Ref. 128 for the P3a and P3b. (D) Schematic of bandpass noise burst patterns used in change deafness experiments, with change in
second-lowest frequency pattern. (E) Electrical brain responses (reprinted from Ref. 129 with permission from Elsevier), showing
several enhanced components for detected changes.

updating or other cognitive consequences of aware-
ness, respectively.125–127 Another study by the same
group used a different set of recognizable sounds
and unrecognizable versions of the sounds but
found no N1 modulation for either type of sound.128

This study did find the P3b to be modulated as in
the prior study, and further found a P3a response
modulation for detected unrecognizable sounds
(Fig. 4B,C–c), possibly reflecting attention
orienting.126 Studies using simpler scenes composed
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of multiple streams of bandpass noise bursts (Fig.
4D) found that detected changes were associated
with modulations of a number of ERP components,
including the N1, P3a, and P3b (Fig. 4E),129 as
found in the studies by Gregg and colleagues. Addi-
tional components that were larger for detected
changes included the N2 and mismatch negativity.
Another recent study used streams of pure tone
sounds and recorded MEG responses that were
modulated during successful change detection,
starting around 100 ms after the onset of the
change,130 consistent with the studies just discussed
that showed N1 modulations.

Finally, an fMRI study on change deafness found
greater activity in the anterior cingulate cortex and
right insula during successful change detection trials
compared with unsuccessful trials.131 These success-
ful detection trials were also associated with stronger
functional connectivity between the right auditory
cortex and both the left insula and the left inferior
frontal cortex regions, when compared with unsuc-
cessful trials. In contrast, the right superior temporal
sulcus showed stronger functional connectivity with
the auditory cortex for unsuccessful trials compared
with successful trials. While these findings need to
be replicated, the anterior cingulate modulation is
consistent with a neural orienting response.132,133

This is suggested by the P3a modulations discussed
above and the fact that P3a during oddball process-
ing is in part generated in the anterior cingulate.134

In contrast, insula activation could be related to
interoceptive feelings related to conscious detection
of changes or error detection.135,136

Conclusions

Recent studies of auditory scene perception have
made considerable progress in advancing our
understanding of auditory segregation and object
formation. This is in part the result of using a wider
variety of computational methods and experimental
techniques in humans and different nonhuman ani-
mal species. This increasing diversity of approaches
is offering a more complete picture of different
phenomena related to auditory scene perception.
As such, the discovery of convergent support for a
particular quantitative theory using different tech-
niques, species, and stimulus paradigms can provide
more convincing evidence for that theory. Owing to
the importance of computational theory develop-
ment, we hope more researchers will begin publish-

ing such work in the near future. This effort should
include more neuromechanistic models that explain
how particular computations are carried out in the
brain using realistic cellular, synaptic, and circuit
mechanisms.

While it is a well-established goal in the field
of auditory scene analysis to study higher-level
aspects of scene perception,5 the use of rela-
tively simple, artificial sounds has severely curtailed
progress in this effort. Apart from attention,68,69,137

other high-level aspects of auditory scene per-
ception have largely been ignored, with a few
exceptions.138,139 However, more complex aspects
of auditory scene perception have begun to garner
interest in recent years. For example, scientists have
developed paradigms using more intricate stimu-
lus structures that can theoretically be parsed into
more than just two objects or streams. Further-
more, IM paradigms impede the perception of a
detectable target using a complex array of back-
ground sounds. Finally, the use of realistic or nat-
ural scenes, including concurrent speech utterances
and challenging listening paradigms, is likely to give
us a broader and perhaps deeper understanding of
auditory scene perception. By using recognizable
sounds (e.g., Refs. 12, 98, and 124), many studies
have further highlighted the importance of study-
ing real-world sounds, including speech, music, and
other environmental sounds. Moreover, studies of
change detection have taken the lead in uncover-
ing the extent to which semantic knowledge128,140,141

and object-based attention142 influence perception.
In the future, these behavioral findings can be lever-
aged to uncover the neural mechanisms of high-level
processing of auditory scenes.

Breaking new ground in our understanding
of auditory scene perception is also leading to
new applications spanning engineering systems
to medical technology. For example, a better
understanding of neural processing of meaningful
sounds has shown promise for neural decoding–
based communication with severely brain-damaged
individuals.143 Along the same lines, computational
models mimicking cocktail party listening (i.e.,
when multiple people are talking) are gradually
increasing in complexity and providing more inte-
grated architectures that span both low-level and
high-level processing of realistic scenes. Indeed,
models of auditory scene analysis are now extending
beyond simple scenes composed of tones and sparse
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sound patterns to more complex and challenging
scenarios (e.g., concurrent speakers in noisy, natu-
ral environments (for review, see Ref. 144)). Many
such models are now being compared, and some
even outperform state-of-the-art systems developed
using pure engineering principles that are tailored
to specific applications using extensive training
data.29,145–147
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