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Summary
To understand our surroundings, we effortlessly parse our sound environment into sound sources, extracting
invariant information—or regularities—over time to build an internal representation of the world around us.
Previous experimental work has shown the brain is sensitive to many types of regularities in sound, but theoretical
models that capture underlying principles of regularity tracking across diverse sequence structures have been few
and far between. Existing efforts often focus on sound patterns rather the stochastic nature of sequences. In the
current study, we employ a perceptual model for regularity extraction based on a Bayesian framework that posits
the brain collects statistical information over time. We show this model can be used to simulate various results
from the literature with stimuli exhibiting a wide range of predictability. This model can provide a useful tool
for both interpreting existing experimental results under a unified model and providing predictions for new ones
using more complex stimuli.
© 2018 The Author(s). Published by S. Hirzel Verlag · EAA. This is an open access article under the terms of the

Creative Commons Attribution (CC BY 4.0) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Regularity extraction is an essential aspect of auditory ob-
ject perception, in which the brain extracts useful infor-
mation from sounds over time to interpret our surround-
ings [1]. This ability is often studied in the literature using
deviance detection experiments, where listeners are pre-
sented with a sequence of sounds exhibiting some regular-
ity and responses are compared between the members of
the regularity and deviations from the regularity for signs
of detection in the brain [2]. Behavioral and neural evi-
dence has shown the brain is sensitive to a variety of reg-
ularities, with the mismatch negativity (MMN) as a typi-
cal marker of deviance detection in electroencephalogra-
phy (EEG) and magnetoencephalography (MEG) [3].

The manner in which these regularities are represented
in the brain is unknown. A repeating pattern could be rep-
resented explicitly as a “template", but this mechanism
would be computationally inefficient to represent the vast
richness of natural sounds in the brain. It is more plau-
sible that the brain employs a statistical description of
sounds that incorporates uncertainty to robustly abstract
out invariant information. Existing models are limited in
scope and generalizability, either representing only repeat-
ing patterns [5] or computationally constrained to a small
set of discrete symbols [6], rather than sounds that vary
along a continuum.
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We use a perceptual model that embodies Bayesian the-
ories of perception, collecting statistical representations
of sounds [7, 8]. To demonstrate its utility, we show this
model accounts for many findings in the literature from
the regularity extraction canon, re-casting existing results
in terms of statistical regularity extraction.

2. Model Description
We use the Dynamic Regularity EXtraction (D-REX)
model1 presented in [9] to simulate findings in the liter-
ature. This model is based on a Bayesian inference frame-
work designed to perform sequential predictions in dy-
namic sequences containing unknown changes in under-
lying statistical structure [10, 11].

The input to the model is a sequence of observations
{xt} assumed to be distributed according to a probability
distribution with unknown parameters θ; presently, obser-
vations are limited to a sequence of tone frequencies from
a single sound source. The model sequentially builds a pre-
dictive distribution for the next observation at time t + 1
using sufficient statistics θ̂ collected over the observed se-
quence: P (xt+1|x1:t) = P (xt+1|θ̂(x1:t)).

The underlying distribution is assumed to be a D-
variate Gaussian, where the dimensionality D specifies the
amount of temporal covariance collected by the model; for
example, a model with D = 1 collects marginal statistics
(mean and variance), while a model with D = 3 addition-
ally collects joint statistics (covariances) between xt, xt−1,
and xt−2.

1 code available at https://engineering.jhu.edu/lcap/software
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The model assumes the parameters θ change at un-
known changepoint times. All following observations are
then independent of those preceding the change, thus lim-
iting the context window of observations relevant for the
parameter estimates θ̂. Because changepoints must be in-
ferred from the observations, the model maintains multiple
hypotheses across different contexts and then “integrates
out" the context to build a prediction that adapts to un-
known changes:

P (xt+1|x1:t) =
ct

P xt+1 ct, xt−ct+1:t P ct x1:t . (1)

In the sum, the first term is the prediction given the context
ct (which only depends on observations within the context
window); this is weighted by the second term, the model
belief that the current context is ct. With each incoming
observation, the sufficient statistics for each context ct, as
well as the beliefs, are updated incrementally (see [9] for
details).

2.1. Perceptual parameters
As described thus far, the model makes Bayes-optimal pre-
dictions in the presence of changepoints [10]. To introduce
more perceptual plausibility, we impose two constraints
on the model. First, a memory parameter (M) represents
finite working memory capacity, limiting how many past
observations can be used to build predictions and, by ex-
tension, the number of context windows that can be main-
tained. Second, an observation noise parameter (N) sets a
lower bound on prediction uncertainty. These parameters
represent variabilities in perceptual abilities across indi-
vidual listeners and allow for a range of behaviors from
the model.

2.2. Surprisal response
With each observation, the model outputs prediction error,
or surprisal: St = − logP (xt+1 = Xt+1|x1:t), where Xt+1

is the observation at time t + 1. Note that an observation
with low predictive probability has high surprisal and vice
versa. In the Results section, we compare this surprisal re-
sponse from the model to deviance responses in neural re-
sults from the literature.

3. Results

We collected surprisal responses from the D-REX model
to stimuli found in the deviance and change detection liter-
ature. Stimuli range in predictability to show the capacity
of the model to capture a variety of phenomena under a
single framework. Using different sets of statistics in the
model (via the dimensionality D), we can ascertain the
statistics that are sufficient—the “simplest explanation"—
for responses observed in the brain.

In Figures 1 and 2, neural results directly from the lit-
erature are presented alongside model results for compar-
ison (e.g., MMN amplitude vs. surprisal), with example
stimuli shown above each result. Trends shared between
neural and model results are indicated by red arrows. To
facilitate visual comparison, the surprisal axis is occasion-
ally inverted to align higher surprisal in the model results
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Figure 1. (Colour online) Neural results from the literature (left)
are compared to surprisal responses from the D-REX model
(right) to the same stimuli (above): a) [12], b) [13], c) [14], d)
[15]. Arrows indicate replicated trends. Surprisal axis is occa-
sionally inverted to facilitate visual comparison. Experimental
figures reproduced with permission from the publishers. In b),
experimental figure generated from Table 1 in [13].

with lower predictability in the neural results. Figures from
the literature are reproduced in their original form, where
possible.
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Oddball. Dating back to 1978, Näätänen and colleagues
have used the oddball paradigm to elicit neural markers of
deviance from a detected regularity [3, 4]. The paradigm
includes a standard stimulus exhibiting some regularity
and deviant stimuli breaking the regularity; if the brain is
sensitive to the regularity, the mismatch negativity (MMN)
appears around 100–200 ms after onset in the deviant’s
Event-Related Potential (ERP) response relative to the
standard. This negativity increases with frequency dis-
tance between the deviant and standard [12]. The D-REX
model with D = 1, or marginal statistics, similarly shows
an increase in surprisal to the deviant as frequency distance
increases (see Figure 1a).

Roving oddball. The oddball paradigm has been ex-
tended using a standard that changes over time, where each
deviant becomes the new standard. As the number of stan-
dards increases, ERP response to the standard increases in
the MMN window (80–180 ms), while response to the de-
viant stay relatively the same [13]; similarly, as the num-
ber of standards increases, model surprisal with D = 1
decreases (F2,147 = 108.1, p < 0.0001), while surprisal
to deviants stays the same (F2,147 = 1.18, p > 0.1) (see
Figure 1b, surprisal axis flipped for visual comparison).

Pattern oddball. Tone-patterns can also serve as stan-
dards in the oddball paradigm. In [14], an MMN response
to the first tone of the deviant pattern (BBAA) relative
to the first tone of the standard pattern (AABB) indicates
the brain is sensitive to the 4-tone pattern. In the model’s
surprisal response, this is replicated with dimensionality
D > 2 (t74 = 15.11, p < 0.0001), indicating the minimal
statistics necessary to detect the deviant is actually over a
shorter window than the pattern itself; deviance can be de-
tected by the entire 4- tone pattern or by three repetitions
of the same tone (see Figure 1c).

High- & low-predictability oddball. Top-down atten-
tional affects have been measured in the MMN response.
In [15], the MMN response was measured in two condi-
tions: a high-predictability condition where the number of
standards preceding a deviant was usually 4 (AAAAB),
and a low-predictability condition where the number of
standards was uniformly distributed between 2 and 6. Lis-
teners were tasked with detecting every deviant (B). ERP
evidence shows a significant MMN response to deviants
but no difference in MMN magnitude between predictabil-
ity conditions; this null result is replicated by differential
surprisal betweeen deviant and standard from the model
with D = 1 collecting only marginal statistics (t23 =
1.27, p > 0.1) (see Figure 1d).

By contrast, a model with D = 6 collects temporal
covariances that cover the entire AAAAB pattern and no
longer finds the final B tone “surprising" (see Figure 1d-
right). This mirrors a similar study where listeners were
tasked with listening for the entire pattern and exhibited
no MMN response to the deviant tone [19]. These top-
down effects can be described in terms of the statistics
being collected—when attending to the B tone only, lis-
teners collect marginal statistics; when attending to the en-
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Figure 2. (Colour online) Comparison of neural and model re-
sults, continued. a) [16], b) [17], c) and d) [18]. Arrows indicate
replicated effects. Surprisal axis is occasionally inverted to fa-
cilitate visual comparison. Experimental figures reproduced with
permission from the publishers.

3



ACTA ACUSTICA UNITED WITH ACUSTICA Skerritt-Davis, Elhilali: Statistical regularity extraction
Vol. 105 (2019)

tire AAAAB pattern, listeners collect long-range temporal
statistics.

Statistical oddball biased toward large or small
changes. Context effects have been observed in the MMN
response by manipulating the relative probabilities of de-
viants, biasing them toward small- or large-change de-
viants [16]. Effects due to spectral change (between de-
viant and standard) and statistical context are observed in
N1 amplitude: magnitude increases with spectral change
and is augmented by the small-change context, where large
changes are less probable. An ANOVA applied to model
surprisal (with D = 1) shows the same significant effects
for spectral change (F2,477 = 668.66, p < 0.0001) and sta-
tistical context (F1,477 = 221.14, p < 0.0001) (see Fig-
ure 2a).

Gaussian sequences differing in variance. Context ef-
fects have also been observed using random stimuli drawn
from a Gaussian distribution with different variances [17].
Responses to deviants (presented 2 octaves above the
mean) show a negative peak around 120 ms that is larger
for narrow relative to broad statistical context. Addition-
ally, there is evidence of adaptation effects in the broad
context when comparing deviant responses based on the
number of preceding tones (Na) falling outside a fre-
quency region (ΔFa) (see [17] for details). The model with
D = 1 replicates these results (see Figure 2b).

Regular vs. random sequences. Repeating patterns are
another class of stimuli used to explore regularity ex-
traction in the brain. In particular, RMS power in MEG
has been shown to increase with decreasing entropy in
the stimulus [18]: RMS power increases gradually when
the stimulus transitions from random to repeating pattern
(RAND-REG), while RMS power decreases abruptly for
the opposite transition (REG-RAND). The model repli-
cates both of these phenomena in the time-course of sur-
prisal, with D greater than the pattern length (see Fig-
ure 2c). Additionally, the model replicates effects of pat-
tern length on RMS power [18], again reflecting differ-
ences in entropy (see Figure 2d).

4. Conclusion

The D-REX model utilizes statistical descriptions of sound
sequences to replicate findings across a wide swath of the
regularity extraction literature. While these statistical de-
scriptions may not be necessary to replicate these find-
ings, the model provides a unified interpretation that is
more generalizable toward natural sounds, where random-
ness and noise abound. Beyond retrospective intepreta-
tion of existing results, the D-REX model can be used to
guide future experiments probing the temporal processing
of more complex sounds. Moreover, since the model em-
ploys a Bayesian framework that is agnostic to probability
distributions and underlying statistics, the D-REX model
offers a generalized platform to explore sufficient statis-
tics underlying regularity tracking in the auditory system,
as well as contrast different interpretations of behavioral
and neurophysiological results for parsing complex sound
sequences.
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