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ABSTRACT 
Though seemingly effortless, our auditory system engages in complex processes and 
transformations which enable us to segregate speech and other target sounds from cluttered 
and noisy environments. In this work, we present a biologically-inspired model for exploring the 
role of cortical receptive field selectivity and adaptation in the streaming of a target tone 
embedded in a random complex background. This computational scheme tests the hypothesis 
that segregation of a target sound from the background maskers is achieved by integrating 
temporally-coherent information in a multidimensional spectrotemporal cortical representation. 
The model uses a clustering algorithm reconciling the integrated output of a cortical mapping 
with the incoming input projected into a multidimensional space explicitly depicting features 
related to tonotopy, spectral shape and harmonicity. We demonstrate the model’s ability to 
emulate percepts reported by human subjects performing this task. The coherence principle 
tested in this model is driven by physiological results testing the role of spatial separation in 
mediating streaming in cortical neural responses.  
 
 
INTRODUCTION  
Despite the importance of auditory scene analysis is our daily lives, we still largely ignore the 
neural mechanisms underlying this remarkable ability, and particularly the role of different 
auditory nuclei in the process of sound organization. Various studies have suggested the 
involvement of the auditory cortex in representing sounds in terms of auditory objects. Firstly, 
the cortical circuitry is known to exhibit intricate mappings of acoustic waveforms into a 
multidimensional feature space, allowing acoustic elements to cluster into distinct ensemble, 
hence potentially forming distinct streams. Secondly, lesion studies reveal auditory cortical 
involvement in temporal pattern organization, and hence associate cortical circuitry with 
perceptual ordering of acoustic events and sequential stream segregation. Thirdly, the temporal 
dynamics of stream formation and auditory grouping are known to correspond nicely with the 
time scales observed in cortical processing. 
 
Cortical circuitry is postulated to encode perceptually segregated streams by activating spatially 
non-overlapping populations of neurons. This prevailing view of streaming emphasizing spatial 
clustering, states that sounds that can segregate are those that excite neural populations that 
are sufficiently spatially distinct in the primary auditory cortex. In the simplest case of two tone 
streams, such segregation would occur if the frequency separation between the two tones was 
sufficiently large. Models supporting this principle have shown relative success in reproducing 
stream segregation examples especially for simple tone-stimuli [1,7,8]. The idea has also been 
explored in physiological studies that attempted to look at the neural basis of stream 
segregation; particularly focusing on the principle that the probability of perceiving one stream 
vs. two streams is correlated with the amount of overlap between two populations of neurons 
tuned at the frequencies of the two streams [4,5,9].  
 
The present study questions whether the principle of spatial clustering is in fact sufficient as a 
neural correlate of streaming. As discussed in section 1, our electrophysiological findings 
indicate that the spatial neural response pattern is not sufficient to reflect the perceptual 
organization of sounds, and that the temporal coherence between sound elements is critical for 



 

 
 

19th INTERNATIONAL CONGRESS ON ACOUSTICS – ICA2007MADRID 

2

sound segregation. Based on these neurophysiological results, we formulate in section 2 a 
computational model that emphasizes two critical stages of stream segregation: (1) mapping 
sounds into a multi-dimensional feature space; (2) organizing sound features into temporally 
coherent streams. The model highlights the principle that sound elements belonging to the 
same stream tend to evolve together in time. It postulates that grouping features according to 
their levels of temporal coherence is a viable organizing principle underlying cortical 
involvement in sound segregation. 
 
1. PHYSIOLOGICAL APPROACH 
The experiment described here contrasted responses of primary auditory cortex (A1) neurons 
under two conditions: a synchronous and an alternating sequence of two tones. At far enough 
separations between the frequencies of the two tones (e.g., 1 octave), the percept of the 
alternating tones is that of two “streams”, while the synchronous stream a remains unitary 
sequence. In this experiment, we tested whether the spatial pattern of neural responses in A1 
reflects the different percepts in these two conditions. Specifically, we examined whether the 
interactions between the two tones become stronger or more far ranging in the synchronous 
compared to the alternating sequence. We recorded from A1 of awake non-behaving ferrets 
(N=2) and compared neural responses to alternating and synchronous two-tone AB sequences. 
The stimuli consisted of: (a) A sequence of a repeating tone (A) placed at the best frequency 
(BF) of a cell; (b) a sequence of a repeating B tone, placed at different distances ∆F A-B away 
from the BF; (c) a sequence of alternating A-B tones presented at all frequency separations ∆F 
A-B; (d) a sequence of synchronously presented A and B tones. Tones in all conditions were 75 
ms long, with 25 ms inter-stimulus-interval.  
 
 

 
 

Figure 1. (A) Responses of a primary 
auditory cortex neuron to sequences of 
two-tones. The left panel depict per-
stimulus histogram to responses to A tone 
alone (presented at Best Frequency), B 
tone alone (presented at various distances 
away from BF), alternating A and B tone; 
and synchronously presented A and B 
tones. Right panel shows tone-interaction 
curve by measuring the peak response of 
the tones for different separations of the B-
tone away from the BF. (B) Population 
scatter plot contrasting the bandwidth of 
two-tone interaction in the synchronous vs. 
alternating cases in 22 neurons. The 
diagonal indicates that the range of 
interaction is the same under both 
conditions.  
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Figure 1A shows responses of 1 neuron in primary auditory cortex. The plots in the left 4 panels 
show the per-stimulus histograms of neural responses to all 4 stimulus conditions. The varying 
colored traces indicate response to the different ∆F A-B spacing. In order to investigate the 
range of interaction between the A and B tones, we extract the peak firing rate for each stimulus 
condition at the different frequency separations. The right panel of Figure 1A depicts the tone-
interaction curve for the synchronous condition (purple), the alternating condition (black), as well 
as the response to the B tone alone (green) at different B-tone positions away from the BF of 
the cell (∆F A-B = 0 oct). For this example neuron, as the B tone is brought closer to the BF, it 
begins to induce a visible response from the cell at about 1 octave away from the center of the 
receptive field. This same bandwidth of interaction is observed whether the B tone is alone, with 
A and B presented simultaneously or in an alternating fashion. Therefore, we can deduce that 
this neuron yields the same range or bandwidth of interaction for both synchronous and 
alternating conditions, indicating that its spatial firing pattern alone is not sufficient to indicate 
the perceptual difference between these two stimulus configurations.    
 
We contrasted this bandwidth of interaction in a population of 22 A1 neurons. As shown in 
Figure 1B, 7/22cells showed larger range of tone interactions responding to synchronous AB 
than alternating AB; 5/22 cells were in the opposite direction; and 10/22 cells showed equal 
range of tone interactions. Hence, these results indicate that while spatial separation in A1 may 
be a prerequisite for revealing the segregation level of two sounds, it is unlikely to be sufficient 
by itself. 
 
 
2. COMPUTATIONAL APPROACH 
Drive by these physiological findings, we formalize a computational model based on the 
temporal coherence principle. This scheme highlights the principle that sound elements 
belonging to the same stream tend to evolve together in time. The model involves two key 
components: first, the mapping of sounds into an appropriate multi-dimensional feature space; 
and second the organization of these sound features into temporally correlated streams. 
 
Model formulation 
Stage 1 
Current understanding of auditory cortical processing inspires our model for the multi-
dimensional representation of sound. The model takes in as input an auditory spectrogram, and 
effectively performs a wavelet decomposition using a bank of linear spectro-temporal receptive 
fields (STRFs). The analysis proceeds in two steps (as detailed in [3]): (i) a spectral step that 
maps each incoming spectral slice into a 2D frequency-scale representation. It is implemented 
by convolving the time-frequency spectrogram y(t,x) with a complex-valued spectral receptive 
field SRF, parameterized by spectral tuning Ωc and characteristic phase φc; (ii)  A temporal step 
in which the time-sequence from each frequency-scale combination (channel) is convolved with 
a temporal receptive field TRF to produce the final 4D cortical mapping r. Each temporal filter is 
characterized by its modulation rate ωc and phase θc. This cortical mapping is depicted in 
Fig.1A, and can be captured by: 
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We choose the model’s parameters to be consistent with cortical response properties, 
spanning the range Γ=[0.5-4] peaks/octave spectrally and Ψ=[1-30] Hz temporally. Clearly, 
other feature dimensions (such as spatial location and pitch) can supplement this 
multidimensional representation as needed.  
 
Stage2 
The essential function of this stage is two-fold: (i) estimate a pair-wise correlation matrix (C) 
among all scale-frequency channels, and then (ii) determine from it the optimal factorization of 
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the spectrogram into two streams (foreground and background) such that responses within 
each stream are maximally coherent. 
The correlation is derived from an instantaneous coincidence match between all pairs of 
frequency-scale channels integrated over time. Given that TRF filters provide an analysis over 
multiple time windows, this step is equivalent to an instantaneous pair-wise correlation across 
channels summed over rate filters (Figure 2): 

( ) ( )*( ) ( )i j i j ijCorrelation Matrix s t s t dt r r C
ω

ω ω
∈Ψ

= ∑∫  (2) 

where (*) denotes the complex-conjugate. We can find the “optimal” factorization of this matrix 
into two uncorrelated streams, by determining the direction of maximal incoherence between 
the incoming stimulus patterns. Such a factorization is accomplished by a principal component 
analysis of the correlation matrix C [6], where the principal eigenvector corresponds to a map 
labeling channels as positively or negatively correlated entries. The value of its corresponding 
eigenvalue reflects the degree to which the matrix C is decomposable into two uncorrelated 
sets, and hence reflects how ‘streamable’ the input is.  
 
Computing the streams  
Therefore, the computational algorithm for factorizing the matrix C is as follows: 
(1) At each time step, the matrix C(t) is computed from the cortical representation as in Eq.2. 

The correlation matrix keeps evolving as the cortical output r(t) changes over time. However 
for stationary stimuli, the correlation pattern reaches a stable point after a buildup period. 

(2) Given its hermitian nature (since it is a correlation matrix), C can be expressed as: 
C=λmm†+ε, where m is the principal eigenvector of C, λ: its corresponding eigenvalue, and 
ε(t) the residual energy in C not accounted for by the outer-product of m. (†) denotes the 
hermitian transpose. The ratio of λ2 to the total energy in C corresponds to the proportion of 
the correlation matrix accounted for by its best factorization m. This ratio is an indicator of 
the separablity of the matrix C, and hence the streamability of the sound. 

The principal eigenvector m can be viewed as a ‘mask’, which can differentially shape the scale-
frequency input pattern at any given time instant. This mask consists of a map of weights that 
positively scales channels with a common orientation and suppresses channels in the opposite 
direction. Effectively, m (and its complement 1-m) acts as a “filter” through which we can 
produce the foreground (and background) stream. 
 

 
 
 
 
 
 
 
 
 
 
Model Simulations 
The model was tested on several classic stream segregation conditions to demonstrate its 
ability to emulate known percepts as reported by human subjects. The first row in Figure 2 
illustrates results of the classic alternating tone paradigm [2]. The leftmost panel shows the 

Figure 2.  Schematic of the computational model for stream segregation. Sounds are 
processed in two stages: (a) a cortical analysis stage, where sounds are mapped onto a 
higher dimensional space explicitly encodes numerous acoustic features along which 
streaming can be induced; (b) a temporal coherence analysis, which computes the temporal 
coincidence between different channels, and determines components that are maximally 
coherent. 
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mask profile m for this stimulus. Given its stationary nature, the matrix C stabilizes rapidly, and 
its factorization m reveals that the energy in channel A (low tone) is temporally anti-correlated 
with channel B (high tone), and hence should belong to a different stream.  
The second row of Figure 2 shows the model response to synchronously presented 2-tone 
stimulus. The high and low tones are in phase with each other, yielding a positive coincidence, 
and hence are grouped together as one stream. 
 
The third row of Figure 2 depicts simulation results for a target tone in a multi-tone background, 
commonly used in Informational Masking (IM) tests. This stimulus is the focus of the remainder 
of this study, where we attempt to use the model to account for perceptual and physiological 
results using the same paradigm. The right lower panels of Figure 2 show the outcome of 
applying the mask m to the IM spectrogram. As the correlation pattern builds up in time, the 
target tone is flagged as temporally un-correlated with the background tones, and hence is 
slowly suppressed in the left stream. Given the random nature of the background, some 
maskers are occasionally labeled as weakly correlated with the target. This explains why the 
target stream has a weak contribution from the maskers. 
 
 

 
 
 
 
 
 
 
 
 
 
CONCLUSIONS 
We have demonstrated that the analysis of response coherence in a model of auditory cortical 
processing can account for the perceptual organization of sound streams. This principle is 
driven by physiological data in primary auditory cortex indicating that the spatial response 
pattern of cortical neurons is not sufficient to correlate with the perceptual segregation of sound 
elements. The current model presents two key postulates: (1) there exists a multidimensional 
(cortical) representation of sound that explicitly encodes numerous acoustic features along 
which streaming can be induced, (2) temporally coherent clusters in this representation give rise 
to the percept of segregated streams. The existence of such cortical representation is supported 

Figure 3. Model Simulations of stream segregation stimuli. Each row shows the ‘mask’ 
derived from the model, which indicates the ‘positive’ (red) or ‘negative (blue)’ correlation 
among different sound components (see text for details). The mask is applied to the 
stimulus shown in the original spectrogram, yielding two streams (last two panels). Row 1: 
Segregation of alternating two-tone stimulus. Row 2: Segregation in the case of 
simultaneously presented two tones. Row 3: Segregation in an informational masking 
paradigm with a repeating target in the presence of random masker tones. 
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by extensive physiological evidence in different fields of mammalian auditory cortex, revealing a 
rich variety of receptive fields. Evidently, outstanding questions remain as to how other feature 
dimensions can be added to this representation (e.g. pitch, binaural cues). The computational 
implementation of a coincidence-based scheme can take different (biologically plausible) forms. 
The model presented here relies on simple comparisons and operations that can be readily 
performed in neural circuits. Ongoing and future investigations must also incorporate 
biologically plausible adaptive mechanisms to account for the observed effects of behavior on 
cortical responses during streaming.  
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