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ABSTRACT 
Timbre designates all of the perceptual characteristics of sounds that cannot be described as 
pitch, loudness or duration. Behavioral experiments combined with multidimensional scaling 
techniques have proposed that a few main acoustic dimensions subserve the perception timbre 
for homogeneous ensembles of sounds (e.g., Western musical instrument sounds). It is unclear 
however whether these dimensions can describe all aspects of timbre, and, most importantly, 
that they can capture the subtle differences that allow for sound source recognition. Here we 
investigate a computational model of timbre that has in principle a large number of dimensions, 
but of which only a small subset are used to describe each individual sounds. These 
dimensions are based on spectro-temporal receptive fields (STRFs) obtained from physiological 
recordings in the primary auditory cortex, and capture a multiscale cortical representation of 
dynamic sound spectra. The STRF model is used here to predict listener's perception of 
differences between musical instruments, and between musical and vocal sounds. This 
technique presents a biologically plausible approach to reproduce perceptual results, and offers 
an alternative view to understand timbre perception  
 
 
INTRODUCTION 
Natural sounds carry a wealth of information about the environment. Our brains are able to 
effortlessly integrate a multitude of acoustic cues constantly arriving at our ears, and to derive 
coherent percepts and judgments about the varied attributes of the sound. This facility to 
analyze an auditory scene is based on a multi-stage process in which sound is analyzed in a 
myriad of neural circuits, populated with neurons which encode a multitude of features and 
levels of abstractions of the acoustic information. At the peripheral stages, auditory nuclei 
exhibit well-defined tuning characteristics. In contrast, later stages exhibit a more complex and 
labile behaviour, presumably to be able to express context-sensitive rules that can influence 
auditory scene analysis and sound identification [1]. Decades of physiological and 
psychoacoustical studies [7,10] have revealed elegant strategies at various stages of the 
auditory system for the representation of the signal cues underlying auditory perception.  
 
Of all attributes that have been defined to describe the perception of acoustic signals, timbre 
remains the most mysterious and least amenable to a simple mathematical abstraction [7]. 
Unlike pitch and loudness, it has resisted descriptions along an ordered scale, and instead has 
fallen along impressionistic juxtapositions such as sharpness-dullness and transient-sustained. 
The multifaceted complexity of the timbre percept essentially stems from its sensitivity to 
spectral shape and temporal dynamics, cues that cannot be readily captured along simple 
dimensions. Furthermore, they often co-vary with other cues such as intensity (loudness) and 
fundamental frequency (pitch) when produced by real instruments. Thus, the timbre of a musical 
note changes substantially when it is “plucked” instead of “bowed”, muted instead of amplified, 
or when played on an open string versus a fingered placement [6,8].  
 
We report in this article on recent efforts to develop a model of auditory processing that can 
potentially account for major aspects of the timbre percept. The physiologically inspired model is 
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assessed by its ability to generate a relational structure of musical timbre [13]. The model 
consists of two stages: a representational stage in which sound is transformed into a pattern 
that embodies its perceptually significant spectro-temporal features. It is followed by a 
classification stage that organizes the perceptual patterns due to different musical instruments 
into a pair-wise confusion-matrix and aims to predict the “perceptual-distances” among them. In 
a first set of simulations, we show that the model can qualitatively capture interesting 
differences between various types of instruments, such as their manner of production. This 
property is dependent on the spectro-temporal analysis used, as selecting only spectral or only 
temporal cues fail to produce such a classification. In the second part of the study, we compare 
the model simulations to behavioural data. We collected timbre dissimilarity judgments between 
musical instruments, using the same instruments for both psychophysics and the model 
simulations. A high, significant correlation was observed between the model predictions and the 
listeners’ judgments. Finally, we examine biologically plausible coding strategies involving 
spike-timing information and show that this could reduce the computational cost of the 
classification stage.  
 
I. THE COMPUTATIONAL MODEL 
Stage1: Cortical Representation Space 
Sound in its journey from the eardrum to the cortex undergoes a profound transformation from a 
simple one dimensional temporal pressure waveform to an elaborate multidimensional 
representation. In models of the early auditory stages [5,16], the acoustic signal is transformed 
into an “auditory spectrogram” - a frequency-time representation that is the end-result of 
frequency analysis in the cochlea, followed by edge detection and temporal smoothing. Figure 
1(A) depicts the auditory spectrogram of a violin note, whose spectral and temporal cross-
sections are depicted by the bold lines in Fig.1(C). The spectral structure of the sound has 
many harmonic peaks (due the pitch of the note) and an overall envelope (dashed bold line) 
reflecting the resonances of the body of the violin. It also highlights the temporal modulations in 
some channels that reflect the soft onset, sustained bowing, and the vibrato (bold line). By 
contrast, the temporal and spectral modulations of a piano (playing the same note) are quite 
different (thin lines in Fig.1(C)). Temporally, the onset of a piano rises and falls much faster, and 
its spectral envelope (dashed thin line) is smoother. 
 

 
 
 
These spectro-temporal modulations are analyzed in subsequent stages of the model, which 
can be used to predict the varied percepts produced by the sound [2].  The analysis mimics 
aspects of cortical auditory processing. It consists of a bank of “modulation selective filters” that 
detect various spectro-temporal features ultimately created by the instrument and player. Each 
cortical filter (usually referred to as the spectro-temporal receptive field, or STRF) is “tuned” or 
best activated by a particular patterns of spectral peaks and temporal rates. The auditory cortex 

Figure 1: Representation 
of sound in a higher-
dimensional cortical 
space. (A) Sound is first 
transformed into an 
auditory spectrogram in 
peripheral stages. Its 
modulation content is then 
analyzed in the cortex by 
an array of modulation-
selective “filters”, (STRFs). 
(B) Viewed in the cortical 
space, each instrument has 
a distinctive signature 
pattern that captures its 
spectro-temporal activation, 
and hence reflects its 
timbre. Red indicates 
strong responses, Blue is 
weak. (C) A contrastive 
view of the temporal 
modulations (left) and 
spectral modulations (right) 
of a piano and violin playing 
the same note.  
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contains a large variety of such STRFs with different spectral bandwidths, asymmetries, 
dynamics, and directional preferences [12,14], hence giving rise to the description of such an 
analysis as a multi-scale and multi-rate analysis along the spectral and temporal dimensions of 
the spectrogram, respectively. Therefore, an ordered bank of such multi-resolution filters, tuned 
to a range of bandwidths and dynamic rates, provides by its responses a unique 
characterization of the spectrogram, one that is sensitive to the spectral shape and temporal 
dynamics over the entire stimulus. Mathematically, this “cortical” model performs a two-
dimensional wavelet analysis of the spectrogram (with all details provided in [2]). Figure 1B 
illustrates the responses generated by four instruments (violin, piano, clarinet and oboe) playing 
the same note (G3), and averaged over their spectral dimension and durations. Each of the 
panels provides an estimate of the distribution of energy in the various spectral and temporal 
modulations of the sound. For instance, the vibrato of the violin concentrates its peak energy 
near 6 Hz, while by contrast the rapid onset of the piano distributes its energy. Similarly, the 
unique pattern of peaks and valleys in the spectral envelopes of each instrument produces a 
broad distribution along the bandwidth axis, whereas the piano’s smooth profile activates broad 
bandwidths. Each instrument, therefore, produces a correspondingly unique spectrotemporal 
activation that could be used to recognize it or distinguish it from others. 
 
Stage 2: Classifying Cortical Activation Patterns 
The hypothesis behind this work is that the activation patterns generated by the cortical model 
reflect closely the perceptually-significant features of the timbre of the signals. Consequently, it 
should be possible to organize the patterns according to their similarity or differences, and thus 
predict our perception of their timbre distances. In the following simulation, sets of instrument 
sounds were processed through the cortical model and the full output was then further analyzed 
to compute a matrix of the pair-wise distances among the instruments. This matrix measures 
the distances between the representations of any pair of instruments as viewed by the cortical 
model. It reflects how similar the instruments are for the model, and, we hypothesize, how 
‘perceptually similar’ these instruments would sound to human listeners. To construct this 
matrix, we compared the scale-rate plots of all instruments (similar to those shown in Fig.1(B)) 
using the L2-norm as a measure of distance (or dissimilarity).  
 
II. USING THE MODEL TO EXPLORE MUSICAL INSTRUMENTS SPACE 
Method 
For a first test of the model, we extracted musical sounds from the well-known RWC Music 
Database [3]. The set tested included: Piano (PF), Classical Guitar (CG), Harp (HP), 
Vibraphone (VI), Marimba (MB), Cello (VC), Violin (VN), Flute (FL), Oboe (OB), Clarinet (CL), 
Harmonica (HM), Trumpet (TR), Trombone (TB), and Bassoon (FG). Each instrument was 
tested for 3 different notes (B2, Bb3, Csharp3), as well as up to 3 different instrument 
manufacturers. On average, 3-5 tokens were recorded from each instrument and used in the 
analysis described here. The full model was run, and the similarity matrix constructed. Each 
entry in the matrix is the average distance between the corresponding two instruments, 
measured by first computing the distances between the samples for the two instruments played 
at the same note, and then averaging the results across all notes and all samples. 
  
Results 
The results of the cortical patterns comparisons are shown in Figure 2. The broad organization 
that emerges is that instruments that share a manner of production (e.g., bowed or plucked), 
and/or important physical attributes (e.g., wood box or strings) tend to cluster together in the 
matrix. For instance, two classes of instruments are roughly distinguished in Fig.2(left): transient 
versus sustained, e.g., percussive (plucked, and struck) instruments versus wind and bowed 
instruments. Finer distinctions within each group are also apparent. For instance, within the 
transient group, the “string” instruments (Piano, Classical Guitar, and Harp) cluster together 
apart from the two non-string instruments (marimba and Vibraphone). Within the sustained 
group, the string instruments (Violin and Cello) cluster apart from most wind instruments. The 
latter group further subdivides into two types: Flute/Oboe/Clarinet/Harmonica, and the brass 
instruments Trombone and Tuba. The Bassoon remains somewhat apart. 
 
The features that give rise to these classifications in the cortical model are varied but can be 
roughly divided into temporal and spectral. Thus, the primary division of all instruments into 
sustained and transient clearly reflects the temporal dynamics of the sound, which in turn 
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primarily correlates with the manner of sound production. However, within each of these two 
classes of sounds, spectral cues take over, giving rise to the stringed versus non-stringed 
distinction, and the further subdivisions within each which are likely related to the physical 
attributes of the instruments. To examine explicitly the contributions of these temporal and 
spectral factors, we re-computed the distance matrices based solely on either the rate 
(dynamics) or the scale (spectral) dimensions by effectively collapsing one of the dimensions in 
the scale-rate plots (Fig.1(B)). Therefore, each instrument is now characterized by either a one-
dimensional scale or rate profile. The results of the purely-temporal matrix are shown in 
Fig.2(middle), which primarily replicates the transient/sustained distinction described earlier. 
Note that within these two groups, the clustering of the instruments is now more cohesive since 
all share very similar dynamics. Relatively small distinctions among the instruments remain, 
however, presumably due to vibrato, shimmer, and other dynamic features that are unique to 
some instruments (e.g., the violin). The matrix due to the purely-spectral cues (Fig.2(right)) 
shares some of the major classifications of the temporal matrix, e.g., the transient/sustained 
grouping, indicating the consistency of dynamic and spectral cues. However, spectral cues on 
their own are quite effective in distinguishing many of the instruments, e.g., 
Vibraphone/Marimba, Piano/Guitar, Clarinet/Harmonica, and Trombone/Tuba. Therefore, the 
overall conclusion of this qualitative analysis is that relying exclusively on temporal or spectral 
cues is not as reliable as making use of both types of cues. 

 

III. PREDICTING PERCEPTUAL SIMILARITY WITH THE TIMBRE MODEL 
Method 
To further investigate the relation between model dissimilarity and perceptual dissimilarity, we 
ran a psychoacoustical test of timbre judgments. Normal-hearing listeners had to judge the 
dissimilarity between two timbres that were played with the same pitch. The instruments tested 
behaviorally were also extracted from the RCW musical database [3], and consisted of: Piano 
(PF), Vibraphone (VI), Marimba (MB), Cello (VC), Violin (VN), Oboe (OB), Clarinet (CL), 
Trumpet (TR), Bassoon (FG), Trombone (TB), and Saxophone (Sx); in addition to a voice 
singing the vowel ‘A’ (Av) and ‘I’ (Iv). The note played was D4 for all sounds. The listening test 
was performed on 7 subjects. Listeners made subjective judgments of dissimilarity between 
each pair of sounds, in both orders. Prior to the experiment, subjects were acquainted with the 
range of timbre differences. Listeners were allowed to listen to the sounds as many times as 
desired before they made their judgment on a continuous subjective scale. For the model 
simulations, we replicated the analysis described before but using the single tokens of the set of 
sounds tested behaviorally. 
 
Results 
In Figure 2B(left), we show the psychoacoustical distance matrix obtained from the human 
listening tests. The behavioral results reveal a good agreement among subjects, as indicated by 
the relatively small values of the standard deviation (middle panel). In addition, the dissimilarity 

Figure 2:  Confusion matrices representing the timbre-distance between any pair of 
instruments.  The instruments featured are the Piano (PF), Classical Guitar (CG), Harp (HP), 
Vibraphone (VI), Marimba (MB), Cello (VC), Violin (VN), Flute (FL), Oboe (OB), Clarinet (CL), 
Harmonica (HM), Trumpet (TR), Tuba (TB), and Bassoon (FG). Red (Blue) indicates largest (smallest) 
distances between any pair of instruments. (Left) The confusion matrix computed from the complete 
rate-scale plots of all indicated instruments (as in Fig.1(C)). (Middle) The confusion matrix computed 
from only the temporal dynamics of the sounds (roughly, collapsing the scale axes in the rate-scale 
plots of Fig.1(C). (Right) The confusion matrix computed from only the spectral modulations of the 
sounds (roughly, collapsing the rate axes in the rate-scale plots of Fig.1(C). 
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matrix is fairly symmetrical around the diagonal (left panel), allowing us to combine both half off-
diagonals into the upper half matrix for comparison with the simulation results (Fig.2B rightmost 
panel). The model simulations with the behaviorally-tested set of sounds are shown in Figure 
3(A,left). Both the original analysis using average measures (Fig. 2(left) and this analysis with 
single tokens (Fig. 3(A,left)) show qualitatively similar patterns at the corresponding instruments. 
We then compared the model’s classification with the behavioral panel results. Visual inspection 
indicates that the major features of the dissimilarity judgments are captured by the model. 
Quantitatively, the model yields a good match to the behavioral data; with a statistically-
significant correlation coefficient r=0.7 (p <10-5). 

 

IV. EXPLORING TIME-BASED CODES FOR TIMBRE 
Timing-based Coding strategies 
The L2-norm that we used to estimate the distance between model outputs is conceptually 
simple but would in practice require a comparison between the rates of activation of all possible 
feature detectors. This is a very expensive strategy in terms of possible neural computation. We 
thus investigated whether a sparser code could be found by using the information contained in 
the time course of activity of the STRF-based model. The use of spike-timing as a source of 
information in auditory processing has been hypothesized for pitch [11], spatial localization [9], 
and loudness [4] before. Here, we explore aspects of spike-timing to extract information about 
the timbre of these natural sounds.  
We chose to investigate the rank-order principle as an efficient coding strategy that has been 
successfully implemented in the identification of visual natural objects [15]. A rank order code is 
based on the principle that neural feature detectors that are well matched to the sensory input 
will tend to produce spikes rapidly, whereas a poorer match will produce late spikes or no 
spikes at all. The sequence of spikes (which neuron fired first, which neuron fired second, etc.) 
is the code that is used to characterize neural activity. To estimate the distance between activity 
patterns produced by two inputs, it is thus not necessary to compute the rate of activation in all 
feature-detectors: the first few active feature-detectors are identified for each given input, and 
these sparse sequences of activation are then compared to produce the distance estimate [15]. 
 
Applying the rank-order classification strategy to timbre dissimilarity estimation 

Figure 3: Simulation and Behavioral Results of Musical Timbre Judgments. (A) The left matrix shows 
the pair-wise distances between every instrument pair, based on their corresponding cortical activation 
patterns. The right panel shows a similar dissimilarity matrix obtained from the spike-timing information of 
the cortical activation of each sound. (B) Behavioral judgments of human subjects listening to the same 
sets of sounds yield a nearly symmetrical matrix, with a small variance across subjects (right panel). 
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We used the firing pattern obtained from each STRF in the cortical model as a time-evolving 
template of the activation driven by every given sound. The spiking time for a given STRF was 
computed by integrating its energy output and producing a spike when an arbitrary threshold 
was reached. This firing-rank template was then compared to the STRF firing ranks of any other 
arbitrary sound hence building a new dissimilarity matrix between every pair. In our current 
analysis, we encoded the initial 50 spikes from a population of about 400 feature-selective 
STRFs. This yields a powerful reduction in the information encoded. The dissimilarity matrix 
obtained is shown in Figure 3 (A, right). Despite the information compression, rank order coding 
is as good as the full L2-norm measure, it even results in an apparent improvement in predicting 
the human results with a correlation coefficient of r=0.76 (p <10-5). 
 
CONCLUSIONS 
The hypothesis investigated in this work is that timbre may be quantified in terms of the sound-
induced activity in a model of auditory cortical processing. Using a set of natural instruments 
and introducing some variability in the sound tokens used for each instrument, we found that the 
model provided a classification that was consistent with intuition. Using single tokens and a 
restricted instrument set, we observed a significant correlation between model-predicted 
dissimilarity and perceptually-measured dissimilarity. More experiments need to be performed to 
confirm these preliminary results, but a few speculations might be drawn from the current study. 
First, on the nature of the appropriate representation to predict timbre dissimilarity: according to 
our first set of simulations, purely temporal or purely spectral analyses are not as versatile in 
segregating instruments nor in providing insights into their hierarchical relationships as spectro-
temporal representations. In fact, it seems that a simple “superposition” of the results is not 
sufficient either. Instead, it is essential to perform the classification on the full spectro-temporal 
representation since collapsing one or the other axes likely distorts or destroys the joint 
spectrotemporal features in the representation. Second, even though a strategy based on 
distance measurement between a very large set of feature detectors might seem inefficient, 
biologically-plausible coding strategies can be proposed to reduce the complexity of the 
problem while avoiding any significant loss in predictive power. 
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