
Robsut Wrod Reocginiton via semi-Character Recurrent Neural Network

Keisuke Sakaguchi† Kevin Duh‡ Matt Post‡ Benjamin Van Durme†‡
†Center for Language and Speech Processing, Johns Hopkins University

‡Human Language Technology Center of Excellence, Johns Hopkins University
{keisuke,kevinduh,post,vandurme}@cs.jhu.edu

Abstract
The Cmabrigde Uinervtisy (Cambridge
University) effect from the psycholinguis-
tics literature has demonstrated a robust
word processing mechanism in humans,
where jumbled words (e.g. Cmabrigde /
Cambridge) are recognized with little cost.

Inspired by the findings from the
Cmabrigde Uinervtisy effect, we pro-
pose a word recognition model based on
a semi-character level recursive neural
network (scRNN). In our experiments,
we demonstrate that scRNN has signifi-
cantly more robust performance in word
spelling correction (i.e. word recognition)
compared to existing spelling checkers.
Furthermore, we demonstrate that the
model is cognitively plausible by replicat-
ing a psycholinguistics experiment about
human reading difficulty using our model.

1 Introduction

Despite the rapid improvement in natural lan-
guage processing by computers, humans still have
advantages in situations where the text contains
noise. For example, the following sentences, in-
troduced by a psycholinguist (Davis, 2003), pro-
vide a great demonstration of the robust word
recognition mechanism in humans.

Aoccdrnig to a rscheearch at Cmabrigde
Uinervtisy, it deosn’t mttaer in waht oredr
the ltteers in a wrod are, the olny iprmoetnt
tihng is taht the frist and lsat ltteer be at the
rghit pclae. The rset can be a toatl mses and
you can sitll raed it wouthit porbelm. Tihs is
bcuseae the huamn mnid deos not raed er-
vey lteter by istlef, but the wrod as a wlohe.

This example shows the Cmabrigde Uinervtisy
(Cambridge University) effect, which demon-

b i e

LSTM

b i e

LSTM

b i e

LSTM

b i e

LSTM ���

Aoccdrnig

Softmax Softmax Softmax Softmax ���

to a rscheearch ���

According to a research

Figure 1: Illustrative example of semi-character
recurrent neural network (scRNN).

strates that human reading is resilient to (partic-
ularly internal) letter transposition.

Robustness is important and useful property for
various NLP tasks, and we propose a computa-
tional model which replicates this robust word
recognition mechanism. The model is based on
a standard recurrent neural network with a mem-
ory cell as in LSTM (Hochreiter and Schmidhuber,
1997). The input layer of the model consists of
three sub-vectors: beginning (b), internal (i), and
ending (e) character(s) of the input word (Figure
1). This semi-character level recurrent neural net-
work is referred as scRNN.

First, we review previous work on the robust
word recognition mechanism from psycholinguis-
tics literature (§2). Next, we describe technical
details of scRNN which capture the robust hu-
man mechanism (§3) using recent developments
in neural networks. Our experiments show that
the scRNN outperforms commonly used spelling
checkers by 42% for jumbled word correction
(§4.1) and 5% and 27% in other noise types (in-
sertion and deletion). We also show that scRNN
replicates recent findings from psycholinguistics
experiments on reading difficulty (i.e. accuracy)
depending on the position of jumbled letters,
which indicates that scRNN successfully mimics

ar
X

iv
:1

60
8.

02
21

4v
1 

 [
cs

.C
L

] 
 7

 A
ug

 2
01

6



Cond. Example # of fixations Regression(%) Avg. Fixation (ms)
N The boy could not solve the problem so he asked for help. 10.4 15.0 236
INT The boy cuold not slove the probelm so he aksed for help. 11.4∗ 17.6∗ 244∗

END The boy coudl not solev the problme so he askde for help. 12.6† 17.5∗ 246∗

BEG The boy oculd not oslve the rpoblem so he saked for help. 13.0‡ 21.5† 259†

Table 1: Example sentences and results for measures of fixation (excerpt from (Rayner et al., 2006)).
There are 4 conditions: N = normal text; INT = internally jumbled letters; END = letters at word endings
are jumbled; BEG = letters at word beginnings are jumbled. Entries with ∗ have statistically significant
difference from the condition N (p < 0.01) and those with † and ‡ differ from ∗ and † with p < 0.01
respectively.

(at least a part of) the human word recognition
mechanism (§4.2).

2 Raeding Wrods with Jumbled Lettres

Sentence processing with jumbled words has been
a major research topic in psycholinguistics liter-
ature. Forster et al. (1987) show that a jumbled
word (e.g. anwser-ANSWER) facilitates primes
as large as identity primes (answer-ANSWER) in
a masked priming paradigm and these results have
been confirmed (Perea and Lupker, 2004; Guer-
rera and Forster, 2008).

These findings about robust word processing
mechanism by human have been further investi-
gated by looking at other types of noise in addi-
tion to simple letter transpositions. Humphreys
et al. (1990) show that deleting a letter in a word
still produces significant priming effect (e.g. blck-
BLACK), and similar results have been shown
in other research (Peressotti and Grainger, 1999;
Grainger et al., 2006). Van Assche and Grainger
(2006) demonstrate that a priming effect remains
when inserting a character into a word (e.g.
juastice-JUSTICE).

With an eye-movement paradigm, Rayner et al.
(2006) and Johnson et al. (2007) conduct more
detailed experiments on the robust word recogni-
tion mechanism with jumbled letters. They show
that letter transposition affects fixation time mea-
sures during reading depending on which part of
the word is jumbled. Table 1 presents the result
from Rayner et al. (2006). It is obvious that human
can read smoothly (i.e. smaller number of fixa-
tions, regression, and average of fixation duration)
when a given sentence has no noise (referred this
condition as N). When the characters at the begin-
ning of word are jumbled (referred this condition
as BEG), human have more difficulty. The other
two conditions, where words are internally jum-
bled (INT) or letters at word endings are jumbled

(END), have similar amount of effect, although the
number of fixations between them showed a statis-
tically significant difference (p < 0.01). In short,
the reading difficulty with different jumble condi-
tions is summarized as follows: N < INT ≤ END
< BEG.

It may be surprising that there is statistically
significant difference between END and BEG con-
ditions despite the difference being very subtle
(i.e. fixing either the first or the last character).
This result demonstrates the importance of begin-
ning letters for human word recognition.1

3 Semi-Character Recurrent Neural Net

In order to achieve the human-like robust
word processing mechanism, we propose a
semi-character based recurrent neural network
(scRNN). The scRNN has the same structure as a
standard recurrent neural network except that the
input vector consists of three sub-vectors that cor-
respond to the characters’ position. The first and
third sub-vectors (bn, en) represent the first and
last character of the n-th word. These two sub-
vectors are therefore one-hot representations. The
second sub-vector (in) represents a bag of charac-
ters of the word not including the initial and final
positions. For example, the word “University” is
represented as bn = {U = 1}, en = {y = 1}, and
in = {e = 1, i = 2, n = 1, s = 1, r = 1, t =
1, v = 1}, with all the other elements being zero.
The size of sub-vectors (bn, in, en) is equal to the
number of characters (N ) in our language, and xn
has therefore the size of 3N by concatenating the
sub-vectors.

With this input vector (xn), the recurrent neural

1There is still a debate in psycholinguistics community
whether or not the order of internal letters does not matter at
all. In this paper, we keep the original hypothesis in order for
our model to be simple.



Original Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy , it deos n’t mttaer in waht oredr the ltteers in a
wrod are , the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae . The rset can be
a toatl mses and you can sitll raed it wouthit porbelm . Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef , but the wrod as a wlohe .

Correct According to a researcher at Cambridge University , it does n’t matter in what order the letters in a word
are , the only important thing is that the first and last letter be at the right place . The rest can be a total
mess and you can still read it without problem . This is because the human mind does not read every
letter by itself , but the word as a whole .

scRNN According to a
::::::
research at Cambridge University , it does n’t matter in what order the letters in a word

are , the only important thing is that the first and last letter be at the right place . The rest can be a total
mess and you can still read it without problem . This is because the human mind does not read every
letter by itself , but the word as a whole .

Commercial
::::::::
Aoccdrnig to a

:::::::
rscheearch at Cambridge

::::::::
Uinervtisy , it does n’t matter in what order the letters in a

word are , the only
:::::::
iprmoetnt thing is that the first and last letter be at the right place . The rest can be a

total mess and you can still read it
::::
outhit problem . This is

::::::
bcuseae the human mind does not read every

letter by
:::
istle , but the word as a whole.

Hunspell According to a
:::::::
rscheearch at Cambridge

::::::::
Uinervtisy , it does n’t matter in what order the letters in a

word are , the only
:::::::
iprmoetnt thing is that the first and

::
lsat letter be at the right

:::
pilau . The rest can be

a total mess and you can still read it
:::::
wouthit problem . This is

:::::
bcuseae the human mind does not read

::::
nervy letter by itself , but the word as a whole .

Table 2: Example spelling correction outputs for the Cmabrigde Uinervtisy sentences.
:::::::::
Underline indi-

cates words which the system failed to correct.

net model is described as follows.

xn =

bnin
en

 (1)

hn = LSTM(Wxh · xn +Whh · hn−1) (2)

yn = softmax(Why · hn) (3)

The input vector is used as input to a hidden
layer (hn) which is an LSTM. The LSTM layer has
a recurrent input from its previous state (hn−1).
The output of the hidden layer is taken as in-
put to the softmax function layer, which predicts
an output word (yn). We use the cross-entropy
training criterion applied to the output layer as in
most LSTM language modeling works; the model
learns the weight matrices (Whh, Why) to max-
imize the likelihood of the training data. This
should approximately correlate with maximizing
the number of exact word match in the predicted
outputs. Figure 1 shows a pictorial overview of
scRNN.

In order to check if the scRNN can recognize
the jumbled words correctly, we test it in spelling
correction experiments. If the hypothesis about
the robust word processing mechanism is correct,
scRNN will also be able to read sentences with
jumbled words robustly.

4 Experiments

We conducted spelling correction experiments to
judge how well scRNN can recognize noisy word
sentences under different conditions. We used

Penn Treebank for training, tuning, and testing.2

The input layer consists of a vector with length of
76 (A-Z, a-z and 24 symbol characters). The hid-
den layer units had size 650, and total vocabulary
size was set to 10k. We apply one type of noise
to every word except that all words with numbers
(e.g. 1980s) and short words (length ≤ 3) are
not subjected to jumbling and were left as is, and
therefore these words are excluded in evaluation.
We trained the model by running 5 epochs with
batch size 20. In order to make the training ef-
ficient, we set the backpropagation through time
(BPTT) parameter to 3.

4.1 Spelling correction results

We tested different noise types: jumble, delete,
and insert, where the jumble changes the inter-
nal characters (e.g. Cambridge → Cmbarigde),
delete randomly deletes one of the internal char-
acters (Cambridge → Camridge), and insert ran-
domly inserts an alphabet into an internal position
(Cambridge → Cambpridge). None of the noise
types change the first and last characters. For com-
parison, we ran two widely-used spelling checkers
(Commercial3 and Hunspell4).

Table 2 presents example outputs for the
Cmabrigde Uinervtisy sentence by each model.5

It is clear that scRNN performs better than the

2Section 2-21 for training, 22 for tuning, and 23 for test.
3We anonymized the name of the commercial product.
4https://hunspell.github.io/
5The Cmabrigde Uinervtisy sentences contains jumbling

as well as deletion, insertion, and replacement of characters.



Jumble Delete Insert
scRNN 98.96 85.74 96.70
Commercial 52.96 58.62 91.47
Hunspell 56.85 35.74 87.59

Table 3: Spelling correction accuracy (%) with
different error types. The difference between
scRNN and the other two models are statistically
significant (p < 0.001).

other spelling checkers. The only error in scRNN
may be because the last character (rscheearch) ac-
tivated the scRNN nodes strongly toward research
instead of researcher.6

Table 3 shows the result with respect to noise
type. Overall, scRNN outperforms the other two
spelling checkers across all three different noise
types. It is striking that scRNN shows robust-
ness in jumble noise, whereas the other models
are significantly affected. All three models suffer
under the delete condition, but scRNN still main-
tains 85% of accuracy whereas the other models
decreased to 58% and 35% accuracy.

The relatively large drop in delete in scRNN
may be because the information lost by deleting
character is significant. For example, when the
word place has dropped the character l, the sur-
face form becomes pace, which is also a valid
word. Also, the word mess with e being deleted
produces the form of mss, which can be recov-
ered as mess, mass, miss, etc. In the Cmabrigde
Uinervtisy sentences, in both cases, the local con-
text support other phrase such as ‘at the right
pace/place’ and ‘a total mass/mess’. These ex-
amples clearly demonstrate that deleting charac-
ters harm the word recognition more significantly
than other noise types.

Finally, all the three models perform well on in-
sert noise, indicating that adding extraneous infor-
mation by inserting a letter does not change the
original information significantly.

4.2 Corroboration with psycholinguistic
experiments

As seen in §2, the position of transposition affects
the cognitive load of human word recognition. We
investigate this phenomenon with scRNN by ma-
nipulating the structure of input vector. We repli-
cate the experimental paradigm in Rayner et al.
(2006), but using scRNNs rather than human sub-

6There is also an deletion of ’r’.

INT END BEG ALL
98.96 98.68∗ 98.12† 96.79‡

Table 4: Spelling correction accuracy with 4 dif-
ferent jumble conditions: INT = internal letters are
jumbled; END = letters at word endings are jum-
bled; BEG = letters at word beginnings are jum-
bled; ALL = all letters are jumbled. Entries with
∗ have statistically significant difference from the
condition INT (p < 0.001) and those with † and ‡

differ from ∗ and † with p < 0.001 respectively.

jects. We trained the scRNN on different jumble
conditions: INT, END, and BEG. INT is the same
model as §3, END represents an input word as
a concatenation of the initial character vector (b)
and a vector for the rest of characters (i.e. the in-
ternal and last characters are subject to jumbling),
and BEG combines a vector for the final character
(e) and a vector for the rest of characters (i.e. the
initial and internal characters are subject to jum-
bling). We also add another jumble type ALL,
where all the letters are subject to jumble (e.g. re-
search vs. eesrhrca) and represented as a single
vector (i.e. bag of characters).

Table 4.1 shows the result. While scRNN
achieves the high accuracy for all the jumble types,
the statistical test revealed that the difficulty of
spelling correction is summarized as INT < END
< BEG < ALL, which has the same order as §2.
It is especially interesting to see the same pat-
tern between END and BEG. This indicates the
scRNN replicates (at least a part of) the human
word recognition mechanism.

5 Related Work

Character-based recurrent neural networks have
been investigated and used for a variety of NLP
tasks such as language modeling (Sutskever et
al., 2011), segmentation (Chrupala, 2013), de-
pendency parsing (Ballesteros et al., 2015), ma-
chine translation (Ling et al., 2015), and text nor-
malization (Chrupała, 2014). Although scRNN
has some similarity in terms of model architec-
ture with these recent works, our contribution is
the demonstration of the robustness and cognitive
plausibility of semi-character-based recurrent neu-
ral networks for word recognition.

Character-level convolutional neural nets
(CNN) have also been noted (Kim et al., 2015)
and used for spelling correction (Schmaltz et al.,



2016). While CNNs have a richer representation,
scRNN still achieves high accuracy in jumbled
word recognition with a simpler RNN structure
(i.e. no convolution layers are required) resulting
in fast training time and small model size.

6 Summary

We have presented a semi-character recurrent neu-
ral network model, scRNN, which is inspired by
the robust word recognition mechanism known in
psycholinguistics literature as the Cmabrigde Uin-
ervtisy effect. Despite the model’s simplicity, it
significantly outperforms existing spelling check-
ers with respect to various noise types. We also
have demonstrated a similarity between scRNN
and human word recognition mechanisms, by
showing that scRNN replicates a psycholinguis-
tics experiment about word recognition difficulty
in terms of the position of jumbled characters.

There are a variety of potential NLP applica-
tions for scRNN where robustness plays an im-
portant role, such as normalizing social media text
(e.g. Cooooolll → Cool) and modeling morpho-
logically rich languages.

References
Miguel Ballesteros, Chris Dyer, and Noah A. Smith.

2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 349–
359, Lisbon, Portugal, September. Association for
Computational Linguistics.

Grzegorz Chrupala. 2013. Text segmentation with
character-level text embeddings. arXiv preprint
arXiv:1309.4628.

Grzegorz Chrupała. 2014. Normalizing tweets with
edit scripts and recurrent neural embeddings. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 680–686, Baltimore, Mary-
land, June. Association for Computational Linguis-
tics.

Matt Davis. 2003. Aoccdrnig to a rscheearch
at Cmabrigde Uinervtisy. http://www.mrc-
cbu.cam.ac.uk/people/matt.davis/cmabridge/.

Kenneth I Forster, C Davis, C Schoknecht, and
R Carter. 1987. Masked priming with graphemi-
cally related forms: Repetition or partial activation?
The Quarterly Journal of Experimental Psychology,
39(2):211–251.

Jonathan Grainger, Jean-Pierre Granier, Fernand Far-
ioli, Eva Van Assche, and Walter JB van Heuven.
2006. Letter position information and printed word
perception: the relative-position priming constraint.
Journal of Experimental Psychology: Human Per-
ception and Performance, 32(4):865.

Christine Guerrera and Kenneth Forster. 2008.
Masked form priming with extreme transposition.
Language and Cognitive Processes, 23(1):117–142.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Glyn W Humphreys, Lindsay J Evett, and Philip T
Quinlan. 1990. Orthographic processing in vi-
sual word identification. Cognitive Psychology,
22(4):517 – 560.

Rebecca L Johnson, Manuel Perea, and Keith Rayner.
2007. Transposed-letter effects in reading: Evi-
dence from eye movements and parafoveal preview.
Journal of Experimental Psychology: Human Per-
ception and Performance, 33(1):209.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2015. Character-aware neural lan-
guage models. arXiv preprint arXiv:1508.06615.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W.
Black. 2015. Character-based neural machine trans-
lation. arXiv preprint arXiv:1511.04586.

Manuel Perea and Stephen J Lupker. 2004. Can CAN-
ISO activate casino? transposed-letter similarity ef-
fects with nonadjacent letter positions. Journal of
Memory and Language, 51(2):231 – 246.

Francesca Peressotti and Jonathan Grainger. 1999.
The role of letter identity and letter position in or-
thographic priming. Perception & Psychophysics,
61(4):691–706.

Keith Rayner, Sarah J. White, Rebecca L. Johnson, and
Simon P. Liversedge. 2006. Raeding wrods with
jubmled lettres: There is a cost. Psychological Sci-
ence, 17(3):192–193.

Allen Schmaltz, Yoon Kim, Alexander M. Rush, and
Stuart Shieber. 2016. Sentence-level grammatical
error identification as sequence-to-sequence correc-
tion. In Proceedings of the 11th Workshop on Inno-
vative Use of NLP for Building Educational Appli-
cations, pages 242–251, San Diego, CA, June. As-
sociation for Computational Linguistics.

Ilya Sutskever, James Martens, and Geoffrey E Hin-
ton. 2011. Generating text with recurrent neural
networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages
1017–1024.

Eva Van Assche and Jonathan Grainger. 2006. A study
of relative-position priming with superset primes.
Journal of Experimental Psychology: Learning,
Memory, and Cognition, 32(2):399.


