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Abstract
Motivated by recent gains in speaker identification by incor-
porating senone posteriors from deep neural networks (DNNs)
into i-vector extraction, we examine similar enhancements to
speaker diarization with i-vector clustering. We examine two
DNNs with different numbers of senone targets in combination
with a diagonal or full covariance universal background model
(UBM) in the context of the multilingual corpus CALLHOME.
Results show that the larger DNN with a full covariance UBM
gives the best performance. The improvements appear to have a
strong dependence on number of speakers in a conversation, and
a lesser dependence on language. Overall, when combined with
resegmentation, the proposed system improves CALLHOME
performance to 10.3% DER.
Index Terms: Speaker diarization, clustering, deep learning

1. Introduction
Speaker diarization is the process of segmenting speech into
the sections spoken by each unique person in the conversation.
Since most speech technologies assume only one speaker in a
given utterance (and, in fact, sometimes exploit that assumption,
such as with speaker adaption for automatic speech recognition
(ASR)), diarization is a valuable front-end process in the event
that multiple speakers are present.

Speaker diarization is similar to speaker identification in
some regards, since both tasks determine if two segments were
spoken by the same person or by different people. Due to this
similarity, most current speaker diarization systems utilize i-
vectors, a speech representation common in speaker identifica-
tion, in order to cluster short segments of speech. However,
unlike in speaker identification, there is no enrollment data to
define speaker identities for diarization. Furthermore, the num-
ber of speakers is typically unknown, though there are presum-
ably only a few speakers in any given conversation. As a re-
sult, unsupervised clustering has become an effective approach
for speaker diarization, since it requires no prior knowledge of
speaker identity and can manage a reasonable number of speak-
ers [1, 2, 3].

Recently, significant progress has been made in speaker
identification by incorporating senone posteriors from deep
neural networks (DNNs) into the i-vector extraction process
[4, 5]. Since speaker identification and speaker diarization share
many similarities, there is reason to believe this approach will
improve diarization results as well.

In this paper, we explore the use of i-vectors extracted with
DNN senone posteriors for speaker diarization. We examine the
performance of several system variations on the CALLHOME
conversational telephone speech (CTS) corpus, and consider the
clustering results in terms of number of speakers as well as spo-
ken language. Overall, we find that, when combined with reseg-
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Figure 1: System diagram for the proposed diarization system.
This system is identical to that in [10] except the substitution of
an unsupervised UBM with a DNN UBM.

mentation, the use of DNNs for i-vector extraction can improve
a state-of-the-art diarization system from 11.5% DER to 10.3%.

2. Background
2.1. Diarization

I-vectors are commonly used in speaker recognition [6], and,
more recently, have become common in speaker diarization
as well [7, 8, 1, 2, 3]. In diarization, i-vectors are extracted
for short blocks of speech, usually on the order of 1-2 sec-
onds. These i-vectors are then clustered using an unsuper-
vised method, such as agglomerative hierarchical clustering
(AHC) [3], Variational Bayesian Gaussian Mixture Models [1],
or mean shift [2]. These clustering algorithms are typically fol-
lowed by or iterated with a resegmentation algorithm that re-
fines the transition boundaries, either with in the feature space
[9] or in the factor analysis subspace [10].



2.2. I-vectors from Senone Posteriors

Previously, the universal background model (UBM) utilized for
i-vector extraction was represented with unsupervised GMMs
that partition the feature space. Recent approaches substitute
the unsupervised partitioning with supervised DNN senone pos-
teriors. This approach leverages transcribed speech data in
order to provide more consistent content-based labels for the
acoustic features. Improving the labels should improve speaker
discriminability, as the partitioning of the feature space will be
based on the spoken content rather than only acoustic similar-
ity. This approach has been shown to be effective for speaker
identification [4, 5], even with domain mismatch [11].

3. Diarization with Senone Posteriors
In order to incorporate the new i-vectors into speaker diariza-
tion, we begin with an existing speaker diarization system based
on i-vector clustering [10], but instead use i-vectors extracted
with senone posteriors from DNNs rather than unsupervised
GMMs. A system diagram for this new process is shown in
Fig. 1. Note that this is identical to the system diagram from
[10], except that the unsupervised UBM has been replaced with
a supervised DNN UBM.

Though not reflected in the system diagram, we also found
that the cut-dependent PCA from [3] removed more energy for
these i-vectors, and so, instead of projecting to 3 dimensions
in all cases, here, we projected to the appropriate dimension to
keep 50% of the energy.

We tested two DNNs with 5 hidden layers of dimension
5000 with p-norm nonlinearities (p = 2) and an input/output
dimension ratio of 10 [12]. Both were trained on 1200 hours
of speech from the Fisher English corpus. However, the DNNs
differed in number of target senones. A set of 7591 senones
was used for the larger DNN (called ENG7591), and a set of
2186 senones was used for the smaller DNN (called ENG2186).
For each DNN, we trained a diagonal covariance UBM and a
full covariance UBM using data from NIST SRE04, SRE05,
SRE06, and SRE08. Each output senone is associated with a
component in the UBM mixture.

4. Experiments
4.1. Data

We evaluated each system using the CALLHOME corpus, a
CTS collection of calls between familiar speakers. The cor-
pus includes six languages: Arabic, English, German, Japanese,
Mandarin, and Spanish. All conversations are presented in a
single channel sampled at 8kHz, and the number of speakers in
each conversation varies from 2 to 7 (and the majority between
2 and 4).

The CALLHOME corpus has been used to evaluate several
of the systems discussed in Section 2. The resulting error rates
are collected in Table 1.

4.2. Performance Metrics

We measured performance with Diarization Error Rate (DER),
the standard metric for diarization. DER combines missed
speech, mislabeled non-speech, and incorrect speaker assign-
ment. However, we followed the typical practice of using oracle
SAD marks in order to evaluate our diarization method inde-
pendent of any particular SAD algorithm, and, as a result, only
incorrect speaker labeling factors into the DERs measured in

Method DER
Castaldo et al [13] 13.7
*Shum et al [1] 14.5
Senoussaoui et al [2] 12.1
Sell and Garcia-Romero [10] 11.5
Proposed 10.3

Table 1: DERs for several systems on CALLHOME. The (*)
reflects that the results for Shum et al were estimated from plots
displaying results per speaker.

this work. Also, as is standard, our DER tolerated errors within
250ms of a speaker transition and ignored overlapping (multi-
speaker) segments in scoring.

4.3. Results

4.3.1. DNN Size

The clustering performance (without resegmentation) of each
system is shown in Fig. 2 in comparison to the baseline unsu-
pervised UBM clustering process [3]. The larger DNN outper-
forms the smaller in almost all cases, indicating a finer parti-
tioning of the feature space is advantageous. Interestingly, in
five-speaker conversations, the smaller DNN is slightly better
for both UBM covariance types, but this trend is not replicated
in any other case.

4.3.2. UBM Covariance

Fig. 2 also clearly suggests that using a full covariance UBM
improves over diagonal covariances, and, in fact, the diagonal
UBM covariances perform below the baseline in most cases. It
is possible that the highly non-linear partitioning of the DNN
requires full covariance matrices in order to see any advantage
at all.

4.3.3. Number of Speakers

It is clear in Fig. 2 that the DNN systems degrade in the pres-
ence of increasing numbers of speakers faster than the base-
line unsupervised UBM system, as the relative performance be-
tween the two is highly dependent on number of speakers. In
the two speaker case, all DNN systems outperform the base-
line. For three speakers, all but the smallest DNN with diagonal
UBM covariances outperforms the unsupervised UBM system.
For four speakers, only the largest DNN with full UBM covari-
ances performs as well as the baseline, and for five speaker or
above, all DNN systems are worse. It is unclear what is caus-
ing this strong dependence on number of speakers. Given the
small number of conversations with five or more speakers, it is
possibly an anomaly, but this requires further analysis before
diarization systems with DNNs should be used for applications
with large numbers of speakers.

Since the large DNN (ENG7591) with full UBM covari-
ances consistently provides the best clustering performance, the
remaining analysis will only consider this combination.

4.3.4. Language

It is possible that adding a supervised component trained on
English data and using English senone labels will introduce an
undesired language-dependence into the diarization system. To
explore this possibility, performance of the ENG7591 DNN sys-
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Figure 2: DER from the clustering for each DNN system compared to the clustering performances using an unsupervised UBM (from
[3]). Performance is broken down by number of speakers in the call.
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Figure 3: Clustering DER for the ENG7591 DNN with full UBM covariances for each language as compared to a baseline system with
an unsupervised UBM (from [3])



tem with full UBM covariances (clustering only) is shown for
each language in CALLHOME, along with performance by the
baseline clustering algorithm, is shown in Fig. 3.

Interestingly, it is immediately evident that performance
varies with language for both systems, though the reasons for
these differences are not obvious. The dependence could source
from some cultural conversational tendency (if conversations in
a language tend to have longer pauses between speaker turns,
for example). It is also possible that the unsupervised UBM sys-
tem already had language dependence from the predominately-
English SRE data used in training. It is also worth noting that
the distribution of number of speakers in a conversation varies
between each language, and so some of the DER variation can
be attributed to this difference. However, these distributions do
not fully explain the results. Japanese, for example, has one
of the higher DERs among these languages but is roughly 75%
two-speaker conversations.

Comparing the performance of the two systems, there are
two important results. The first is that, while English improves
in performance with the use of the DNN, the improvement is
not greater in magnitude than for other languages. German, for
example, makes a larger improvement, both relative and abso-
lute. This would seem to contradict the concern that using an
English-trained DNN would disproportionately benefit diariza-
tion of English conversations.

However, the second important result from the comparative
DERs in Fig. 3 is that the proposed system performs worse
on Arabic, despite improving all other languages (though the
Japanese improvement is marginal). This difference could also
be caused by some cultural characteristic that correlates with
language, or it could be that the English senones are some-
how fundamentally worse for Arabic. Understanding this result
would require further study, but it suggests that using English
senones for i-vector extraction can have a negative impact on
diarization in particular languages.

Entering this study, it was reasonable to suggest that using
English senones might improve error rates in English at the cost
of performance in other languages. Instead, it appears, at least
within this small language group, that English is improved sim-
ilarly to other languages, and only one language (Arabic) sees
reduced performance.

4.3.5. With Resegmentation

Pairing the best performing clustering system (ENG7591 with
full UBM covariances) with a Variational Bayes resegmenta-
tion algorithm shown to be effective for diarization [10] yields
even further gains, shown in Table 2 both in terms of number
of speakers and overall. Not only is overall performance im-
proved by 1.2% DER, but performance is now improved for
all numbers of speakers except five-speaker conversations. The
comparative improvement due to resegmentation is especially
pronounced for six- and seven-speaker conversations, but it is
important to note that there are only 6 and 2 such conversations,
respectively, so these scores are highly subject to random varia-
tions.

5. Conclusion
It has been shown that, as in speaker identification, using senone
labels from DNNs for i-vector extraction improves speaker di-
arization. Comparing to a similar system with an unsupervised
UBM shows that the clustering improvement diminishes as the
number of speakers in the conversation increases. Analysis by

# Spkrs From [10] ENG7591+VB
2 6.4 4.7
3 11.2 10.0
4 14.2 13.4
5 22.3 26.0
6 27.8 24.1
7 31.9 28.9
Overall 11.5 10.3

Table 2: DER performance for the proposed system (ENG7591
DNN with full UBM covariances and Variational Bayes reseg-
mentation) as compared to the system from [10]. The proposed
system improves performance for all cases except five speakers.

language shows that, of the six languages studied, all but Arabic
improve, and English does not improve by a greater magnitude
than other languages, suggesting a low level of language depen-
dence. When combined with resegmentation, the overall DER
is reduced from a baseline of 11.5% to 10.3%.
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