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ABSTRACT

A streamwise constant projection of the Navier Stokes

equations forced by small-amplitude Gaussian noise is sim-

ulated. It is found that this model captures salient features

of fully developed turbulent plane Couette flow. In particu-

lar, the nonlinearity in the model captures the mathematical

mechanism that results in the characteristic shape of the tur-

bulent velocity profile. Further, using Taylor’s hypothesis

the model also generates large scale streaky structures, that

closely resemble large scale features that have been observed

in DNS and experiments.

INTRODUCTION

Even though there are many open questions about tur-

bulence in wall bounded shear flows, there has been a lot of

progress in understanding some of its essential aspects. For

example, the shape of the turbulent mean velocity profile is

well known. In addition, there is a growing body of work

that supports the notion that the flow field is characterized

by coherent structures. In particular, the prevalence and

importance of long streamwise structures has been under-

scored through the discovery of both near wall streaks (Kline

et al., 1967) and, more recently, very large scale motions in

high Reynolds number experiments (for example, Kim and

Adrian, 1999; Morrison et al., 2004; Hutchins and Marusic,

2007). Near wall streaks have been well-studied, while large

scale streamwise (and quasi-streamwise) features in the core

are less well understood.

Large scale streamwise motions (i.e., structures having

long streamwise correlations in the outer layer) are thought

to be somewhat similar in nature to the near wall struc-

tures, but longer in extent. Features with streamwise extent

O(δ) have been associated with the hairpin packet paradigm

while motions of O(10δ) were observed in pipes by Kim and

Adrian (1999) and Morrison et al. (2004). These very large

scale motions consist of long coherent regions of low and

high momentum, relative to the mean, (which we call stripes

to distinguish them from the near wall streaks). Coherent

structures that persist with even greater streamwise length,

(up to 25 pipe radii or channel half lengths), as well as a large

wall normal range, (with some azithmuthal variation) were

more recently observed in pipes and channel flows (Monty et

al., 2007). Streamwise elongated structures that meander,

(i.e. slowly vary across the span over streamwise distance)

with an extent > 20δ have also been identified in boundary

layers (Hutchins and Marusic, 2007).

Analysis of the input-output response of the linearized

Navier Stokes (LNS) equations has also concluded that

streamwise constant features are the dominant mode shapes

that develop under various perturbations about both the

laminar (Jovanović and Bamieh, 2005) and turbulent mean

velocity (del Álamo and Jiménez, 2006) profiles. The per-

turbed LNS equations are thought to be adequate to capture

the energy production of the full nonlinear system because it

is widely believed that the nonlinear terms are passive (en-

ergy conserving), thus energy can only be amplified through

linear interactions (Trefethen et al., 1993). In this paradigm

Butler and Farrell (1992) were able to conclude that streaks

of streamwise velocity naturally arise from the set of initial



conditions that produce the largest energy growth in wall

bounded shear flows and that the disturbances associated

with this maximum amplification are streamwise vortices.

In wall bounded flows, this alignment of structures in the

streamwise configuration is also consistent with the struc-

tures that are most amplified under random disturbances of

the linearized evolution equations, see for example (Farrell

and Ioannou, 1993).

Although linear models have proven useful in studying

the dominant mode shapes and the linear mechanisms as-

sociated with amplification of these modes, they are unable

to capture the full picture. For example, they are unable

to reproduce the change in the mean velocity profile as the

flow transitions from laminar to turbulent. Further, linear

analysis can only give local information regarding the full

nonlinear system. Unfortunately, the full nonlinear Navier

Stokes (NS) equations are analytically intractable.

The model presented herein represents a step toward un-

derstanding the full nonlinear picture. It is developed based

on the assumption that fully developed turbulent flow is

streamwise constant (i.e. does not vary in the streamwise

direction). This assumption is mathematically realized by

setting all of the streamwise velocity derivatives in the full

NS equations to zero. Given that the shape of the mean ve-

locity profile is an important flow feature, one would also like

to have a model that can reproduce it. For this reason the

model maintains the nonlinearity responsible for developing

the well-known shape of the mean velocity profile. The idea

that a streamwise constant model is sufficient to capture

mean profile changes from laminar to turbulent is strongly

supported by the work of Reddy and Ioannou (2000) where

they show that the nonlinear interactions between the [0,±1]

modes are the primary factor in determining the turbulent

mean velocity profile. In the present work this so-called

2D/3C model for plane Couette flow is simulated under

small amplitude Gaussian forcing and the resulting mean

profile is compared to full DNS data and experiments.

Another goal of this work is to take a step toward under-

standing the full impact of streamwise constant features on

the flow. In particular, the extent to which the streamwise

component of the flow combined with the application of Tay-

lor’s hypothesis at the centerline can be used to reconstruct

information about the upstream velocity field in the core.

The core region of Couette flow is of particular interest

because of observations of a noticeable peak in the Fourier

energy spectrum of the turbulence intensity at low frequen-

cies (Komminaho et al., 1996; Kitoh and Umeki, 2008). In

addition, structures reminiscent of stripes have long been ob-

served in the core through DNS of turbulent plane Couette

flow (Lee and Kim, 1991; Bech et al., 1995). These so-called

‘roll cells’ consist of persistent counter-rotating streamwise

vortices at channel center. More recent DNS done at higher

resolution and with longer box sizes (Komminaho et al.,

1996; Tsukahara et al., 2006) have shown long streamwise

alternating high and low speed streaky structures at the cen-

terline that are more similar in character to stripes. The

Couette flow experiments of Tillmark and Alfredsson (1998)

found further evidence of ‘stripe like’ meandering structures

in the form of long autocorrelations Ruu(τ) or two point cor-

relations Ruu(∆x) as well as periodic variation of spanwise

correlations Ruu(∆z) in the core. The streamwise extent

of these correlations was longer than those generally seen

in other wall bounded flows. Komminaho et al. (1996) also

found that in contrast to other flows, streamwise correlations

for Couette flow are larger at the center than near the wall.

At channel center the zero cross distances of Ruu(τ) and

Ruu(∆x) have been observed to be 3 times that of the cor-

responding structure in Poiseuille flow (Kitoh et al., 2005).

Although there is a great deal of evidence to support

the existence of these long ‘stripe like’ structures, the in-

ability to separate them from small scale turbulent motions

that persist throughout the flow has made them difficult

to characterize. Hamilton et al. (1995) attempted to iso-

late near wall streaky structures by performing DNS of a

highly constrained or ‘minimal Couette flow’, where the box

size was limited to approximately the minimum value re-

quired to capture the average spanwise spacing of a streak

and maintain turbulent activity. Their method was to start

with a fully developed flow and then continue the simula-

tion with this minimal box size. They were also able to

capture long streaks in the core, however due to the lim-

ited box size they were unable to elucidate their full extent.

Komminaho et al. (1996) attempted to decouple the large

streamwise structures from small scale phenomenon through

the application of a local Gaussian filter to the stream-

wise (u) velocity fluctuations at the centerline. Using this

technique they were able to identify streamwise elongated

vortex-streak structures that were not fixed in either space

or time. Experiments aimed at recreating a type of ‘minimal

Couette flow’ were carried out by Kitoh and Umeki (2008)

through the use of Vortex Generators. This methodology

enabled the authors to filter out some of the small scale tur-

bulent motions and study large scale streaky structures at

the centerline.

The present work describes the output response of the

2D/3C model to a small amplitude noise forcing. The results

illustrate the ability of this model to capture some aspects of

the flow statistics as well as the large scale streaky structures

that have been observed in both experiments and numerical

studies. In particular, they demonstrate that the nonlinear-

ity in the 2D/3C model is in fact the nonlinearity required

to capture the turbulent mean velocity profile. This paper

is organized as follows; the next section describes the model

and simulation method. This is followed by a comparison of

the simulation results to DNS data and experiments as well

as some concluding remarks.

DESCRIPTION OF MODEL AND SIMULATION

The 2D/3C Model

The 2D/3C model discussed herein is comprised of two

equations; one in terms of the spanwise/wall normal stream

function ψ(y, z, t), and the other in terms of the streamwise

velocity u′sw(y, z, t). The velocity field is decomposed such

that u(y, z, t) = U+u′
sw, where U = (U(y), 0, 0) is the lam-

inar profile and u′
sw = (u′sw, v

′
sw, w

′
sw) are the streamwise

constant deviations from laminar. The Reynolds number

employed is Rew = Uwh
ν

, where Uw is the velocity of the

top plate, h = 2δ is the channel height and ν is the kine-

matic viscosity of the fluid. The lower plate is stationary and

all of the variables are non-dimensionalized with respect to

Uw and h.

The stream function which forces the resulting model to

satisfy the appropriate two dimensional continuity equation

is given by v′sw = ∂ψ
∂z

; w′
sw = − ∂ψ

∂y
. The full model, whose

derivation is fully described in Bobba (2004), is

∂u′sw
∂t

= −
∂ψ

∂z

∂

∂y

(
u′sw + U

)
+
∂ψ

∂y

∂u′sw
∂z

+
1

Re
∆u′sw

∂∆ψ

∂t
= −

∂ψ

∂z

∂∆ψ

∂y
+
∂ψ

∂y

∂∆ψ

∂z
+

1

Re
∆2ψ

(1)
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(b) 2D/3C Model

Figure 1: Contour Plots of (a) u′xave
(y, z) from DNS data (b) u′sw(y, z, t) from the 2D/3C model with σnoise = 0.01, both at

Rew = 3000.

This model for plane Couette flow is more tractable than

the full NS equations yet it captures many of the important

flow features lost in a two dimensional model by maintain-

ing all three velocity components. The laminar flow solution

of this unforced model was previously shown to be globally,

that is nonlinearly, stable for all Reynolds numbers (Bobba,

2004), so without forcing the response decays back to lami-

nar flow. It is also an extension over linear models because

it is the nonlinearity in the u′sw(y, z, t) equation that pro-

vides the mathematical mechanism for the redistribution of

the fluid momentum that results in larger streamwise ve-

locity gradients in the wall normal direction and gives the

turbulent profile its characteristic S-shape.

As with any model, there are assumptions built into

the 2D/3C model, and it is important to understand how

these relate to the physical phenomena associated with tur-

bulent flows. First, by thinking of the flow as streamwise

constant in the ‘mean’, the smallest scale activity is lost.

The streamwise constant assumption also specifically elim-

inates dynamics associated with hairpin-like eddies, which

are thought to be related to both burst and sweep events.

Although this limits our analysis, for example it makes ap-

propriate scaling relationships more difficult to determine,

it allows us to characterize turbulent structures that are

formed in the absence of small scale effects.

Simulation

The nonlinearity in the u′sw(y, z, t) equation is necessary

to capture the mechanism which allows cross-stream veloc-

ity components to drive deviations from the laminar mean

velocity profile. However, the ∆ψ(y, z, t) equation can be

linearized. This simplification makes sense in terms of the

physics of the problem because the advection terms play

a lesser role in the formation of the streaks and vortices

that are important in determining the mean flow statistics.

Mathematically, given that the ∆ψ(y, z, t) equation is driven

by small amplitude noise, both ψ(y, z, t) and ∆ψ(y, z, t) will

also have a small amplitude and therefore the nonlinearities

will have a negligible effect. Thus, the model governing the

numerical studies described herein is given by;

∂u′sw
∂t

= −
∂ψ

∂z

∂

∂y

(
u′sw + U

)
+
∂ψ

∂y

∂u′sw
∂z

+
1

Re
∆u′sw + du

∂∆ψ

∂t
=

1

Re
∆2ψ + dψ (2)

where du(y, z, t) and dψ(y, z, t) are small amplitude Gaus-

sian noise forcing (perturbations) with the amplitude defined

in terms of the standard deviation which is denoted σnoise.

Stochastic forcing applied to the LNS equations is believed

to be a plausible model of realistic flow-field forcing, as it has

been previously shown to lead to flows that are dominated

by streamwise elongated streaks and vortices (Farrell and

Ioannou, 1993) that are strikingly similar to those observed

in experiments.

The second equation is then just the stochastically forced

heat equation in terms of ∆ψ(y, z, t). This equation is a

linear stochastic partial differential equation which can be

solved analytically. In the present work, however this is not

pursued as a simulation is a much simpler way to demon-

strate the efficacy of the model and an exposition on Itô

calculus and Wiener chaos expansions is beyond the scope

of this paper.

Any unmodeled phenomena such as the disturbances

that may be amplified in an experiment or simulation as

well as any missing or incorrect model parameters can be

thought of as model uncertainties and mathematically rep-

resented as external forces applied to the system. These

uncertainties may represent physical conditions that are dif-

ficult to characterize such as wall roughness or wall vibration

as well as effects that can be characterized by adding addi-

tional complexity to the model such as thermal fluctuations,

acoustic noise, or any other unmodeled conditions that tend

to be present in experiments or numerical simulations. For

example, in DNS and LES the disturbances or uncertainties

may arise from the build up of numerical error. Other un-

modeled effects that may be represented in this way could

include the kx ̸= 0 modes that are not accounted for in the

2D/3C model. Of course the mean velocity profile is intrin-

sically linked to the full three dimensional flow-field through

the mean streamwise momentum equation. One can then

think of the main driving factor in the transition to turbu-

lence as lack of robustness. The underlying equations are

not robustly stable to disturbances and/or other uncertain-

ties and thus, the performance of the system degrades.

In the present work we set du = 0 in equation (2) and ap-

proximate the uncertainties, dψ(z, y, t), as zero mean small

amplitude Gaussian noise forcing that is evenly applied at

each grid point in the y − z plane. This results in one-way

coupling between the equations and in effect ψ can be seen

as forcing for the u′sw equation. This form of input noise

represents forcing v′sw and w′
sw and studying the response
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Figure 2: (a) usw(y, z, t) from 2D/3C Model at σnoise = 0.01 plotted with u(x, y, z, t) from DNS, (b) u+ versus y+ from

2D/3C Model at σnoise = 0.01 and DNS Data both based on G = 0.1991, Reτ = 52.

in u′sw. We chose this forcing configuration based on previ-

ous studies (Jovanović and Bamieh, 2005) that have shown

that body forcing in the streamwise direction has a much

smaller effect on the velocity field than forcing applied in

the spanwise-wall normal (y − z) plane. That work also

demonstrated that the response to forcing in the y− z plane

is most strongly seen in the streamwise velocity fluctuations,

as expected due to mean flow anisotropy.

In the present work results from simulations at two dif-

ferent Reynolds number are described. Case 1 is at Rew =
Uwh
ν

= 3000 and the forcing, dψ , is zero mean with stan-

dard deviation 0.01, (i.e. noise amplitude = σnoise = 0.01).

The computational box is Ly × Lz = h × 12.8h with

75 × 100 grid points; the spanwise extent of 12.8h was se-

lected to provide a direct comparison to the DNS data from

Tsukahara et al. (2006). The time window used for com-

puting time averages is ∆t = 100000 h
Uw

. Case 2 is at

Rew = 12800, σnoise = 0.004, with a computational box

of Ly × Lz = h × 16.6h with 75 × 130 grid points. All

simulations described herein were carried out using a basic

second order central difference scheme in both the spanwise

(z) and wall-normal (y) directions with periodic boundary

conditions in z and no-slip boundary conditions in y.

RESULTS AND DISCUSSION

In the present work simulation results from the 2D/3C

model are compared with full field DNS data which we ob-

tained from the Kawamura group (Tsukahara et al., 2006).

For this data, Rew = 3000. To compare the flow features

that arise from simulation of the 2D/3C model we took a

streamwise (x) average of the data. In the following discus-

sion the x-average of the full velocity field of DNS is denoted,

uxave = (u′xave
+ U(y), v′xave

, w′
xave

), while time averages

are indicated by an overbar, (·).
Comparison of the contour plots of u′xave

(y, z) from the

DNS data and u′sw(x, y, t) from the 2D/3C simulation, (pic-

tured in Figures 1(a) and 1(b) respectively) shows that con-

tours of constant u′sw agree well with those of u′xave
from the

DNS. These plots also show that the offset in spatial phase

from top to bottom between the maximum magnitude of

deviations from laminar that is seen in the DNS data and

observed in experiments is also reproduced through simula-

tion of equations (2).

A fast Fourier transform over the span of u′xave
and

analysis using the techniques of Farrell and Ioannou (1993)

estimates the z wavelength of the DNS data to be roughly

kz = 1.84. Frequency analysis of u′sw from the 2D/3C model

indicates that most of the energy from the 2D/3C simulation

is approximately 4 ≤ kz ≤ 6.1, however it is similarly clear

in Figure 1(b) that there is also a significant contribution

from kz ≈ 2.

Mean Velocity Profile

Figure 2(a) shows that the mean velocity profile

usw(y, z, t) for Case 1, Rew = 3000, shows good agreement

with the DNS at the same Reynolds number.

The definition of friction coefficient (Cf ) for Couette flow

is

Cf =
τw

1/2 ρ (1/2Uw)
2

(3)

where τw is the shear stress at the wall. Using equation

(3) along with the following relationship for the skin friction

proposed by Robertson (1959)√
Cf

2
=

G

log10 (1/4Rew)
(4)

and the empirical constant G we computed the friction ve-

locity uτ and friction Reynolds number Reτ .

Figure 2(b) shows the same velocity profiles as in Figure

2(a) in inner units using the value G = 0.1991 from Tsuka-

hara et al. (2006) which corresponds to Reτ = 52. The

overall agreement of the two curves is good, although it is

clear that below y+ ≈ 20 the 2D/3C model is underesti-

mating the expected velocity profile, (max error 7.4%) and

above that it is overshooting it, (max error 2.4%). The noise

is modeled as being evenly distributed across the grid while

in reality the noise is likely higher in the buffer region and

lower in the overlap layer. Further study of the model with

different noise distributions may improve the agreement.

Centerline Streak Pattern

While the 2D/3C model provides us with a y − z snap-

shot in space, in general it is unclear how to reconstruct the

the streamwise information. The model is designed to cap-

ture the mean features of the flow and we are particularly

interested in understanding the spatial distribution of large

scale features associated with the model. The simplest way

to reconstruct the streamwise information is to convect the
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Figure 3: Typical streak pattern on the central plane of fully developed turbulent plane Couette flow from the 2D/3C model at

Rew = 12800 (Rec = 3200). Dark regions are low speed streaks,
|u′

sw|
|Uc|

≤ −0.05, and the white regions are high speed streaks,

|u′
sw|

|Uc|
≥ 0.05, light grey regions are regions without streaks.

Figure 4: Figure 15 from Kitoh and Umeki, (2008) relabeled to match flow variables from the present work. Typical streak

pattern on the central plane of Couette flow with Vortex Generators at Rew = 15000, (Rec = 3750). Dark regions
|u′

sw|
|Uc|

≤ −0.05;

open regions,
|u′

sw|
|Uc|

≥ 0.05.

flow at the local turbulent velocity using Taylor’s hypothesis

(i.e. let x1 = x0 + ūturb(t1 − t0). However, it is known that

in general Taylor’s hypothesis does not hold for large scales

(Kim and Adrian, 1999).

In Couette flow the laminar and turbulent velocity pro-

files always overlap at the centerline, so the centerline veloc-

ity (Uc) is not affected by any assumptions of the 2D/3C

model. The centerline also represents the wall normal loca-

tion where the temporal fluctuations are at a minimum. For

these reasons, it is the most natural location to study first.

In the experiment of Kitoh and Umeki (2008) the authors

compared their convected velocity to a spatial flow visual-

ization and determined that at the centerline the large scales

do in fact convect at Uc. Given their results we use the same

relationship x = x0 − Uct to transform our 2D/3C time se-

ries data into spatial data. In their work they define the

Reynolds number Rec = Ucδ
ν

= 4Rew based on the channel

half-height δ and the velocity at the centerline Uc, so the

discussion in this section refers to both Rew and Rec.

Figure 3 shows the typical streak pattern on the central

plane ( y
δ

= 1) of Couette flow obtained using the 2D/3C

model for Case 2, at Rew = 12800, with σnoise = 0.004.

For visualization purposes and for direct comparison with

the results of Kitoh and Umeki (2008) we similarly define a

streak as a region where |u
′
sw
Uc

| ≥ 0.05. Dark regions are low-

speed streaks and open areas are high speed streaks, the light

grey regions indicate a neutral region. It is clear that Cou-

ette flow generated using the 2D/3C model has significantly

long streaks in the core region that are qualitatively similar

to large scale features that have been identified through full

three dimensional simulations and experiments.

Previous results (Komminaho et al., 1996; Tillmark and

Alfredsson, 1998; Tsukahara et al., 2006; ) have estimated

streaks with streamwise wavelength of ≈ 40δ − 64δ with

spanwise spacing of ≈ 2δ − 5δ. Figure 3 shows that the

spanwise lengthscale of our data is similar to these results.

The streamwise extent of the structures produced by our

model is much longer than reported in other works. This

is not surprising as one would expect the results from the

2D/3C model to be more coherent than experimental data

since we are only modeling large scale behavior.

In the vortex generator case of Kitoh and Umeki (2008)

the authors also found that the streamwise lengthscale of

the structures was approximately 51δ−60δ. However, when

they attempted to isolate the large scale structures using

a wavelet analysis they found that the ∼ 60δ streaks form

weakly wavy patterns that come together to form larger spa-

tial structures with an average spacing of 300δ−400δ. Figure

15 from this work is shown here as Figure 4. Here, it is clear

that these wavy patterns visually appear as one long streak

with an extent > 250δ.

It is possible that because our model essentially averages

out the small scale affects it is not possible to distinguish be-

tween the long wavy structures reported in Kitoh and Umeki

(2008) and the smaller lengthscale structures that they are



comprised of. The coarse grid in space and time that were

used in the results reported herein may also be a reason for

our inability to pick out the individual streaks. In the first

DNS of Couette flow Lee and Kim (1991) also found struc-

tures extending about 1000δ. Those conformations were

stationary in both space and time and it has been suggested

in the literature that insufficient resolution was the cause of

the extra coherence in their results. It is also possible that

since we are only modeling the mean (large scale) behaviour,

convecting at the local turbulent mean velocity may be in-

troducing effects from the temporal fluctuations. Further

work is needed to determine the true cause of the increased

coherence in our results.

CONCLUSIONS

Streamwise constant structures have long been shown to

have a significant role in both transition to turbulence and

in fully developed turbulent flows. Our results show that

a streamwise constant projection of the NS equations (the

2D/3C model) captures the mean velocity profile of fully de-

veloped turbulent plane Couette flow at these low Reynolds

numbers. It should be noted that the disagreement in the

mean velocity profile between the model and DNS data is

within the error of our simulation method based on the

coarse grid that was selected for this study. Future work

involves characterizing the effect of grid size on the simula-

tion results.

The preliminary results presented here also illustrate the

ability of the model to capture streamwise elongated streaky

structures in the core. A finer spanwise grid and smaller

time steps may improve the resolution of our results. Fur-

ther, study of the structures in the core using the 2D/3C

model may give us new insight into the nature of these struc-

tures because in full simulations the large scale structures are

disturbed by small scale turbulent motions. In the 2D/3C

model these small scale motions are not present.

These results are especially promising because the an-

alytical tractability of this model makes it well suited to

studying behavior at larger Reynolds numbers. The ability

to look at larger Reynolds numbers opens up many possibil-

ities for future study.
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