Motivation

- **Cardiac Auscultation**: science and art of diagnosing heart conditions via the stethoscope
- Potent, non-invasive diagnostic modality limited by:
 - incomplete understanding between cause (effect) sound
 - human-in-the-loop
 - sequential (uni-site) measurement technique
 - high level of noise
 - large array of heart sounds
 - declining auscultatory skills
- **Vision**: Rescue this valuable diagnostic modality from obsolescence by deploying new tools and ideas from computational science, biosensing and signal processing.

Objectives

- **Goal**: Develop an approach to automated heart sound measurement and localization via a compact acoustic sensor array (the "StethoVest")
 1. Develop image-based computational hemoacoustic models (CHM).
 2. Validate CHMs and develop/test generative (model based) statistical pattern recognition algorithms for abnormal heart conditions using thoracic phantom.
 3. Investigate the physics of murmurs associated with aortic valve (AV) disease using integrative biosensing-CHM approach.
 4. Evaluate auscultome-map based screening for hypertrophic obstructive cardiomyopathy (HOCM).

Impact

- Revolutionize the management of heart disease
 - Inexpensive, non-invasive, accurate
 - Screening of wide range of heart conditions
 - 24/7 continuous, at-home health monitoring
 - Deployable in rural and underserved areas
 - Leverages teledicine, bioinformatics & wearable sensor revolution
 - Healthcare: reactive, expensive and hospital-centric
- Smart, proactive, patient-centric and cost-effective
- Advance medicine, mechanics and modeling, computing, electrical engineering, biosensing, and BIGDATA science.
- Training of undergraduates, graduate students and postdocs in a highly cross-disciplinary environment

Technical Approach

- **Team**
 - W. Reid Thompson (MD)
 - Theodore Abraham (MD)
 - Rajat Mittal (PhD)
 - Andreas Andreou (PhD)

 - **Cardiologists** Clinical studies and measurements
 - **Mechanical Engineering** Computational & experimental modeling and analysis
 - **Electrical Engineering** Sensors, signal processing and pattern classification

High-Fidelity Hemoacoustic Modeling and Simulation

- Biophysics of auscultation involves:
 - flow perturbation
 - propagation of acoustic wave through thorax (lung, bone, muscle, fat)
 - sensing by stethoscope
 - Integrated multiphysics analysis required to understand the physical basis of auscultation

Sound Measurement, Localization and Pattern Classification

- **Biased Gaussian Source Localization using Gradient Flow [GT]**
- **Sensor characterization**

Current Progress

- **Aortic Stenosis Murmur**
 - **Aortic Valve Stenosis**
 - **Flow simulation**
 - Generation 1 model for the thoracic phantom
 - Monitored surface vibrations

References & Misc. Information

Other Collaborators:
Purdue, Luc Mongeau (WAGS University), Albert C. Lardo (BME, JHU), Richard George (Cardiology, JHU).

Undergrad Students: Thomas Klimar, Alexander Lalioun, Ronann Carrero

Project homepage: http://engineering.jhu.edu/lq/tal Projekt/homepage/