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We conduct a computational study of flow-induced pitch oscillations of a rigid airfoil at
a chord-based Reynolds number of 1000. A sharp-interface immersed boundary method
is used to simulate two-dimensional incompressible flow, and this is coupled with the
equations for a rigid foil supported at the elastic axis with a linear torsional spring. We
explore the e↵ect of spring sti↵ness, equilibrium angle-of-attack and elastic-axis location
on the onset of flutter, and the analysis of the simulation data provides insights into the
time-scales and mechanisms that drive the onset and dynamics of flutter. The dynamics
of this configuration includes complex phenomena such as bifurcations, non-monotonic
saturation amplitudes, hysteresis and non-stationary limit-cycle oscillations. We show
the utility of “maps” of energy exchange between the flow and the airfoil system, as a
way to understand, and even predict this complex behavior.

1. Introduction

Aeroelastic wing flutter has attracted scientific attention for many decades due to
its importance in the air-vehicle design and performance. More recently, there has
been renewed interest in this phenomenon due to the drive towards higher thrust-
to-weight ratios in aircrafts that use lighter (and therefore more flexible) materials.
Unconventional air-vehicles such as high-altitude and high aspect-ratio aircrafts tend
to be more susceptible to aeroelastic e↵ects (Patil & Hodges 2004). Finally, the advent
of micro- and unmanned air-vehicles has also spurred research in aeroelastic phenomena,
particularly at lower Reynolds numbers (Shyy et al. 2007). It is noted that while most
of these applications are aimed at suppressing flutter, there is also interest in enhancing
flutter as a way to harness energy from flows (Peng & Zhu 2009; Onoue et al. 2015). A
comprehensive review of e↵orts in this direction was undertaken by Young et al. (2014).
The classical work of Theodorsen (1935) was amongst the earliest attempts at mod-

elling pitching airfoils and their associated unsteady loading. Due to the fact that it is
based on first principles and very simple assumptions, this work continues to be used
as the basis for new models (Brunton & Rowley 2009). The unsteady aerodynamics of
pitching airfoils and dynamic stall is characterized by the generation and shedding of
strong leading-edge vortices, accompanied by large regions of separating and reattaching
flow on the suction surface of the airfoil (Ericsson & Reding 1988; Eldredge & Jones
2019). This leads to dynamically varying loading conditions and complicated flow fields
over the airfoil. The need to better understand this non-linear phenomenon has motivated
research into models for unsteady airfoils that go beyond classical theories (McCroskey
1982). In one such detailed study, Lee & Gerontakos (2004) characterized the points of
separation, reattachment, and transition on the surface of a pitching airfoil, and showed
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the importance of the pitching frequency in these boundary layer events. Other recent
studies have investigated the e↵ect of various other parameters related to the pitch
frequency, airfoil shape, freestream conditions, etc. (Akbari & Price 2003; Amiralaei
et al. 2010; Ashraf et al. 2011; Gharali & Johnson 2013).

While studies of dynamic stall have predominantly focused on prescribed kinematics,
there has also been work to understand the flow-induced response of oscillating airfoils.
Poirel et al. used a combination of experimental (Poirel et al. 2008) and computational
(Poirel et al. 2011) studies to investigate the e↵ect of flow speed and free-stream tur-
bulence, among other factors, on small amplitude flow-induced pitching oscillations of
an airfoil at transitional Reynolds numbers (Rec ⇠ 104 � 105). A key finding from their
work was that laminar separation is a driving factor for triggering the oscillations in this
range of Reynolds number. They also proposed that the oscillations are not dictated by
the Karman shedding that was observed, but instead by the separated laminar shear
layer. In another study using numerical simulations, Ducoin & Young (2013) studied the
stability of a flexible hydrofoil section to bend and twist deformations. Specifically, they
investigated the influence of laminar to turbulent transition and viscous e↵ects on the
location of the center-of-pressure with respect to the elastic-axis as well as the static
divergence velocity.

Significant interest in such studies involving flow-induced oscillations has stemmed
from e↵orts to understand the energy-harvesting potential of aeroelastic flutter, and
characterize parametric regimes that allow the growth of flutter instabilites. In one such
study, Peng & Zhu (2009) studied the energy-harvesting capability of a flow-induced
pitching and heaving airfoil at Re = 1000. They proposed the use of linear stability
analysis with the dynamical equation of the oscillating airfoil, where the model of
Theodorsen (1935) was used to close the forcing term in the equation. They were able
to propose parameter ranges for the sti↵ness and damping of the structure within which
flow-induced oscillations are possible. They also studied various oscillatory response
regimes as functions of the structural sti↵ness and damping. Other researchers (Orchini
et al. 2013; Olivieri et al. 2017) have also used similar ideas based on linear stability
analysis to predict the condition for the onset of self-sustained flutter. Interestingly,
they demonstrate that the onset condition is related to a resonance between the natural
frequency of the elastic structure and an aerodynamic frequency, which they estimate as
the frequency associated with the pitching moment on a wing that is allowed to pitch
freely. This idea of a resonance-based onset condition is derived from the earlier work
of Argentina & Mahadevan (2005). Indeed, in the current work we find a related onset
condition for purely pitching oscillations, via a system identification approach, and also
explore its dependence on the equilibrium angle-of-attack of the airfoil.

Experimentally, Dimitriadis & Li (2009) performed an investigation at a higher
Reynolds number of a two-degree-of freedom airfoil that was allowed to perform
flow-induced pitch and heave oscillations. They showed the occurrence of various
bifurcations as a function of freestream velocity. These were seen to produce symmetric,
antisymmetric, as well as hysteretic pitching oscillations depending on the freestream
velocity. Further, the recent development of so-called cyber-physical experimental
facilities by various research groups (Morse & Williamson 2009; Onoue et al. 2015) has
led to an increase in the number of experimental studies on flow-induced oscillations.
In one such study, Onoue & Breuer (2018) used a flow-induced pitching flat plate to
analyze the generation and shedding of the LEV, along with the resultant torques. In
another study, Onoue et al. (2015) were able to use this experimental system to map out
the bifurcation diagram for the system over a large range of oscillation amplitudes. They
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compared their results against the classical Theodorsen theory, and also demonstrated
the potential for energy harvesting from such systems.
These studies show the presence of a rich variety of response behaviours and bifurca-

tions that characterize the flow-induced pitching of airfoils. However, there is very little
knowledge of the dynamics of this problem at low Reynolds numbers that are inaccessible
to most experiments. It is well-known that the low-Reynolds number behaviour of airfoils
is markedly di↵erent from that at high Reynolds number. Mueller & DeLaurier (2003)
attributed this to the laminar state of the boundary layer, due to which separated flow
fails to reattach, causing very di↵erent lift and drag behaviour in this regime. This was
also shown to be a factor in driving pitch oscillations of an airfoil by Poirel et al. (2008).
In addition, the vortex shedding behaviour and associated timescales are known to vary
with Reynolds number, especially at the low range of Reynolds numbers. We will show
that this timescale is an important factor in the flutter response.
The vastness of the space of parameters and responses that have been shown by

previous studies indicate the di�culty of exploring this problem within the constraints
of experiments. Historical e↵orts to model aeroelastic flutter have mainly relied on
simplified, or potential-flow based models (Dowell 1966; Jumper et al. 1989; Holmes
& Marsden 1978; Jones & Platzer 1996). These models are often inadequate to capture
the entire range of dynamics in this highly non-linear problem. The use of reduced-order
models have also allowed for accurate, computationally economical modelling of aeroe-
lastic flutter (Dowell & Hall 2001; Hall 1994; Ramesh et al. 2015). However, the accuracy
of reduced-order models can benefit from a detailed knowledge of the flow physics and
dynamics of flutter. This further motivates the use high-fidelity computational modelling
to study aeroelastic flutter.

Here we report on simulations of the full, two-dimensional incompressible Navier-
Stokes equations, which are coupled with a elastically supported NACA0015 airfoil that
is allowed to oscillate in pitch. The simulations are performed using a sharp-interface
immersed boundary method that allows us to model very large amplitude oscillations in
a robust manner. Due to the current lack of data concerning this problem in the existing
literature, especially from computational models, one aim of this study is to perform
broad parameter sweeps to describe the flow physics governing the onset of flutter, as
well as the amplitude and frequency response. We show that this provides fundamental
insight into the onset of large amplitude flutter, along with a physically relevant flow
time-scale. We also discuss the mechanism that determines the frequency of flutter, and
demonstrate the (apparent) di�culty in understanding the amplitude response in some
cases.

A second focus of this study is the prediction of the flutter amplitude of flow-induced
oscillations using data from forced oscillations. The relationship between forced and flow-
induced vibrations - and ultimately the prediction of flow-induced oscillations from data
on forced oscillations is a question that has been raised multiple times in studies of vortex-
induced vibrations of blu↵ bodies (Staubli 1983; Hover et al. 1998; Morse & Williamson
2006; Leontini et al. 2006; Sarpkaya 1978). Morse & Williamson (2009), and Kumar
et al. (2016) showed, by using the energy extracted by the oscillator from the fluid, that
they can be related under carefully matched conditions. Morse & Williamson (2009) also
showed the ability to explain various features of the response branches seen in the case
of heaving cylinders, based on the energy transfer.

In the context of pitching airfoils, Bhat & Govardhan (2013) used forced oscillations
in their experiments to calculate the energy transfer between the fluid and the airfoil,
and demarcate flutter boundaries based on this information. In the current study, we
extend this idea to explore flutter bifurcations and predict the highly complex response
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Figure 1. (a) Schematic of the aeroelastic system used in this study; (b) Computational
domain and close-up of the Cartesian computational grid.

of aeroelastically fluttering airfoils. This is a particularly valuable tool in this context
because the flow as well as the dynamical response is significantly more complicated than
that observed in the case of transverse oscillations of blu↵ bodies. This added complexity
is in part due to the presence of multiple interacting shear layers (leading and trailing
edge), as well as the introduction of additional free parameters such as the location of
the elastic axis and the equilibrium angle of attack.
In this study, we show that it is indeed possible to relate the results of forced-oscillations

to flow-induced oscillations in the case of pitching airfoils too. We demonstrate a method
to analyze pitching oscillations of an airfoil using the energy extracted from the fluid
during forced oscillations under similar conditions. This enables us to understand highly
complex and counter-intuitive amplitude responses and flutter bifurcations. Further,
we also demonstrate the use of forced oscillations and the associated energy transfer
to predict transient as well as stationary state amplitude response in flow-induced
oscillations.

2. Computational model and numerical method

2.1. Problem setup

The two-dimensional computational model in the current study employs a rigid
NACA0015 airfoil with a slightly rounded trailing-edge, immersed in an incompressible
fluid with freestream velocity U1. The slight rounding of the trailing-edge ensures that
the flow is well-resolved around it, and we have verified that this has no significant
e↵ect on the aerodynamic characteristics and forces on the airfoil. The governing
incompressible Navier-Stokes equations expressed in the dimensionless form as follows

@~u

@t
+ ~u · ~r~u = �~rp+

1

Re
r2

u (2.1)

where Re = ⇢U1C/µ is the chord-based Reynolds number. The torsional elasticity of
the airfoil is modelled using a linear torsional spring with spring constant k and damping
coe�cient b, attached to the rigid airfoil at a prescribed chordwise location (Xe), which we
refer to as the elastic axis (normalized location denoted as X⇤

e = Xe/C). The equilibrium
angular position of the spring is denoted by angle ✓0. A schematic of this setup is shown
in figure 1.

The structural system is governed by the equation for a forced spring-mass-damper
oscillator. The equation is scaled by the characteristic variables used for the flow (length:
C; time: c/U1), and the resulting non-dimensionalized equation governing the dynamics
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in pitch of the airfoil is given by

I
⇤
✓̈ + b

⇤
✓̇ + k

⇤(✓ � ✓0) = CM (2.2)

where CM = M/(0.5⇢U2
1C

3) is the coe�cient of aerodynamic pitching moment, and
I
⇤ = 2I/(⇢C4), b⇤ = 2b/(⇢U1C

3), k⇤ = 2k/(⇢U2
1C

2) are the dimensionless moment-of-
inertia, damping, and spring sti↵ness respectively. Here, CM and I

⇤ are calculated with
respect to X

⇤
e . The spring sti↵ness is commonly expressed in terms of a reduced velocity,

U
⇤ = U1/fsC where fs =

1
2⇡

q
k
I is the natural frequency of the spring. In essence, U⇤ is

a ratio of the natural time-scale of the elastic system to the convective time-scale of the
flow. However, as we will show, the choice of fluid time-scale has significant implications
for the dynamics of the system.
Thus, even this highly simplified configuration has six governing parameters (Re, X⇤

e ,
I
⇤, b⇤, U⇤, ✓0) and this is indicative of the inherent complexity of this configuration. In

the current study, we fix the values of Re and I
⇤ to 1000 and 4.1 respectively and explore

the e↵ect of the other four parameters. The Reynolds number chosen is high enough
so as to generate robust vortex shedding phenomenon, which drives flutter, but is also
low enough so as to allow resolved simulations at a reasonable computational expense.
The choice of the moment-of-inertia about the elastic axis corresponds to a solid-to-
fluid density ratio of ⇡ 120. While the e↵ect of varying I

⇤ in this system could be of
significant engineering interest, we choose to use a fixed value throughout this study to
reduce the number of independent parameters. However, it must be noted that varying
I
⇤ is equivalent to changing the natural frequency as fs ⇠ 1/

p
I⇤, which is an important

parameter in this study.
The current study addresses structurally damped as well as undamped systems with

damping being defined by ⇣
⇤ = b/bcr where bcr = 2

p
kI, is the critical damping for

the harmonic oscillator. For the undamped system ⇣
⇤ = 0 and for the damped system

we prescribe ⇣
⇤ = 0.15 where this lightly damped structure enables us to understand

the e↵ect of damping without overly damping the pitch oscillations. The remaining two
parameters, the elastic axis (X⇤

e ) and the spring sti↵ness (U⇤), are a particular focus
of the current study. For X

⇤
e , we use three values - X⇤

e = 0.50, 0.33 and 0.25 - and we
will show that these generate very significant variations in the pitch response. The final
parameter U⇤ represents the spring sti↵ness (a larger U⇤ corresponds to a softer spring)
and this parameter is varied from about 2 to 13.

2.2. Numerical method

We simulate the coupled fluid-structure system using the sharp-interface immersed
boundary method based solver “ViCar3D” described in Mittal et al. (2008) and Seo
& Mittal (2011). This allows us to preserve sharp interfaces along the surface of our
geometry using a body-non-conformal Cartesian grid. This is particularly useful in fluid-
structure interaction studies as it allows us to simulate a variety of shapes as well large-
amplitude motions on simple, non-adaptive Cartesian grids. In particular, this approach
has the advantage of not being constrained by highly deformed grid cells or the need
to periodically recompute the grid during high-amplitude motions (Mittal & Iaccarino
2005). The fluid equations are solved using a second-order fractional-step method, and the
pressure Poisson equation is solved using the geometric multigrid method. Second-order
finite di↵erences are used for all spatial derivatives, and the time-integration is performed
using a second order Adams-Bashforth method. ViCar3D employs a boundary imposition
scheme that is second-order accurate and consequently, models surface quantities such
as pressure and shear with high-fidelity (Mittal et al. 2008). ViCar3D has been validated
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and verified extensively for a variety of stationary and moving boundary problems in
earlier papers (Ghias et al. 2007; Mittal et al. 2008; Seo & Mittal 2011), as well as during
the current study (see appendix B).
The fluid-structure coupling employs a loosely-coupled approach wherein the flow

and dynamical equation are solved sequentially. The aerodynamic forces/moments are
calculated on the Lagrangian marker points on the surface of the solid body, and passed
on to the solid dynamical equation (equation 2.2). The angular velocity predicted from
this equation is subsequently imposed on the marker points. The aeroelastic system is
immersed in a large 21C ⇥ 23C computational domain, where the airfoil is placed 10
chord-lengths from the downstream boundary, and the isotropic grid resolution around
the solid body corresponds to about 125 points along the chord. The grid is stretched in
all directions away from the rectangular region that surrounds the foil and the near-wake
resulting in a baseline grid of 384⇥ 320 points. A Dirichlet velocity boundary condition
is used at the inlet boundary of the domain, and zero-gradient Neumann conditions are
specified at all other boundaries. Grid refinement studies described in the appendix B
confirm that the results on this grid are well converged.

For all the cases, simulated here, we initialize the airfoil at its equilibrium angle ✓0,
with zero initial angular velocity. The constant freestream flow is then imposed and
the dynamics allowed to evolve until the system reaches a stationary state. For the cases
simulated here, it takes between O(20) and O(200) oscillation cycles before this stationary
state is achieved. Average quantities are computed after the stationary state is reached.

3. Results

3.1. Qualitative Features

We begin our discussion of the aeroelastic response of this system by providing an
overview of one representative case for which, U⇤ = 6.6, X⇤

e = 0.5, ⇣ = 0.15, and ✓0 =
15�. This case develops fairly large amplitude pitch oscillations (A✓ ⇡ 45�) and serves
to demonstrate the various flow structures and non-linear interactions that drive the
pitching of the airfoil. In figure 2 are snapshots of the flow over the course of one oscillation
cycle. The time series for the coe�cients of moment (CM ) and lift (CL) corresponding
to the same oscillation cycle are shown in figure 2(b) and 2(c).

As the airfoil pitches up at the start of the cycle, in figure 2(1), we see that there is
initially a monotonic increase in CM and CL. This is related to the fact that the shear
layer on the suction side is stabilized by the motion of the airfoil until angles of attack
well past the static stall angle (which for this airfoil, at this Reynolds number, is about 20
degrees). This stabilization of the boundary layer over a pitching airfoil was also reported
by Lee & Gerontakos (2004). However, this pitch-up motion destabilizes the pressure-
side boundary layer. As a result, there is a roll-up of the leading-edge shear layer on the
pressure side, and a vortex convects downstream along the pressure side, as seen in figure
2(2). As this vortex moves past the trailing edge, there is a sudden drop in CM and a
slight rise in CL. However, the airfoil continues to rotate on account of inertia, until it
reaches its maximum pitch position. Close to the end of this motion, the LEV begins to
grow, along with the shedding of a trail of smaller vortices from the trailing edge, seen in
figure 2(3). A similar observation was made by Onoue & Breuer (2016), who attributed
the origin of this to a Kelvin-Helmholtz-like instability in the trailing-edge shear layer.
This is accompanied by a sharp loss in CL at the end of the pitch-up motion.

As the airfoil begins pitching down, there is an initial monotonic decrease in CM

and CL that appears to mirror the initial stage of the pitch-up motion. We also see
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Figure 2. A representative case of flow-induced pitching oscillations with U⇤ = 6.6, X⇤
e = 0.50,

✓0 = 15� and ⇣ = 0.15; The top panel shows time series plots of (a) pitch deflection (�✓),
coe�cient of moment (CM ), and coe�cient of lift (CL); (b) coe�cient of moment during one
cycle of oscillation (corresponding to the cycle shown in the snapshots); (c) coe�cient of lift
during the cycle corresponding to the snapshots; (1-6) Snapshots of the flow-field coloured by
contours of z-vorticity.

that the presence of the LEV over the suction surface in figure 2(4) influences the rate
of this decrease. This pitch-down motion destabilizes the suction-side shear layer, and
leads to the shedding of a second, smaller LEV in figure 2(5). At the same time, a
trailing-edge vortex is generated and shed, and this vortex seems to be influenced by
the strong entrainment due to the LEV convecting past the trailing edge. This e↵ect
is seen in the majority of cases simulated. The simultaneous presence of this TEV and
LEV near the suction side trailing edge causes a strong uptick in CM , which causes it
go over its pitch-up value. This interesting e↵ect leads to a counter-clockwise loop in
the CM hysteresis curve(not shown here), which has implications for energy harvesting
applications. Subsequently, CM continues to decrease and CL plateaus as the second LEV
convects over the suction side in figure 2(6). The movement of this LEV past the trailing
edge then produces a drop in CL and a brief increase in CM .

This representative case shows that the airfoil experiences strongly non-linear loading
over the course of an oscillation cycle. The occurrence of limit-cycle oscillations, which
we see in spite of a linear structural model, is only possible in the presence of such non-
linearities in the system. Hence, this supports the notion that large scale flow separation
is the primary cause of limit cycle oscillations in this system. Further, there is a complex
interaction between the leading and trailing edge shear layers, as well as the generation
and shedding of multiple LEVs. The timing and position of these flow structures plays a
crucial role in the dynamics of pitch oscillations, and this analysis of some representative
flow interactions forms a starting point of our discussion.



8 K. Menon and R. Mittal

Figure 3. Maximum pitch deflection, A✓, as a function of U⇤ for di↵erent values of ✓0 and X⇤
e .

For all cases shown here, ⇣ = 0.15. The inset shows a zoom-in for X⇤
e = 0.25 and X⇤

e = 0.33.

3.2. E↵ect of Key Parameters on Flutter Response

The overall e↵ect of spring sti↵ness (U⇤), equilibrium angle-of-attack, and elastic axis
location on the flutter amplitude is discussed in this section. In figure 3, we show the
maximum stationary-state pitch deflection from the equilibrium (denoted as A✓), as a
function of U⇤ for the case with nonzero structural damping. This is plotted for three
di↵erent equilibrium pitch angles, ✓0 = 5�, 10�, 15�, and three di↵erent locations of the
elastic axis, X⇤

e = 0.25, 0.33, 0.50. It is immediately clear that this system can show
very large pitch deflections, going as high as 100�, for the case of X⇤

e = 0.50. However,
the pitch deflections for X

⇤
e = 0.25 and 0.33 are very small for the same range of U⇤.

Further, while the response for X⇤
e = 0.50 increases monotonically with U

⇤, the response
for X

⇤
e = 0.33 shows a non-monotonic trend (shown in the inset). These observations

suggest that the amplitude response of this system is very sensitive to the location of
the elastic axis, and this issue is investigated further in sections 3.5 and 4. The lack of
response at X⇤

e = 0.25 is not surprising since the aerodynamic center of most airfoils is
in the vicinity of 25% chord (Abbott & Von Doenho↵ 1959) and placing the elastic-axis
at or near this location should diminish pitch-instability.

We now focus on the large amplitude flutter observed for the X
⇤
e = 0.50 cases. We

see that the onset of these large amplitude oscillations occurs at a di↵erent (critical)
U

⇤ (referred to as U
⇤
c ) for each value of ✓0. Lower ✓0 require softer springs (or higher

U
⇤) in order to initiate deflections. Interestingly, A✓ for di↵erent values of ✓0 approach

each other for very large pitch deflections indicating that the system loses memory of
the equilibrium condition for very soft springs. As a result of this, and the fact that the
bifurcation is delayed for lower ✓0, the onset of large amplitude oscillations is more abrupt
as we go to lower ✓0, i.e., the curve for ✓0 = 5� has a larger slope than that for ✓0 = 10�.
This points to the possibility of a bifurcation that has an increasingly subcritical nature
as ✓0 is reduced. This is in agreement with Onoue et al. (2015) and Dimitriadis & Li
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Figure 4. Pitch and moment frequency response as a function of U⇤ for ✓0 = 15�, X⇤
e = 0.50

and ⇣ = 0.15. The dashed line shows the natural frequency.

(2009) who observed a subcritical bifurcation for ✓0 = 0�. It must be noted here that
unlike the case of ✓0 = 0�, our system shows small, but nonzero values of A✓ even for very
low U

⇤. These oscillations are associated with the oscillatory pitch-moments induced by
Karman vortex shedding. However, we will show the presence of subcritical behaviour
even in the case of ✓0 = 15� later in this paper.

3.3. Frequency response

In the previous section, we showed that the system loses memory of the equilibrium
condition (✓0) for large flutter amplitudes. Considering this, we will conduct a detailed
analysis for one case, namely ✓0 = 15�. In figure 4 we show the pitch oscillation frequency
(f⇤

p = fpC/U) compared with the frequency of moment oscillations (f⇤
m = fmC/U) for

the structurally damped case with ✓0 = 15� and ⇣ = 0.15. This is plotted with respect to
the dimensionless natural frequency f

⇤
s as well as U

⇤ = 1/f⇤
s . The dashed line in figure

4 denotes the synchronization condition, i.e., the condition where the pitch frequency
equals the natural frequency of the system. We see that for low (high) values of U

⇤

(f⇤
s ), the pitch as well as moment oscillations occur at a constant, high frequency. On

increasing U
⇤, there is a sudden drop in frequency which corresponds to the same U

⇤

value at which the bifurcation to large-amplitude pitch oscillation occurs - following
which, the pitch oscillations synchronize with the natural frequency for higher (lower)
values of U⇤ (f⇤

s ). Hence, there are three distinct frequency response regimes that occur
for increasing (decreasing) U⇤ (f⇤

s ): constant, high frequency pitch and moment, followed
by the moment de-tuning from the pitch at the bifurcation point, and finally the moment
and pitch oscillations synchronizing with the natural frequency of the system.

It is instructive to examine the flow quantities during these distinct regimes to under-
stand how the flow drives the dynamics of flutter, and vice-versa. In figure 5 we show
plots of the pitch and moment time series, along with a snapshot of the flow, for three
representative cases very close to the bifurcation point. For U⇤ = 3.3, which corresponds
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Figure 5. Pitch amplitude timeseries, (�✓), coe�cient of moment (CM ), and a snapshot of
vorticity contours for three regimes of response close to U⇤

c ; (top panel) U⇤ = 3.3 ; (middle
panel) U⇤ = 4.0 ; (bottom panel) U⇤ = 4.6

to the pre-onset regime, we see that the response amplitude is very small (A✓ < 1�), the
frequency is high, and the pitch moment oscillates at a similar high frequency. Due to
the small amplitude of oscillation, it makes sense to compare this with the behaviour of
a static airfoil and we see that the response frequency is in fact very close to the vortex
shedding frequency of a static airfoil at ✓0 = 15� (f⇤ = 0.71; see timeseries in figure 6).
From the flow field it is clear that this regime corresponds to a Karman vortex shedding
mode, much like the wake due to separated slow around a stationary blu↵ body. In fact,
the dimensionless frequency in this regime, when calculated using the projected frontal
length as the length scale, is f⇤ ⇡ 0.17, which is very close to the frequency of Karman
shedding in blu↵ body wakes. In this regime, the coupling between the flow and airfoil
pitching is e↵ectively one-way, with the vortex shedding driving the pitching, but the
pitching having virtually no e↵ect on the vortex shedding.
In contrast, the flow field for U

⇤ = 4.6, which corresponds to the post-bifurcation
regime where the pitch response occurs at the natural frequency of the system, shows
a very di↵erent character with the presence of a strong dynamic stall vortex generated
at the leading edge. This is also apparent in the time-series of the moment coe�cient,
where the peak of the oscillation is accompanied by an abrupt drop in forcing. This drop
in forcing has been observed by numerous studies as a hallmark of dynamic stall. In this
regime, large (20�) amplitude pitch oscillations occur at the natural frequency, which in
turn forces the generation and shedding of the stall vortex to occur at this frequency.
For the intermediate case of U

⇤ = 4.0, which corresponds to the regime close to
the bifurcation, the pitch time series shows low-frequency oscillations at to the natural
frequency. The moment time series however seems to have frequency components corre-
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sponding to the vortex shedding as well airfoil pitching time-scale. This is qualitatively
seen in the flow field too, where the wake has the appearance of a slightly undulating or
distorted Karman wake. Hence this is a transitional regime that occurs between the pre-
and post-bifurcation regimes.
This regime of oscillation in fact agrees well with the observation of Poirel et al. (2008)

who investigated flutter oscillations in this range of amplitudes. They too observed low-
frequency pitch oscillations which showed no signature of the high-frequency Karman
shedding occurring in the wake. Further, this low-frequency content is absent in the
pre-bifurcation (or static) regime forcing response. The triggering of low-frequency oscil-
lations in the absence of low-frequency forcing suggests that the flutter is not a result of
an external periodic forcing, and is in fact self-sustained.

3.4. Critical Reduced Velocity

An obvious and important question raised by Figure 3 is - why does the critical U⇤

depend on ✓0? U
⇤ represents a ratio the time-scale of the pitch oscillation to a time-

scale for the flow. With regard to the pitch-time-scale, it is clear from the previous
subsection that in the post-critical regime, the time-scale for the pitch oscillations does
coincide with with the natural time-scale of the elastic system. Turning next to the flow
time-scale in U

⇤ we note that in most studies (including the current), the time-scale
for the flow is assumed to be the convective time-scale of the flow over the body, i.e.
C/U1. However, a more appropriate flow time-scale is one that is associated with the
mechanism that triggers the flutter instability. In the well-studied case of flow-induced
vibrations of circular cylinders, it is known that the trigger for the cylinder vibrations is
Karman vortex shedding (Williamson & Govardhan 2004). The appropriate time-scale
for determining the onset of these vibrations is therefore the vortex shedding time-scale
(Tv), which is roughly about 5D/U1. Thus, a reformulation of the reduced velocity as
the ratio of the natural time-scale of the elastic structure and the vortex shedding time-
scale as U⇤

v = (1/fs)/(5D/U1) leads to the condition that vibrations are initiated when
U

⇤
v approaches and exceeds unity. The identification of a similar scaling for the airfoil

flutter observed in the current study, is the focus of the rest of this section.
Since we are concerned here with the onset of flutter, flow past a static airfoil should

provide insights regarding the triggering mechanism. With this in mind we perform a
set of simulations of flow over static airfoils at Re = 1000 with the angle-of-attack set
to ✓0 for each case. The system is held at this angle-of-attack and the flow proceeds
through the transient to its final stationary state. In figure 6 we show time-series plots
of the lift and moment generated by these cases and also the instantaneous contours of
spanwise vorticity for each case. The lowest ✓0 exhibits weak vortex shedding beyond the
near wake whereas the other two cases exhibit separation of the boundary layer from
the suction surface of the airfoil as well as vortex shedding in the wake with a topology
that is quite similar to Karman shedding. The frequency corresponding to this vortex
shedding is 0.81U1/C and 0.71U1/C for ✓0 = 10� and 15�, respectively. However, these
are higher than the frequency corresponding to the system at the onset of flutter and
can therefore not be the triggering mechanisms for post-onset flutter oscillations. In fact,
the static ✓0 = 5� case does not exhibit vortex shedding but still undergoes a bifurcation
to large-scale flutter, further confirming that wake vortex shedding is not the trigger for
the bifurcation. This agrees with the observations of Poirel et al. (2008).
Figure 6 however, suggests an alternative time-scale for the onset and sustenance of

flutter, which manifests itself during the initial transient over the static airfoil. The
initial transient in the current simulations represents the initial growth, development,
and saturation of the vorticity layer over the two surfaces of the airfoil and this transient
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Figure 6. Time series of CL and CM for static airfoils at ✓0 = 5�, 10�, 15�. The bottom
panel shows an instantaneous snapshot of the flow after reaching stationary state for each
case, coloured by vorticity contours. Also indicated is Tv, which represents the time-scale of the
initial transient. Note: The flow snapshots do not show the entire computational domain, which
extends roughly 5C beyond the edge of the figure.

is associated with a distinct, large-magnitude peak in the lift and moment, with a
well-defined time-scale. This time-scale is associated with an intrinsic time-scale for the
separated shear layer, which is the key driver for flutter. Based on this, we hypothesize
that the time-scale that corresponds to the relaxation time of a perturbation in the
separated shear layer would be the appropriate time-scale for determining the onset of
flutter.

It is possible to estimate this time-scale for the current configuration by using a
system-identification approach. This is done by providing a small perturbation to the
angle-of-attack of an airfoil which is held stationary before and after the perturbation,
and estimating the time it takes for the resulting pitching moment on the airfoil to
relax back to the unperturbed state. In this study, the pitch perturbation takes the form
✓p(t) = Ap[1 � cos{2⇡(t � t0)/⌧p}], where Ap is the amplitude of the perturbation,
t0 is the time at which the perturbation is applied, and ⌧p is the duration of the
perturbation. In the current case, ⌧p is chosen equal to C/U1, which is much smaller
than the observed timescales of the initial transient and resembles a “delta” perturbation.
A qualitative representation of this perturbation is shown for the case of ✓0 = 5� in
figure 7. We then compute the perturbation in the pitching moment by subtracting the
unperturbed moment coe�cient (which we refer to as CM0) from the pitching moment
measured following the perturbation. For simplicity, these signals are filtered to remove
vortex shedding oscillations. The required time-scale (Tv) is then estimated as the time
taken by the energy of this perturbation to attain 5% of its peak value. The above
procedure is performed for ✓0 = 5�, 10�, 15� using perturbations at various phases of the
natural vortex shedding. Furthermore, the following magnitudes of perturbation, Ap are
employed: 0.1�, 0.125�, 0.25� for ✓0 = 5�; 0.125�, 0.25�, 0.5� for ✓0 = 10�; and 1.5�, 2�, 2.5�

for ✓0 = 15�.
Figure 7 shows the time-variation in the moment coe�cient for these various cases

at each ✓0. It is observed that depending on the phase of vortex shedding at which the
perturbation is applied, the perturbed moment coe�cient can be positive or negative.
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Figure 7. Relaxation of perturbed CM as a result of small perturbations in angle of attack
for static airfoils at ✓0 = 5�, 10�, 15� deg. hCM i and hCM0i are filtered moment coe�cients of
perturbed and unperturbed cases respectively. The di↵erent curves in each plot correspond to
di↵erent values of Ap and t0. Also shown qualitatively for the case of ✓0 = 5� is the pitch angle
perturbation, ✓p. Time in these plots is non-dimensionalized by C/U1.

Figure 8. Maximum pitch deflection v/s U⇤
v = 1/(fsTv) for ✓0 = 5�, 10�, 15�. Here ⇣ = 0.15

and X⇤
e = 0.50.

However, all the perturbation with di↵erent phases and magnitudes result in a consistent
relaxation time-scale for each ✓0. This time-scale is estimated to be Tv ⇡ 7.0, 5.1 and
4.0 for ✓0 = 5�, 10� and 15�, respectively. It is noted that the time-scale reduces with
increasing angle-of-attack, a trend that was also observed for the initial transient in figure
6.
We now use Tv to define a new reduced velocity U

⇤
v = 1/(fsTv). In figure 8 we replot the

maximum pitch deflection (which was initially shown in Figure 3) v/s U⇤
v and we find not

only that the bifurcation points for the three cases collapse to nearly the same value, but
also that this critical value is slightly above unity. This strongly suggests that Tv is the
correct flow time-scale for this problem and in an analog of the flow-induced vibration of
circular cylinder, U⇤

v ' 1 is the simple condition for the generation of large-scale flutter,
at least for the low Reynolds numbers investigated here.

The U
⇤
v ' 1 condition for flutter also provides a phenomenological basis for the onset

of flutter. During the pre-bifurcation regime, where the structural sti↵ness is higher
than the critical value, the natural time-scale is smaller than the flow time-scale. In this
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Figure 9. (a) Qualitative representation of boundary layer thickness at separation point for
✓0 = 15�; (b) Scaling of the shear-layer timescale (Tv) with estimated boundary layer thickness
(�s) for ✓0 = 5�, 10�, 15�.

condition, the time-variation in pitching moment due to a perturbation in pitch does
not have su�cient time to grow before the spring forces the airfoil back towards the
equilibrium position. Thus, the interaction between the pitching motion and the pitching
moment is not constructive and the system is not able to extract energy from the flow
to sustain the oscillation. For U⇤

v > 1, the natural time-scale exceeds the flow time-scale
and the growth in the pitching moment associated with a pitch perturbation can now be
accommodated by the spring. This constructive interaction between pitch and pitching
moment is able to extract energy from the flow during a pitch perturbation, leading
to growth of the pitch instability. In a later section, we will revisit this idea of energy
extraction and its influence on driving aeroelastic flutter.

The physical underpinning of the dependence of Tv on the angle-of-attack is the
final question regarding the onset of flutter. In particular, why does Tv decrease with
increasing angle-of-attack? We base our analysis on the notion that Tv is related to the
inherent instability of the shear layer that separates from the suction surface of the
airfoil, and the natural time-scale of a shear layer that separates from a surface scales
with the thickness of the shear layer at the point of separation. As the angle-of-attack
is increased, the separation point moves upstream where the attached boundary layer is
thinner, and therefore the shear layer thickness at the point of separation decreases with
increasing angle-of-attack. We have estimated the boundary layer thickness (denoted by
�s) at the point of separation for the static airfoil at the three angles-of-attack. This is
shown qualitatively for ✓0 = 15� in figure 9(a). In figure 9(b) we plot the ratio of the
shear layer timescale and boundary layer thickness, non-dimensionalized by U1 for the
three angles-of-attack studied here. This dimensionless number represents a relaxation
timescale associated with the shear layer and the plot indicates that �s and Tv have an
approximately constant scaling with angle-of-attack. This supports our hypothesis that
the reduction of Tv with angle-of-attack is related to the shear layer instability, which is
in turn governed by its thickness at the point of separation.

3.5. Structural damping and location of elastic axis

In this section, we describe the e↵ects of structural damping as well as the location
of the elastic axis on flutter. In previous sections, we have described the response of the
system with b

⇤ = 0.15b⇤cr and in this section, we compare these previous cases with the
corresponding cases with zero damping. Further, we will make this comparison for two
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Figure 10. E↵ect of structural damping, ⇣, on maximum pitch deflection for ✓0 = 15�. This is
shown for two di↵erent locations of the elastic axis, (a) X⇤

e = 0.50; (b) X⇤
e = 0.33. Note: Range

of U⇤ is di↵erent for each value of ⇣ in the case of X⇤
e = 0.33.

di↵erent locations of the elastic axis: X⇤
e = 0.50 and 0.33. The location of the elastic-

axis with respect to the center-of-pressure is critical in determining the aeroelastic pitch
stability of an airfoil. A center-of-pressure upstream of the elastic-axis leads to an unstable
configuration that promotes the pitching instability, and vice-versa. In the context of
pitching airfoils, there is the added consideration of the timing of leading-edge vortices
convecting past the elastic axis. Each such vortex induces a pitching moment on the airfoil
and the direction of this moment changes as the vortex convects past the elastic-axis.
This could potentially lead to non-linear and non-monotonic behavior noted in 3.2.

In figures 10(a) and (b) we plot the maximum pitch deflection, A✓, with and without
structural damping, as a function of U⇤, for two di↵erent locations of the elastic-axis
and for ✓0 = 15o. For X

⇤
e = 0.50, we see that the overall trend of A✓ does not change

significantly with damping. However, as expected, the undamped case shows a much
larger amplitude of oscillations. We also see that the bifurcation to large amplitude
oscillations is very abrupt for ⇣

⇤ = 0.0, indicating a subcritical bifurcation. This agrees
with the classical understanding of dynamical systems where the loss of a low-order
damping term leads to a subcritical bifurcation (Strogatz 2018). However, the stabilizing
influence of higher order non-linearities (from the flow, in this case) prevents the system
from diverging, and hence causes limit-cycle oscillations.

As noted previously, the amplitude response forX⇤
e = 0.33 exhibits significantly smaller

oscillations, but a non-monotonic behaviour as the hinge location is moved upstream.
Figure 10(b) shows that this non-monotonic behaviour of A✓ is much more apparent in
the absence of structural damping, where we observe a very large and abrupt jump in
flutter amplitude with U

⇤. However, further increase in U
⇤ results in a large drop in the

flutter amplitude. These types of non-monotonic responses have been studied extensively
in flow-induced vibration of blu↵ bodies (Williamson & Govardhan 2008) but are quite
unexplored for airfoil flutter.

Figure 11 shows the frequency response of the undamped system for X
⇤
e = 0.50 and

0.33 and it is clear that these cases show the same response regimes that were seen
before - a high frequency Karman shedding mode, followed by oscillations at the natural
frequency for increasing U

⇤. Further, this synchronization happens close to the critical
U

⇤. Hence the frequency selection in this system follows a mechanism that is similar to
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Figure 11. Pitching frequency response of undamped oscillations (⇣ = 0.0) for ✓0 = 15� and
two di↵erent locations of the elastic axis, (a) X⇤

e = 0.50; (b) X⇤
e = 0.33. The dashed line shows

the natural frequency of the system.

that outlined previously, where the competition of time-scales determines the response
frequency. However, the amplitude response warrants further investigation.

4. Flutter Analysis Based on Energy Maps

4.1. Energy maps

Our analysis in the preceding sections indicates a need to better understand the am-
plitude response of the flow-induced pitching airfoil for a set of given system parameters.
We were able to demonstrate the mechanism governing the onset and frequency of
oscillation as a competition of time-scales. However, the variations in amplitude with
U

⇤ and X
⇤
e are complex and non-intuitive. Here, we propose the use of “energy maps” to

gain an understanding of the complex amplitude response of the system. For an airfoil
undergoing sinusoidal pitching oscillations in a freestream, we can derive (see appendix
A) the following equation for the growth of the amplitude over one cycle

A✓(tn + T )�A✓(tn) =
E

⇤

k⇤Ā✓
(4.1)

where Ā✓ is the average amplitude over a cycle. In the above equation E
⇤ = E

⇤
f � E

⇤
d ,

where E
⇤
f is the energy extracted by the airfoil from the freestream over one oscillation

cycle and E
⇤
d is the energy lost to structural damping. E⇤

f is given by

E
⇤
f =

Z tn+T

tn

CM ✓̇dt (4.2)

where ✓̇ is the angular velocity and T is the period of oscillation.
In the case of purely sinusoidal oscillations where ✓̇ = ⇥̇ sin(2⇡t/T ) and CM =

K sin(2⇡t/T + �), the energy transfer is given by E
⇤
f = (1/2) ⇥̇KT cos� and this simple

model shows that the sign of energy extraction, which determines whether the airfoil
extracts energy from the flow, is governed by the phase di↵erence between the pitch
velocity and the pitch moment. The physical interpretation of this phase di↵erence, in
the context of flow-induced oscillations, is related to the timing between the pitching
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Figure 12. Comparison of �✓, CM and extracted energy E⇤
f , for airfoils forced to oscillate

with A✓ = 25� and f⇤
p = 0.25 about two di↵erent hinge locations, (a) X⇤

e = 0.33; (b)
X⇤

e = 0.50.

and the resulting response of the flow. In section 3.3, our description of the mechanism
determining the frequency response showed that this timing determines the critical U⇤

for the bifurcation to large amplitude oscillations. The phase di↵erence between pitch and
pitch moment is also a strong factor when considering the changes in the location of the
elastic axis. This is demonstrated in figure 12 where we show time series plots of the pitch
deflection and moment coe�cient for an airfoil forced to oscillate at A✓ = 25�, about two
di↵erent locations of the elastic axis. These sample cases show that changing the elastic
axis, while retaining the kinematics, produces very di↵erent forcing on the airfoil. This is
a result of the timing associated with the shedding as well as convection of vortices past
the hinge location. These e↵ects were also demonstrated in figure 1. The di↵erence in
timing leads to the case with X

⇤
e = 0.33 being damped, while X⇤

e = 0.50 extracts energy.
These examples suggest that the phase di↵erence, and hence energy extraction, is indeed
an important factor in analyzing the response of flow-induced flutter.

The aim in this section is to use our knowledge of the energy extraction, as described
above, to understand the amplitude response of the dynamical system as a function
of the various parameters explored in this study. To do this, we first create a map of
energy transfer as a function of the parameters of interest. This is done by performing
simulations of airfoils that are forced to undergo sinusoidal pitching oscillations over a
range of amplitudes and frequencies, while holding the other parameters such as X⇤

e and
Re fixed. The pitching and pitch-moment data from each of these simulations is then
used to calculate the energy extracted by the airfoil. The validity of these energy maps,
which are obtained from forced oscillations, for the case of free, flow-induced oscillations
rests primarily on the assumption that the free oscillations are strictly sinusoidal. We find
that this condition is indeed satisfied to a very large degree for all the cases simulated
here (see figures 2 and 5) and a sinusoidal fit to the pitching time-series yields an R-
square value of roughly 0.99 for nearly all cases studied. Indeed, energy maps have been
used quite successfully to understand flow-induced vibration of blu↵ bodies (Morse &
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Figure 13. (a) Contours of energy extraction, E⇤
f , as a function of oscillation amplitude and

frequency for X⇤
e = 0.50, ✓0 = 15�. Symbols represent stationary state f⇤

p and A✓ for undamped
(�) and damped (⌃) flow-induced oscillation cases. Dashed and dotted lines represent undamped
(E⇤

f = 0) and damped (E⇤
f = E⇤

d) equilibrium curves respectively. E⇤
d is calculated using ⇣ = 0.15

for the darkest damped equilibrium curve, and increasing values of ⇣ for subsequently lighter
equilibrium curves (⇣ = 0.30, 0.45); (b) Reproduction of figure 10(a) with inset box showing
range of U⇤ and A✓ computed in the energy map; (c) Zoom-in of flow-induced oscillation
amplitudes for cases compared with the energy map.

Williamson 2009) and Bhat & Govardhan (2013) also demonstrated the use of an energy
map to study flow-induced flutter of an airfoil.

The first map shown in figure 13 is for the case with X
⇤
e = 0.50 and Re = 1000. This

map is the result of a total of ⇠ 300 simulations over a range of non-dimensional pitch
frequencies f⇤

p = fpC/U1 : [0.10, 0.75] and pitch amplitudes A✓ : [0, 50�]. For each case,
we simulate over 50 total cycles to ensure that a stationary state is achieved, and obtain
E

⇤
f by integrating over the last 20 cycles. The dashed line in the energy map corresponds

to E
⇤
f = 0 and the dotted line corresponds to E

⇤
f = E

⇤
d , where E

⇤
d is calculated using the

value of structural damping previously specified in section 2.1. These represent potential
equilibrium conditions in the case of flow-induced flutter.

The primary features in the map are the nearly vertical demarcation between regions of
positive and negative energy transfer at about f⇤

p ⇡ 0.25 and the small region of positive
energy transfer around f

⇤
p ⇡ 0.65. From this energy map, we expect that sustained flow-
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induced oscillations for cases with structural damping would occur in the region with
E

⇤
f > 0, whereas cases without structural damping should saturate along the E

⇤
f = 0

contour line. To verify this, we superimpose on this map, the stationary-state amplitude
and frequencies from the flow-induced flutter simulations for X

⇤
e = 0.50. We find that

for all these cases, the system saturates very close to the contour line corresponding to
net energy equilibrium, i.e., E⇤

f = 0 for undamped oscillations and E
⇤
f = E

⇤
d for damped

oscillations. These observations provide clear confirmation of the validity of these energy
maps as a tool for understanding the flow-induced flutter response.

Examining the energy maps further, we note that the nearly vertical E⇤
f = 0 contour

line lies very close to the frequency corresponding to the reciprocal of the critical velocity,
which is the frequency at which the bifurcation to large amplitude oscillations occurs for
the flow-induced oscillation with X

⇤
e = 0.50. This feature of the current energy map

agrees qualitatively with that generated via experiments of Bhat & Govardhan (2013),
despite the fact that their Reynolds number is an order-of-magnitude larger than the
current one and their pitch axis is at quarter chord. Also, the small region of positive
energy transfer on the right side of the map has a frequency that corresponds to the
Karman oscillation mode identified earlier (see fig. 4).

The topology of the energy map and the equilibrium curve provide useful insights
regarding the dynamics of this configuration. For instance, the nearly vertical demar-
cation between the regions of energy growth and decay at f

⇤
p ⇡ 0.25 suggests that an

undamped system would experience rapid growth in flutter amplitude with a relatively
small decrease (increase) in pitch frequency (reduced velocity). Indeed, figure 10(a)
shows that the undamped system exhibits what seems to be a subcritical bifurcation
at U

⇤ ⇡ 4.0 with a jump in amplitude of nearly 40o. As the structural damping
is increased, the equilibrium curve bends to the left (i.e. increasingly negative slope)
indicating a smoother onset of flutter. Furthermore, increased damping significantly limits
the maximum amplitude attained by the system. Other implications of the topology of
the energy map for the system dynamics are explored in the next section.

4.2. Amplitude response for X
⇤
e = 0.33

The case with X
⇤
e = 0.33 exhibits a very complex, non-monotonic response with

U
⇤ and we now demonstrate the utility of the energy maps in providing insight into

this response. As shown in equation 4.1 and appendix A, oscillations in the absence of
structural damping are expected to grow (decay) in regions of positive (negative) E

⇤
f .

The requirements for a stable equilibrium are:

E
⇤
f = 0 ; dE

⇤
f/dA < 0 (4.3)

Figure 14 shows the energy map for this case which is generated as before by conducting
⇠ 200 simulations of prescribed flutter over a large range of pitch frequencies and
amplitudes. On this energy map, we have identified the curves corresponding to the
equilibrium condition (E⇤

f = 0) as well as the regions of stability on these equilibrium
curves (dE⇤

f/dA < 0). A number of qualitative observations can immediately be made
regarding this energy map. First, the topology is very di↵erent from that for X⇤

e = 0.50.
Since free oscillations can only exist within the region of E⇤

f > 0, the energy map suggests
an upper limit of A✓ ⇡ 40� on the flow-induced oscillation amplitude in this case. The
topology of the map is also extremely complicated: two main regions of energy growth and
decay are separated by a complex equilibrium curve that extends over the entire range
of frequencies considered here. There also exist multiple “islands” with E

⇤
f < 0 within

the large region of energy growth in the low-amplitude (< 10�) portion of the map, and
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Figure 14. (a) Energy map for X⇤
e = 0.33 and ✓0 = 15�, with the equilibrium curve (E⇤

f = 0)
shown as a dashed line, and stable equilibrium (E⇤

f = 0, dE⇤/dA < 0) highlighted along the
equilibrium curve (thick line); (b) Maximum pitch deflections versus U⇤ for cases with ⇣ = 0
corresponding to figure 10(b); The stationary state oscillation amplitude and frequency of all
cases shown in (b) are plotted on the energy map using circles (�). Also shown on the energy
map are bars indicating the local resolution in f⇤

p and A✓ in various regions of the energy map.
Local regions of the map that contain complex topological features have been provided higher
resolution.

this points to the possibility of multiple equilibrium states for a given conditions as well
as abrupt changes in oscillation amplitude with changes in the underlying parameters.
To compare our prediction for the equilibrium positions on this energy map, we

superimpose the stationary state locations of our flow-induced data for X
⇤
e = 0.33 on

the energy map using circle (�) symbols. This data set was described earlier in section
3.5 (see figure 10(b) ) and is also shown as maximum pitch deflection versus U⇤ in figure
14(b). This data corresponds to zero structural damping, and is hence expected to lie
along stable equilibria identified on the E

⇤
f = 0 curve. In figure 14 we see that there

is again very good agreement between the flow-induced oscillations data and the energy
map. The slight discrepancies in this comparison are a result of the finite resolution of the
energy map, which is not able to fully resolve the complicated structure of the map. This
is especially apparent at very small oscillation amplitudes, where multiple equilibria exist
in close proximity to each other. Hence on figure 14 we have also plotted error-bars at
various locations indicating the local step size in f

⇤
p and A✓ used in computing generating

the energy map.
In spite of the di�culty in fully resolving the topology of the energy map, it allows

us to explain the complex, non-monotonic response of the flow-induced flutter for the
undampedX

⇤
e = 0.33 case. The map clearly shows that for f⇤

p > 0.25 (U⇤
< 4) the system

is trapped in a lower branch of the energy map which has very small amplitude. However,
as f⇤

p reduces below 0.25 (U⇤
> 4) the lower branch all but disappears. Thus for the case

with f
⇤
p > 0.237 (U⇤ = 4.22) the system finds itself in a region of positive energy growth

and the amplitude grows and saturates at the first stable equilibrium along the vertical
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Figure 15. Prediction of A✓ using equation A5, compared with calculations from flow-induced
oscillation simulations. Here, X⇤

e = 0.33 and ✓0 = 15�; (a) Stationary state amplitudes and
frequencies from the model (⇤), and flow-induced simulations corresponding to figure 14 (�)
plotted on the energy map; (b) Corresponding amplitudes plotted against U⇤ using the same
symbols as in (a).

line representing its natural frequency in the map, which is about A✓ = 22�. Between
f
⇤
p = 0.22 and 0.25, the system continues to grow to the large amplitudes associated
with the upper equilibrium curve, however, for f

⇤
p < 0.22 (U⇤

> 4.5), a lower, stable
equilibrium branch appears and the system locks on this lower branch. Hence, after the
bifurcation to large amplitude oscillations at about U⇤ = 4, the amplitude of the system
drops significantly (⇡ 3� for U

⇤
> 4.54. In contrast, for the case of X⇤

e = 0.50, there is
no such lower branch in the energy map (see figure 13). Hence the oscillation amplitude
increases monotonically along the E

⇤
f = 0 curve for that case.

Having established that the energy map indeed describes the stationary states of the
flow-induced flutter system, we now demonstrate its use in making apriori predictions
of the stationary state amplitude without the need for flow simulations. This serves
as a demonstration of the energy map as a predictive tool as well as a validation of
our model for amplitude growth (shown in the appendix). From equation A5, we can
calculate the amplitude growth of an oscillator at every cycle, with the knowledge of
its spring sti↵ness and cycle-wise energy extraction. As mentioned before, this assumes
that the oscillations are purely sinusoidal and occur at the natural frequency of the
system. With these assumptions, we can pick the oscillation frequency of the system and
predict the growth of amplitude based on the energy map and an initial condition. We
iterate equation A5 using a semi-implicit Crank-Nicholson scheme, and the iteration is
performed until a stationary state is achieved. We demonstrate this for some selected
cases in figure 15, where we compare the amplitude response observed in flow-induced
oscillations (�), with that predicted by our model (⇤). We see that we are able to predict
the amplitude response accurately for most cases by purely using the energy map. One
case however, with U

⇤ = 4.62, does not agree with the model’s predictions. As is apparent
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in figure 15(a), this is because the energy map computed here predicts the existence of a
small amplitude stable equilibrium at this oscillation frequency. This is a result of finite
resolution in computing the map, as was mentioned earlier. Furthermore, the fact that
this region of the map is especially sensitive to small changes in frequency and amplitude
amplifies the finite resolution e↵ects. This sensitivity of the energy prediction to input
conditions was also observed by Leontini et al. (2006).

4.3. Transient Response

The energy maps also allow us to understand the transient response of the various
flow-induced flutter cases. In figure 16 we plot the pitching amplitude timeseries and
trajectories of two cases of flow-induced flutter, where the circles represent the location
of the oscillator on the frequency-amplitude space during each cycle. This is calculated
by dividing the pitch response time series into individual cycles, and calculating the
amplitude and timescale associated with each cycle. In the case of U

⇤ = 4.50, we
observe that the trajectory of the system follows a nearly vertical line on the energy map.
This is because this case corresponds to the post-bifurcation regime, and the frequency
is selected based on the natural frequency of the system. The system starts at rest,
close to �✓ = 0, and the amplitude grows due to the positive energy extracted from
the flow. We see in figure 16(c) that this amplitude growth occurs until it reaches a
stable equilibrium position corresponding to its oscillation frequency. However, before
reaching this stationary state, the oscillator spends a long time close to a small amplitude
equilibrium region, as shown by the density of circles in the zoomed-in trajectory shown
in in figure 16(d). The e↵ect of this is also seen in the pitch amplitude time series of
this case, shown in figure 16(a). The system exhibits small amplitude oscillations for an
extended period of time, before a sudden growth in amplitude caused by its escape from
the small amplitude stable region.
On slightly increasing U

⇤ to 4.95, the system to get trapped in the low-amplitude
stable branch as seen in figure 16(c). Further, we see from the pitch response time series
in figure 16(b) that the oscillation amplitude in this case shows an interesting beating
behaviour. This suggests that the oscillator is trapped in a bi-stable region that allows
it to move between two stable equilibrium positions. While the exact structure of this
stable region is di�cult to resolve, figure 16(d) shows that the system gets trapped in
a nearly vertical branch of E

⇤
f = 0 that would allow the existence of multiple stable

regions. Further, the vertical spread of instantaneous amplitudes after the system has
reached a stationary state (shown by the spread of circles) suggests that the system does
indeed move between two equilibrium states. The analysis of these cases shows the utility
of the energy map in analyzing the stationary state response, as well as the trajectory
of the oscillator from the initial condition to the stationary state. We also see that the
complicated structure of the energy map leads to interesting behaviour in the pitching
response of this system, which would be very di�cult to interpret without knowledge of
the corresponding energy map.
The energy map also allows us to predict hysteretic behaviour due to the presence of

multiple stable equilibria at particular oscillation frequencies. In figure 17 we show the
energy map, as in figure 14, with additional cases that demonstrate hysteresis shown using
diamond (⇧) symbols. These simulations were carried out using a previously computed
stationary state along the equilibrium curve as an initial condition, changing the value
of U⇤, and allowing the dynamics to evolve to a new stationary state. We use arrows
pointing from the initial to the final stationary state to denote the change in U

⇤ in figure
17. We see that these cases agree with the equilibrium and stability conditions predicted
by the energy map too.
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Figure 16. Comparison of two flow-induced oscillation cases with U⇤ = 4.50 and U⇤ = 4.95.
Top panel shows timeseries of pitch oscillations for (a) U⇤ = 4.50, and (b) U⇤ = 4.95; (c)
Amplitude-frequency trajectories of these cases on the energy map. Each circle represents the
amplitude and frequency during one oscillation cycle. The colour intensity represents time; (d)
Zoom-in of trajectories in the inset box shown in (c).

The transient response of these cases is especially interesting to analyze as they also
demonstrate the ability to use these energy maps in flutter amplitude control. In figure
18 we plot the pitching time series and trajectories of two such cases showing hysteretic
behaviour with U

⇤ = 3.30 and U
⇤ = 4.95. Figures 18(a) and 18(b) show timeseries plots

of pitching amplitude, where the grey portion represents the last few cycles of the case
used as an initial condition, and the black timeseries shows the subsequent amplitude
response leading to the new stationary state. In figures 18(c) and 18(d) we show the
trajectories of these cases where the circles show the state of the system on the frequency-
amplitude space during each oscillation cycle. Here we show the trajectory leading up to
the stationary state that is used as an initial condition, as well as the trajectory from the
previous stationary state to the new one. The change in U

⇤ is indicated by the arrow.
For U⇤ = 3.30, the case using the static initial condition shows very small amplitude

oscillations (A✓ < 1�) as seen in figure 10(b) and is described by the pre-bifurcation
regime on section 3.3. However, when initialized with an oscillation amplitude ⇠ 25�, we
see that it reaches a stationary state amplitude of roughly 10�. This new stationary state
is achieved through a loss of energy, which is di↵erent from all the cases analyzed in this
paper so far. The loss of energy is a consequence of the fact that the initial amplitude of
oscillation, which corresponds to a stable equilibrium at a di↵erent natural frequency, is in
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Figure 17. (a) Energy map for X⇤
e = 0.33, with equilibrium curve, stable equilibria, and

stationary state frequency and amplitudes as in figure 14. Also shown are cases demonstrating
hysteresis, represented by diamonds (⇧), by continuing along the directions indicated by the
arrows; (b) The stationary state oscillation amplitude of all cases shown in the energy map,
plotted against U⇤ using the same symbols.

a region of negative energy transfer at the natural frequency corresponding to U
⇤ = 3.30.

This results in a reduction in amplitude of oscillation as described by equation A6, until
it reaches a new stable equilibrium. This is an example of the ability to reduce the
amplitude of flutter using a knowledge of the energy map.
The case of U⇤ = 4.95 shows a case that is initialized using a stationary state on one

portion of the equilibrium curve, and ends up on higher-amplitude portion of the curve
on changing its natural frequency. This occurs as the change in natural frequency pushes
the system into a region of positive energy transfer, as indicated by the arrow in figure
18(d). Due to continuous extraction of energy from the flow, the amplitude grows until it
reaches a new stable equilibrium. It must be noted that this is the same U

⇤ value shown
in the right-side pane of figure 16, where the static initial condition was used.
With these above examples we have been able to demonstrate the use of the idea of

an energy map to analyze the dynamics of the flow-induced oscillator apriori, based on
our knowledge of the frequency selection mechanism. We have also been able to explain
the bizarre non-monotonic amplitude response seen in the case of X⇤

e = 0.33 using this
tool.

5. Conclusions

We have carried out a study of flow-induced airfoil flutter at a chord-based Reynolds
number of 1000 using high-fidelity modelling of the fluid dynamics coupled with a linear
structural model for deflection in pitch. The objectives of this work were two-fold - to
carry out a systematic study of the parameters a↵ecting the dynamics of wing flutter,
and to demonstrate the use of the energy exchange between the fluid and the structure
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Figure 18. Trajectories of flow-induced oscillation cases showing hysteresis. Top panel shows
timeseries of pitch oscillations for (a) U⇤ = 3.30, and (b) U⇤ = 4.95, where the lighter timeseries
represents the approach to the initial state (before hysteresis) and the darker timeseries shows
the evolution after the change of U⇤; (c) Amplitude-frequency trajectories of the case with
U⇤ = 3.30 on the energy map, where the approach to the initial condition as well as the
subsequent evolution at U⇤ = 3.30 is shown; (d) Amplitude-frequency trajectories of the case
with U⇤ = 4.95.

as a way to analyze the flutter behavior and its dependence on various parameters such
as spring sti↵ness, elastic axis location and mean angle-of-attack.
It is shown that for cases that exhibit significant flutter, the onset of flutter occurs

at a reduced velocity (U⇤ = U1/Cfs) which is dependent on the initial angle-of-attack.
Simulations are used to determine a time-scale (Tv) corresponding to the relaxation of a
pitch perturbation, which provides a more appropriate flow time-scale for this problem.
A reduced velocity defined based on this time-scale, i.e. U⇤

v = f
�1
s /Tv leads to the simple

condition that flutter will occur for U
⇤
v > 1, irrespective of the angle-of-attack. This

condition provides a phenomenological basis for the onset of flutter: the natural time-
scale of the system (f�1

s ) should be larger than the time-scale (Tv) of the flow so as
to enable constructive coupling between the flow and the structure and amplification
of a pitch perturbation. Finally, we provide some evidence that the time-scale Tv is
proportional to the thickness of the boundary layer at the point of separation over the
suction surface of the static airfoil, thereby connecting this time-scale to the instrinsic
instability of the separated shear layer.

In the second part of this study, we demonstrated the use of “energy maps”, as an
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analytical tool to analyze the complex flow-induced flutter response of the airfoil. Energy
maps are generated by computing the rate of energy exchange between the airfoil and
the flow for airfoils undergoing prescribed pitch flutter over a range of amplitude and
frequencies. The topology of the energy maps changes significantly with the location of
the elastic-axis and we show that the energy maps provide a very e↵ective means for
interpreting complex behavior such as non-monotonic saturation amplitudes, hysteresis,
subcritical and supercritical bifurcations, and complex limit-cycle behavior. Furthermore,
we show that a simple mathematical model based on the energy maps can even predict
the saturation amplitude without the need for flow-induced flutter simulation.
The current study and analysis has a number of limitations. The simulations are

two-dimensional, limited to low-Reynolds numbers and they do not inform about how
flutter would be a↵ected by the introduction of new time-scales and strong instrisic
three-dimensional e↵ects associated with higher Reynolds numbers. The current study
also does not address structures with multiple intrinsic modes/frequencies of flutter. We
believe that the current approach of generating energy maps would be equally valuable
in such systems, however the dynamics would live in a higher-dimensional energy map
than demonstrated here. In general, each additional mode would correspond to an added
dimension on the energy map. However, for the specific case of plunge oscillations with
small amplitude or frequency, the added dimension could possibly be modelled in a quasi-
steady manner as an e↵ective angle-of-attack or using the model of Theodorsen (1935).
It is also worth noting that in coupled pitch-plunge systems, we expect the mechanism
for the onset of the instability in each mode to be similar to that described in section
3.4, i.e., a competition between the natural timescale of the structure and the relaxation
timescale of the forcing. However, it is possible that the growth of plunge instability could
force the growth of pitch oscillations, and vice-versa, due to the presence of subcritical
response branches, as seen in this study. Another limitation to note is that the energy
maps can have highly complex topologies that may be di�cult to resolve fully. This also
raises the question as to what features of the flow determine the topology of the energy
map? This question is related primarily to the vortex dynamics in this coupled system,
and such questions are interesting directions for future research.
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Appendix A. Model for Amplitude Growth

In this section, we present a mathematical model for amplitude growth and equilibrium
for the flow-induced flutter of the airfoil. Multiplication of ✓̇ to equation 2.2 as follows

I
⇤
✓̈✓̇ + k

⇤(✓ � ✓0)✓̇ = CM ✓̇ � b
⇤
✓̇✓̇ (A 1)

results in a simple energy balance describing the growth of energy in the oscillator:
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(A 2)

where e
⇤
f is the energy extracted by the airfoil from the flow and e

⇤
b is the energy lost to

structural damping. Integrating this equation over an oscillation cycle with time period
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T , where the beginning of the cycle is at time tn, results in an equation for the change
of amplitude over the oscillation cycle.

I
⇤[✓̇2(tn+T )� ✓̇

2(tn)]+ k
⇤[✓2(tn+T )� ✓

2(tn)] = 2 [e⇤(tn + T )� e
⇤(tn))] = 2E⇤

. (A 3)

where E
⇤ is the net energy gain of the structure over one cycle. Assuming a purely

sinusoidal form for ✓ and ✓̇, i.e. ✓ = A✓ sin!t where !
⇤ = 2⇡/T , results in the following

equation for the change in amplitude over an oscillation cycle

A
2
✓(tn + T )�A

2
✓(tn) =

2E⇤

I⇤!2 cos2 !t+ k⇤ sin2 !t
(A 4)

Assuming the oscillation occur at the natural structural frequency, i.e., ! =
p

k⇤/I⇤, we
obtain the following equation for amplitude growth in the regime of oscillation at the
natural frequency:

A
2
✓(tn + T )�A

2
✓(tn) =

2E⇤

k⇤
(A 5)

=) A✓(tn + T )�A✓(tn) =
E

⇤

k⇤Ā✓
(A 6)

where Ā✓ = [A✓(tn + T ) +A✓(tn)]/2.
This is the Poincaré map of this dynamical system. Equilibrium is attained when

A✓(tn + T ) = A✓(tn), and this corresponds to

E
⇤ = 0 (A7)

The equilibrium may be stable or unstable, and equation A6 also allows us to derive a
linearized stability condition for this system. For a system of the form An+1 = F(An),
where n is the index of the return map, and F is some functional form, linear stability
requires dF/dA < 1 (Strogatz 2018). For our system, this gives the following condition
for stability

d

dA✓

✓
A✓ +

E
⇤

k⇤Ā✓

◆
< 1 =) dE

⇤

dA✓
< 0 (A 8)

Thus, the above indicates that a system allowed to flutter freely will equilibrate only when
conditions A 7 and A8 are satisfied simultaneously. Thus, a map of E⇤ as a function of
pitch frequency and amplitude could be used to understand, and even predict the response
of the system. We note that this concept has previously been employed by other groups,
primarily in the context of blu↵ body vibrations (Morse & Williamson 2009; Kumar
et al. 2016). Furthermore, the equilibrium conditions arrived at here are the same as
those employed in these previous studies.

Appendix B. Grid convergence and code validation

A grid convergence study was performed using forced oscillations of the truncated
NACA0015 airfoil used in this study. The oscillations were performed about ✓0 = 20�,
with amplitude A✓ = 20� and frequency f

⇤
p = 0.15. The baseline grid tested consisted

of 384 ⇥ 320 grid cells. This corresponds to a resolution of approx. 125 cells along the
chord of the airfoil. This grid was compared to those with 480 ⇥ 448 and 544 ⇥ 544
grid cells, which correspond to 192 and 237 cells along the chord, respectively. These
refined grids are 2.3⇥ , and 3.6⇥ the size of the baseline grid, in terms of total grid
cells. In figure B.1 we show comparisons of the time-series of lift coe�cient and moment
coe�cient for these three grids. The mean and RMS lift coe�cient di↵er by 3.92% and
1.2% respectively between the baseline and 2.3⇥ grid, and 0.96% and 1.51% respectively
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Figure B.1. Time series of (a) moment, and (b) lift coe�cients, for the three grids tested.

Figure B.2. Time series of (a) pitch angle; (b) moment coe�cient; and (c) lift coe�cients, for
flow-induced oscillations at U⇤ = 6.8 using the Baseline and 2.3⇥ grids.

between the baseline and 3.6⇥ grid. The corresponding di↵erence in mean and RMS
moment coe�cient is 1.78% and 1.07% between the baseline and 2.3⇥ grid, and 0.84%
and 2.05% between the baseline and 3.6⇥ grid.
The grid convergence demonstrated above, while performed for forced oscillations,

is expected to be a reasonably good demonstration of grid convergence for the flow-
induced system as well. This is due to the fact that the only term in the dynamical
equation for the solid (equation 2.2) that depends on the grid is CM , which we have
shown, is well converged. Further, in order to obtain statistics at a stationary state
for the flow-induced system, CFL criterion-related constraints would require simulations
with as many as 2,000,000 time-steps on the finer grids. This makes such an exercise
computationally cost-prohibitive. However, in order to strengthen this demonstration of
our grid convergence, we have performed a comparison of the baseline and 2.3⇥ grid
for a flow-induced oscillation simulation during the transient, amplitude-growth phase
at U⇤ = 6.8 and ✓0 = 15�. Plots for the pitch angle, and coe�cients of moment and lift
versus time are shown in figure B.2. We see that the mean and RMS lift coe�cient di↵er
by 0.57% and 1.56% respectively. The mean and RMS moment coe↵. di↵er by 3.78% and
1.22% respectively. The maximum pitching amplitude di↵ers by 6.44%.
Further, we have made various comparisons of results from the code used in this work

with previous studies, in addition to the validation already mentioned in Mittal et al.
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Figure B.3. Flow-induced oscillation amplitude of a circular cylinder versus mass-damping
parameter � = 8⇡2St2m⇣/⇢D2. Results from the present code are shown using symbols and are
compared with results from Blackburn & Karniadakis (1993) shown as a dashed line.

(2008). Specifically, force coe�cients as well as Strouhal numbers predicted by ViCar3D
for flow over static airfoils match very well with existing literature. These results are not
shown here for the sake of brevity. In order to validate our fluid-structure interaction
solver, we have performed simulations of flow-induced vibration of circular cylinders and
compared our amplitude response with the results of Blackburn & Karniadakis (1993).
In figure B.3 we show the amplitude response of a freely vibrating cylinder at ReD = 200
with m

⇤ = m/⇢D
2 = 10, against the mass-damping parameter � = 8⇡2

St
2
m⇣/⇢D

2.
Here, St,m, ⇣, ⇢, and D are the vortex shedding Strouhal number, mass, damping ratio,
fluid density, and cylinder diameter respectively. The symbols show results from our
simulations and the dashed line is from the work of Blackburn & Karniadakis (1993).
The agreement is quite reasonable.
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