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The response of a separated flow to external forcing is investigated using input-output
analysis. A laminar separation bubble is induced on the flow past a flat plate by imposing
an adverse pressure gradient. We study the response of spanwise-constant perturbations to
both global body forcing and local body forcing. Input-output analysis (also referred to as
resolvent analysis) uses a linear operator that maps the external forcing to the response of the
flow field. For this flow forced at a single frequency, the linear operator is closely approximated
by an operator of rank one, and describes the optimal spatial forcing for which the resulting
response has maximum amplification. Input-output analysis gives useful information about
optimal actuator placement and optimal actuation frequency. It is found that the flow response
is maximized when forcing at the natural frequency of the separation bubble. The optimal
response mode implies that the separation bubble is receptive to upstream body forcing. The
optimal forcing mode indicates that body forcing should be applied upstream of the separation
bubble, and gives information about the size and shape of the region where forcing should be
applied, in order to maximize the response in the separation bubble.

I. Introduction
Flow separation is usually an undesirable phenomenon in aerodynamic applications because it reduces lift and

increases (pressure) drag [1]. The complicated nonlinear dynamics of flow separation are characterized by Kelvin-
Helmholtz instability, wake shedding, and separation bubble oscillations [1]. Efforts have been devoted to design control
methods to suppress separation and reattach a separated flow. A number of studies try to find the optimal actuation
parameters by searching the parameter space: see [2–5] for example. Parameter-searching control methods usually
require huge experimental or simulation efforts, and provide only limited physical insights about the problem. Among
various separation control methods, zero-net-mass-flux (ZNMF) actuators are simple to implement and have been shown
to be effective in reducing flow separation [3, 6–9].

Input-output analysis was introduced to the fluid community to study the response of a flow field to disturbances
[10, 11]. This approach uses the transfer function (a linear operator) from the input forcing (including nonlinear
advective forcing, and any other external forcing) to the output response (velocity and pressure field). This linear
operator is often low rank (sometimes approximately rank-one), and from it one can deduce the optimal forcing mode
that actuates the optimal response that has maximum amplification, at any given forcing frequency. Input-output analysis,
also referred to as resolvent analysis, has been used for a wide range of problems [12–15], ranging from pipe turbulent
control to building reduced-order models. A review of various applications is presented in [16].

The focus of this paper is to better understand the physics of a separated flow, with the ultimate objective of
controlling the flow. We consider a laminar boundary layer with a separation bubble along a flat plate. The separation is
induced by a pressure gradient imposed through suction and blowing at the upper wall of the numerical domain. The
forcing and response determined by input-output analysis can be very useful, since the optimal forcing and response can
be used to guide placement of actuators and other aspects of the control design. Input-output analysis has been utilized
for design of airfoil separation control [17], in which localized unsteady thermal actuation is applied near the leading
edge. A previous study has looked into the response mode of incompressible jets to both body forcing and boundary
forcing [13]. In the present work, we actuate the separated flow by both global and local body forcing.
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II. Methodology

A. Flow setup and numerical simulation
In this paper we study a laminar boundary layer with a separation bubble induced by an adverse pressure gradient.

The pressure gradient is imposed by suction and blowing on the top boundary, as shown in Fig. 1. This configuration
has been widely studied as a proxy for separation in the flow past a wing at high angle of attack, because it isolates the
effects of separation from other geometric effects such as wall curvature [18].

Fig. 1 Sketch of separated flow on a flat plate (not to scale). Adapted from [19].

The numerical simulation of the three-dimensional incompressible Navier-Stokes equations is performed with a
second-order finite difference code ViCar3D [20]. Further details about the numerical schemes of the solver can be
found in [19, 21]. The flow variables are nondimensionalized by the free-stream velocity U∞,0, and the boundary
thickness δ0 of the Blasius velocity profile at the inlet of the flow domain. The Reynolds number of the flow is
Re = U∞,0δ0/ν = 1000, where ν is the kinematic viscosity. The size of the computational domain is 75δ0 in the
streamwise direction, 15δ0 in the wall-normal direction, and 24δ0 in the spanwise direction.

Blasius velocity profiles are imposed at the inlet, and a Neumann boundary condition is used at the outlet (zero
normal derivative). A no-slip boundary condition is imposed at the bottom wall, and a suction-blowing boundary
condition (for wall-normal velocity) is imposed at the top boundary. At the top boundary, the streamwise velocity is
implied by a zero-spanwise-vorticity condition. Periodic boundary conditions are assumed in the spanwise direction.
The pressure satisfies a Neumann boundary condition at all boundaries (zero derivative normal to the boundary).

A simulation with no forcing is performed, and that is denoted as the base case (“case B”). For this case, the flow
field averaged in time and in the spanwise direction is shown in Fig. 2, along with the spanwise-averaged fluctuations
(deviations from the time-averaged flow). The time and spanwise averaged field will be used as base flow in the
input-output analysis. The spanwise velocity is not reported here because it is small and close to zero. The flow is mainly
two-dimensional, along with small spanwise fluctuations. Observe first that the imposed adverse pressure gradient
successfully induces a separation bubble. The separation bubble spans from x = 10δ to x = 55δ. The fluctuation field
is nonzero mainly in and behind the trailing edge of the separation bubble region. The time- and spanwise-averaged
flow field is taken as the base flow for the input-output analysis. We then study the response of the fluctuation field to
external body forcing.

B. Input-output analysis formulation
To formulate the input-output analysis, we start from the incompressible Navier-Stokes equations

∂t ũ = −ũ · ∇ũ − ∇p̃ +
1

Re
∇2 ũ, (1a)

∇ · ũ = 0. (1b)

The full flow field (ũ, p̃) is decomposed into a base flow (ū, p̄), which is usually taken to be the mean flow or a steady
solution of the Navier-Stokes equations, and a fluctuation field (u, p), and we derive an equation for the fluctuations.
Letting ũ = ū + u, p̃ = p̄ + p and substituting into Eq. (1), we obtain

∂tu = Lu − ∇p + f , (2a)
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(a) (b)

Fig. 2 (a) Time and spanwise averaged field. (b) Spanwise averaged fluctuation field.

∇ · u = 0, (2b)

where
Lu = −ū · ∇u − u · ∇ū +

1
Re
∇2u,

and L is the linearized Navier-Stokes operator. The forcing term f includes all additional terms, including the nonlinear
advective term and any external forcing terms such as body forcing and boundary forcing.

The governing equation of the fluctuation field is linear. Treating the nonlinear advective term and external forcing
as input and velocity field as output, we can derive a state-space representation for the fluctuation field. If we define

q =


u

p


, A =



L −∇

∇· 0


, M =



1 0
0 0


, B =



1
0


, C =

[
1 0

]
,

then Eq. (2) can be put into state-space form

M∂tq = Aq + B f , (3a)

u = Cq, (3b)

where f is the input and u is the output. If we consider sinusoidal forcing f = f̂ eiωt , then both the state q and output u
will be sinusoidal because the system is linear. Letting u = ûeiωt and substituting into Eq. (3), we obtain

û = H (iω) f̂ ,

where
H (iω) = C(iωM − A)−1B

is the transfer function from input ( f = f̂ eiωt ) to output (u = ûeiωt ). The transfer function H (iω) is the centerpiece of
input-output analysis. (The operator (iωM − A)−1 is called the resolvent operator, and analysis of this operator is often
referred to as “resolvent analysis.”) Notice that H (iω) will be different for each different frequency ω. Keep in mind
that H (iω) is the transfer function from the forcing at a particular frequency ω to the response at the same frequency. In
what follows, we fix a particular frequency ω, and we drop the explicit dependence of H on ω. However, note that the
forcing and response modes we discuss below depend on the frequency ω.

Now let us consider the maximum amplification problem. We are interested in finding an input forcing with unit
norm such that that the output has maximum norm:

max
f̂
‖ û‖, s.t . ‖ f̂ ‖ = 1,

where ‖ · ‖ denotes a suitable norm on the flow field û and forcing term f̂ . One can show (see, e.g., [22]) that the optimal
forcing f̂ is an eigenvector of H∗H , where H∗ denotes the adjoint of H: in particular, the optimal f̂ is the solution of

H∗H f̂ = σ2 f̂
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corresponding to the largest eigenvalue σ2. The solution to the eigenvalue problem can be found from the singular
value decomposition (SVD) of the linear operator

H =
∑
j

σ jψ jφ
∗
j,

where ψ∗i ψ j = δi j, φ
∗
i φ j = δi j , and σ j ≥ 0 is in descending order. The optimal forcing is the first right singular vector

φ1 and the optimal response is the first left singular vector ψ1. The largest singular value σ1 gives the corresponding
amplification. For an arbitrary forcing f̂ , the response û can be written as

û =
∑
j

σ jψ j (φ∗j f̂ ),

where φ∗j f̂ is the projection of f̂ in the direction of φ j . For many shear flows of practical interest [11–13, 22] the linear
operator H can be closely approximated by an operator of rank one: σ1 � σ j≥2. A rank-one approximation of the
response is then

û ≈ σ1ψ1(φ∗1 f̂ ), (4)

and one expects this to be a close approximation of the response for a typical forcing f̂ (i.e., as long as the direction of
forcing is not such that φ∗1 f̂ is small).

The base flow is computed from the simulation previously described as “case B.” We select a particular frequency ω,
as the dominant frequency observed in the fluctuations for case B (as discussed in the next section). The transfer
function H (iω) is discretized with a finite-difference method, with appropriate boundary conditions for the fluctuations
deduced from the simulation boundary conditions. After discretization, H (iω) is a huge matrix of size 0.26 million by
0.26 million. For a matrix of this size, it is too cumbersome to compute the matrix inverse (iωM − A)−1 explicitly,
and accordingly, is extremely computational expensive to find the SVD of H (iω) directly. Fortunately, we only need
the first (few) singular values and singular vectors of H. The randomized SVD method of [23] is used to obtain the
approximate leading singular values and singular vectors, without the need to explicitly compute the transfer function H
or the resolvent (iωM − A)−1.

C. Local body forcing
In the presentation above, the body force is global. However, it is usually not practical to impose a body force

everywhere in space. We now consider external forcing as a local body force. The governing equation for the fluctuation
field is

∂tu = Lu − ∇p + b(x) f , (5a)

∇ · u = 0, (5b)

with appropriate boundary conditions as specified in previous section. b(x) embeds where the local body force is
applied. In this study, we consider local body force in the upstream near the wall boundary (due to global forcing
analysis). Following the derivation in section II.B, we can obtain a state-space representation similar to Eq. (3). For local
forcing, we essentially have a different B matrix, which allows us to select which part of the flow field to apply forcing.

III. Results and Discussion

A. Modal decomposition analysis
We start with modal decomposition analysis of this problem. In particular, we consider three methods: discrete

Fourier transform (DFT), proper orthogonal decomposition (POD) [24], and dynamic mode decomposition (DMD) [25].
They will provide insight about the coherent structures and main flow physics in the flow. Both three methods are based
on temporal-spatial data (discrete velocity field measurements that evolve in time). DFT gives spatial mode associated
with uniformly spaced frequencies ranging from zero to Nyquist frequency. POD extracts the most energetic spatial
mode from data. DMD finds spatial mode that evolves in time with a fixed frequency and growth/decay rate. For more
details and/or reviews about modal decomposition methods in fluid flows, see [16, 26].

First, we apply DFT to the fluctuation velocity field which consists of 300 snapshots with time step of 4t = 2. DFT
frequencies, amplitudes and the first mode are shown in Fig. 3. It is revealed that there is a (non-dimensional) peak
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(a) (b)

Fig. 3 (a) DFT frequency and amplitude (normalized by maximum amplitude). (b) DFT mode û, v̂ (real part)
associated with the peak frequency f = 0.0567.

(a) (b)

Fig. 4 (a) Explained variance ratio with respect to number of POD modes. (b) First POD mode û, v̂.

(a) (b)

Fig. 5 (a) DMD frequency and amplitude (normalized by maximum amplitude), largest amplitude occurs at
f = 0.0571. (b) Dominant (largest amplitude) DMD mode û, v̂.

frequency at f = 0.0567. The associated mode resembles the fluctuation velocity field as shown in Fig. 2 (b). This
Fourier mode indicates the coherent structure in this flow.

Next, we analyze the same fluctuation velocity field with POD. The result is presented in Fig. 4. We report the
explained variance ratio, which is defined as

rk =
k∑
j=1

σ2
j /(

N∑
j=1

σ2
j ), (6)

where k is the number of modes used, N is the total number of modes, and σ j is the j-th singular value (in descending
order) of the snapshot matrix (whose column is the discrete velocity field). rk quantifies how much energy are explained
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(a) (b)

Fig. 6 Global forcing result. (a) Singular values of the linear operator (transfer function) for kz = 0, ωp = 0.377.
(b) First three singular values of the transfer function for a range of frequency ω around ωp . kz = 0 is fixed.

(a) (b)

Fig. 7 Global forcing result. (a) Streamwise and wall-normal optimal response mode û, v̂. kz = 0, ω = 0.377.
(b) Streamwise optimal forcing mode f̂x and zoom-in view in the region (x/δ, y/δ) ∈ [0, 15] × [0, 3].

by the first k POD modes. The first 10 POD modes explains about 90% of the total energy in the flow field. The first
POD mode is shown in Fig. 4 (b), and this is considered as the dominate coherent structure in the fluctuation field.
Observe that it is very similar to the dominant DFT mode.

Finally, DMD is used to find coherent structures in the fluctuation flow field. We first project the snapshots onto the
subspace spaned by the leading POD modes of the snapshot matrix and then perform DMD in this subspace. This
approach is more numerically stable and computationally efficient [26]. We use 11 POD modes, which amounts to
keeping about 90% of the total energy in the snapshots. The result is shown in Fig. 5. DMD amplitude is defined as the
magnitude of the coefficient when the initial condition is projected onto the DMD modes. DMD identifies a dominant
frequency of f = 0.0571, which is (almost) the same as as DFT peak frequency f = 0.0567. The associated dominate
DMD mode is similar to those found by DFT and POD.

B. Global body forcing and optimal actuator placement
One question we are interested in is the optimal location of an actuator. As discussed in the previous section, the

optimal forcing mode gives insight into this question, since it gives the forcing term (of unit norm) that has the largest
amplification. We first present results of input-output analysis considering global body forcing distributed in the whole
domain. Because the body force is global instead of local, the optimal forcing mode will shed light on the optimal
actuator placement.

Assuming sinusoidal forcing in both time and the spanwise direction, the output will also be sinusoidal (in time and
the spanwise direction), because the system is linear. Let

f (x, y, z, t) = f̂ (x, y)ei(kz z+ωt), u(x, y, z, t) = û(x, y)ei(kz z+ωt) .

We consider only two-dimensional forcing in this study, i.e., kz = 0. For eachω, we have a different transfer function, and
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therefore different set of optimal forcing modes and response modes. We consider a particular frequency ω determined
from the simulation previously described as “case B.” From a power spectral density analysis of the streamwise velocity
of a probe in the separation bubble, a (non-dimensional) peak frequency of fp = 0.06 is found, which corresponds to the
natural frequency of the separation bubble [19]. This frequency is also very close to the dominate frequency found from
discrete Fourier transform of the full fluctuation velocity field. To report the result, we set ωp = 2π fp = 0.377. The
first eight singular values computed by randomized SVD are shown in Fig. 6 (a). The first singular value and singular
vector change no more than 1% when we increase the number of random vectors in the randomized SVD algorithm by a
factor of 2, verifying the convergence of the algorithm.

We observe that the first singular value is six orders of magnitude larger than the second and the rest, so the transfer
function may indeed be approximated by an operator of rank one. To study the validity of rank-one approximation for
other frequencies, we show the first three singular values of the transfer function (found by randomized SVD algorithm)
for frequency ω varying around ωp in Fig. 6 (b). It is verified that rank-one approximation is valid for a range of
frequencies. Furthermore, we find that ωp = 0.337 has the maximum amplification among all the frequencies around it.
This is consistent with the common practice to force the flow at its natural frequency.

The optimal response mode and optimal forcing mode are shown in Fig. 7. The energy in the optimal response mode
is mainly concentrated in the streamwise and wall-normal component (û, v̂). The spanwise response ŵ is found to be
five orders of magnitude smaller than û, v̂. Only two-dimensional disturbances are considered here, so we do not expect
a response in spanwise component. Recall that the optimal response mode is the dominant response to disturbances in
the flow. The response is primarily in and behind the trailing edge of the separation bubble, from x = 40δ to x = 70δ.
Therefore, the separation bubble is receptive to disturbances.

As for the optimal forcing mode, we find that f̂y is much smaller than f̂x , and f̂z is nine orders of magnitude smaller
than f̂x . Therefore, only the streamwise component f̂x of the forcing is shown. The optimal forcing mode reveals that
streamwise body force disturbance is much more important. However, ZNMF actuator produces disturbances mainly
in the wall-normal direction. This result implies that a more effective actuator should instead introduce streamwise
disturbances, which are much more efficient at exciting a response in the separation bubble. The optimal forcing energy
is distributed along the wall, upstream of the separation bubble. Upstream disturbances to the flow travel downstream
and produce a response in the separation bubble. This observation indicates that an actuator should be placed upstream,
as in previous studies [1, 5]. The forcing mode also shows similarity with the optimal disturbances in the Blasius
boundary layer reported in [27]. In [27], the optimal initial condition leading to the largest growth at finite times and the
optimal time-periodic forcing leading to the largest asymptotic response are both considered.

The streamwise optimal forcing alternates between positive and negative values in the upstream region. Recall from
Eq. 4 that the response is approximately proportional to the projection of the forcing in the direction of the optimal
forcing mode φ1. When the forcing is applied in both the positive region and negative region, their responses will be out
of phase, and cancel each other. Typically, the location of a ZNMF actuator (which resembles a local body force) is not
well tuned due to lack of physical insight. The optimal forcing mode suggests that the body force actuator should be
carefully placed in order to avoid cancellation in the response.

C. Local body forcing
The governing equation Eq. (5) is spatially semi-discretized and put into state space form. Then we can derive the

corresponding transfer function. We are mainly interested in local body forcing near the upstream of the wall. Consider
local body forcing in the region (x/δ, y/δ) ∈ Ω, where Ω = [0, 15] × [0, 3]. This can be achieved by choosing b(x) to
be 1 in Ω and 0 elsewhere in Eq. (5).

Similar to global forcing, randomized SVD algorithm is used to compute the leading singular values and singular
vectors of the transfer function. The singular values for the case of ωp = 0.337 is presented in Fig. 8 (a). In addition, the
first three singular values for a range of frequencies ω is shown in Fig. 8 (b). We conclude that rank-one approximation
is valid for a range of frequencies ω. The optimal forcing and response mode corresponding to ωp is illustrated in Fig. 9.
Again the wall-normal forcing mode is much smaller and thus not shown here. Observe that both the response mode and
forcing mode are almost identical to those found by global body forcing.

D. Implications and future work
In this part we will further discuss the implications of input-output analysis. While the preceding analysis provides

insight about where and how to force the flow field, we still need to validate these implications numerically. We will
outline the future work.
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(a) (b)

Fig. 8 Local forcing result. (a) Singular values of the linear operator (transfer function) for kz = 0, ωp = 0.377.
(b) First three singular values of the transfer function for a range of frequency ω around ωp . kz = 0 is fixed.

(a) (b)

Fig. 9 Local forcing result. (a) Streamwise and wall-normal optimal response mode û, v̂. kz = 0, ω = 0.377. (b)
Streamwise optimal forcing mode f̂x .

Experiment Simulation Description

1
S1A streamwise forcing placed upstream near the wall
S1B streamwise forcing placed upstream away from the wall

2
S2A=S1A see S1A

S2B wall-normal forcing applied at the same region as streamwise forcing

3
S3A=S1A see S1A

S3B streamwise forcing with the same shape but different orientation

Table 1 Setup of three control experiments. Each control experiment consists of two numerical simulations.

Based on the discussion in III.B, the optimal forcing mode is concentrated upstream near the wall, and streamwise
forcing is much more important (compared with wall-normal forcing). In addition, the forcing mode consists of patches
alternating between positive and negative values. As a result, in order to get large response, one should pay attention to
this pattern to avoid cancellation effects.

In order to validate these implications, we will do three control experiments. There are two simulations in each. The
first experiment aims to show that forcing should be applied upstream near the wall. The second experiment is designed
to validate that streamwise forcing is more important than wall-normal forcing. The third experiment is intended to
demonstrate the cancellation effect due to the pattern in the forcing mode . Details about these three experiments are
summarized in Table. 1. To better describe the control experiments, we present visualization of the simulation setup in
Fig. 10.
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Fig. 10 (a) Experiment 1: forcing should be concentrated upstream near the wall. (b) Experiment 2: stream-
wise forcing is more important than wall-normal forcing. (c) Experiment 3: there exists cancellation effect

IV. Conclusion
In this study we performed input-output analysis for a separated flow past a flat plate. The body forcing (global or

local) is taken as input, and flow field is taken as output. A transfer function that maps input to output can be derived by
assuming sinusoidal forcing in time. It is validated that the transfer function is indeed approximately rank-one. The
forcing mode corresponds to the maximum amplification in the response provides insight about optimal forcing location
and frequency.

We find that the when the flow is forced at the natural frequency of the separation bubble, the response is maximized
(in terms of energy). The response is mainly in and behind the trailing edge of the separation bubble, demonstrating
the receptivity of the separation bubble to body forcing. Furthermore, the forcing mode indicates the optimal forcing
location is upstream near the wall. In order to get a large response, one should carefully place the forcing in the upstream
region, to avoid cancellation effects.

In future work, we will perform numerical simulation to validate these implications. In particular, we would like to
verify that (a) the optimal forcing should be concentrated upstream near the wall, (b) streamwise is the optimal forcing
direction, and (c) there exists a cancellation effect in the response.
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