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Results from numerical simulations of two-dimensional, shear-thinning Carreau fluid flow over an unconfined circular 

cylinder are presented in this paper. Parametric sweeps are performed over the various Carreau model parameters and 

trends of the time-averaged force coefficients and vortex characteristics are reported. In general, increased shear-

thinning results in lower viscous forces on the body but greater pressure forces, resulting in a complex non-monotonic 

drag response. Lift forces generally increased with shear-thinning due to the dominant pressure contribution. The 

decrease in fluid viscosity also led to shorter vortex formation lengths and the consequent rise in Strouhal frequency 

of vortex shedding. It is expected that these results will be useful for verification of computational models of unsteady 

non-Newtonian flows. 

 

Non-Newtonian fluids are routinely encountered in the form of industrial fluids (e.g. polymer solutions, 

emulsions, molasses, silicone oils) in several arenas such as the food, paper, process engineering [1] and bio-chemical 

industries. Many common biological fluids like honey, blood, synovial fluid, saliva, and semen also belong to this 

class of fluids. Non-Newtonian fluids are characterized by complex constitutive properties, such as shear-dependent 

viscosity, fluid elasticity and the dependence of fluid properties on deformation history. Fluids like blood can be 

characterized as viscous inelastic and are classified as shear-thinning or shear-thickening based on the influence of 

deformation on fluid viscosity. A simple inelastic viscous fluid may be represented as a Generalized Newtonian fluid, 

in which shear-stress has linear proportionality with shear-rate, but the coefficient of proportionality has a non-linear 

dependence on shear-rate. Generalized Newtonian fluids are commonly modeled using the power-law or the Carreau-

Yasuda models [2,3].  

A large body of work involving simulations of flow of power-law fluids over bluff bodies exists. For instance, 

Bell and Surana [4] performed finite-element simulations of power-law flow through 2D ducts, inside square, driven 

cavities and in sudden expansions. Chhabra and colleagues have analyzed steady power-law flow over unconfined [5] 

and confined [6] circular cylinders. Additionally, stability analysis was performed for the wake of the unconfined 

cylinder [7]. The group also modeled unsteady flow over unconfined circular cylinder [8] and heat-transfer in steady 

flow [9]. Finally, data is also available for power-law flow past elliptic [10], square [11] and triangular [12] cylinders.  
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Although a significant corpus of numerical simulations exists for power-law fluids, the model is not suitable 

for applications where distinct upper and lower bounds, with smooth transitions, need to be defined for fluid viscosity. 

Thus, other models like the Casson, Cross and the Carreau-Yasuda models and their variants have recently received 

attention for a variety of applications including, but not limited to, hemodynamic modeling [13,14,15,16], convection 

in porous media [17] and magnetohydrodynamic flows [18]. Despite its increasing popularity, very little canonical 

simulation data is available in literature for Carreau fluids. Coelho and Pinho [19,20,21] performed experiments of 

weak polymer solution flow over circular cylinders, and fitted Carreau-Yasuda model parameters for the fluid 

viscosity response. It is however acknowledged by the authors that the polymer solutions are viscoelastic, and thus 

application of the Carreau-Yasuda model to these fluids is somewhat suspect. Haque et al. [22] studied the effect of 

shear-thinning and shear-thickening Carreau fluids on the transition of flow in a square shear-driven cavity from two- 

to three-dimensional. Lashgari et al. [23] used linear stability theory and direct numerical simulation to determine the 

critical Reynolds number at which the wake of a circular cylinder immersed in Carreau fluid becomes unstable. 

Recently, Pantokratoras [24] simulated steady Carreau flow over a circular cylinder and reported trends of drag 

coefficient variation with changes in model parameters. To the best of our knowledge, computational work on Carreau 

fluid flow past circular cylinders has been limited to steady flows and no work exists which reports data on unsteady 

flow characteristics involving bluff bodies. Such data would be particularly useful for benchmarking codes that 

employ this model. To this end, the present study reports quantitative data for Carreau flow past a circular cylinder. 

Simulations are conducted for a range of Carreau fluid parameters and forces, pressures, vortex shedding frequencies 

and wake parameters are presented.  

In this report, we present results from a set of simulations of Carreau fluid flow with velocity U∞ over an 

unconfined cylinder of diameter D. All simulations were performed using a finite-difference-based, incompressible 

fluid-structure interaction solver, which uses the sharp-interface immersed boundary method of Mittal et al. [25]. The 

method uses a second-order accurate ghost-cell formulation for imposing boundary conditions over Cartesian grids 

and second-order spatial and temporal discretization. The original solver integrates the incompressible Navier-Stokes 

equations in the conservative form (Equations (1) & (2)) using a fractional step method.  

 
𝛻 ∙ 𝒖 = 0 

(1) 
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𝜕𝒖

𝜕𝑡
+ 𝛻 ∙ (𝒖𝒖) = −𝛻𝑝 + 𝛻 ∙ (2𝜇𝑺) (2) 

In the above equations, all symbols have their usual meaning. The fractional step method consists of an advection-

diffusion (AD) step, followed by velocity correction, which enforces the divergence-free constraint via the solution 

of the pressure Poisson equation. In the above equations, S is the symmetric strain-rate tensor, relates to the velocity 

gradient tensor as 𝑺 =
1

2
(𝛻𝒖 + 𝛻𝒖𝑇) and μ is the non-dimensional kinematic viscosity, which for Newtonian fluids is 

a constant. This solver has been modified to solve Carreau fluids by simply replacing the Newtonian viscosity by an 

expression governing a Carreau fluid: 

 𝜇 = 𝜇∞ + (𝜇0 − 𝜇∞)[1 + (𝜆�̇�)2](
𝑛−1

2
)
 (3) 

In equation (3), viscosity at shear-rate �̇� is interpolated between limiting values at zero (μ0) and infinite shear (μ∞) and 

λ determines the shear-rate at which viscosity transitions (as ~�̇�𝑛−1) from the zero-shear viscosity plateau to power-

law-like behavior. For shear-thinning fluids, n < 1. In this report, we perform parametric sweeps over n, λ and μ∞, and 

report values for the Strouhal number of vortex shedding, and the time-averaged drag and the RMS lift coefficients. 

The viscous (Fv) and pressure (FP) forces on the body, per unit depth, are calculated as described in equation (4): 

𝑭𝑉 = ∮ 𝜇(𝛻𝒖 + 𝛻𝒖𝑇) ∙ 𝒏𝑑𝑠, 𝑭𝑃 = ∮ 𝑝𝒏𝑑𝑠  (4) 

The streamwise and cross-stream components of the above forces constitute the drag and lift experienced by the body, 

respectively. In this report, the normalized drag and lift forces are expressed via the respective force coefficients, CD 

and CL, defined in equation (5):  

𝐶𝐷 =
∮[𝜇(𝛻𝒖 + 𝛻𝒖𝑇) ∙ 𝒏 + 𝑝𝒏]𝑥𝑑𝑠,

1
2

𝜌𝑈∞
2 𝐷

 𝐶𝐿 =
∮[𝜇(𝛻𝒖 + 𝛻𝒖𝑇) ∙ 𝒏 + 𝑝𝒏]𝑦𝑑𝑠,

1
2

𝜌𝑈∞
2 𝐷

  
(5) 

For the sake of brevity, trends of pressure and viscous components of force coefficients are not described herein.  

To verify the ability of the present solver to accurately predict critical flow phenomena and other derived 

quantities, we simulated the several cases presented by Lashgari et al. [23]. In the first set of results, we simulated 

flow of shear-thinning Carreau fluid over an unconfined circular cylinder at a subcritical Reynolds number 10 
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(𝑅𝑒 = 𝑈∞𝐷/𝜇0). Setting µ∞ = 0.001µ0 and λ= 10, the power-law index was varied between 0.4 and 1.0. The observed 

steady-state drag coefficients are reported in Table 1, showing agreement to within 5% of published results [23, 24]. 

Additionally, through numerical simulations, we verified the neutral stability curve for the steady cylinder wake, as 

reported by Lashgari et al. [23]. To do this, we simulated the fate of the cylinder wake at ±5% of the reported critical 

Reynolds number for each power-law index with µ∞ = 0.001µ0 and λ= 10. It is expected the subcritical and supercritical 

simulations respectively result in steady and unsteady wakes. Since the Reynolds numbers are very close to the 

corresponding critical values, the simulations need to be run for a long time (tU∞/D ~ 900) before wake instabilities 

may observed. The wake fates are also tabulated in Table 1 which indicate that with increasing shear-thinning tendency 

of the fluid, the critical Reynolds number for the wake instability decreases. This is consistent with the findings of 

Coelho and Pinho [19,20,21]. It further shows an excellent corroboration of the critical Reynolds number, obtained 

using linear stability theory by Lashgari et al. [23]. Particularly, the case of n = 0.4 indicates that the solver can predict 

changes in flow regimes for very small changes in flow Reynolds numbers. This demonstrates the ability of the present 

solver to accurately predict fundamental flow phenomena, in addition to the forces experienced by the body.  

 

Table 1: Results for steady-state drag coefficient at subcritical Re 10 and cylinder wake stability analysis for various values of 

power-law index n. In each set of simulations, µ∞ = 0.001µ0 and λ= 10.0. Comparison with relevant published data [23,24] is 

provided indicating very good agreement in each case. 

For all unsteady results presented herein, the cylinder is placed in a 40D×40D domain, centered at 

(15D,20D), and discretized using a (401×385) non-uniform Cartesian grid. A rectangular region of size 4D×4D 

extending into the wake is provided with high, isotropic resolution (∆x=∆y=D/50). Beyond this region the grid is 

stretched in all directions. Downstream of the cylinder the change in size of consecutive cells constrained to < 3% to 

prevent excessive numerical dissipation of solution. This grid resolution was selected after testing the effect of grid 

n 

Drag coefficient for subcritical Re 10. Wake stability analysis 

CD 

(Present) 

CD  

[23] 

% 

Error 

CD  

[24] 

% 

Error 

Critical 

Re [23] 

Subcritical test Supercritical test 

Re Wake fate Re Wake fate 

0.4 1.19 1.24 4.03 1.22 2.45 20 19 Steady 21 Unsteady 

0.6 1.67 1.71 2.34 1.67 0.00 31 29 Steady 33 Unsteady 

0.8 2.23 2.25 0.89 2.20 1.36 47 45 Steady 49 Unsteady 

1.0 2.89 2.81 2.85 2.75 5.05 77 74 Steady 80 Unsteady 
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refinement on extracted quantities like the drag and lift coefficients and their pressure and viscous components. It was 

observed that halving the grid spacing resulted in a maximum deviation in the derived quantities of < 1%. The 

simulation Reynolds number is defined with respect to the reference zero-shear viscosity (𝑅𝑒0 = 𝑈∞𝐷/𝜇0), the fluid 

relaxation time λ is defined in terms of the Carreau number  (𝐶𝑢 = 𝑈∞𝜆/𝐷), and μ∞ is defined relative to μ0 via the 

non-dimensional parameter 𝑘𝜇 = 𝜇∞/𝜇0. The baseline values for the model parameters are: Re0 = 100, kμ = 0.5, n = 

0.5 and Cu = 1.0. This choice of parameters is based on the desire to keep the maximum local Reynolds number 

(𝑈∞𝐷/𝜇) in the range where the cylinder wake does not develop spanwise instabilities and the flow remains two-

dimensional (< 200). All simulations result in the eventual development of periodic vortex shedding and averages are 

accumulated over at least 80 shedding cycles to ensure statistical convergence.  

 

FIG 1: (a), (c) Vorticity contours at tU∞/D = 800 using n = 1.0 and n = 0.25, respectively. Solid and dashed lines are used to denote 

positive and negative vorticity, respectively. (b) Time varying drag and lift coefficients for the two simulation cases and (d) time-

averaged normalized viscosity contour plot for n = 0.25. 

In the first parameter sweep n is varied from 1.00, the Newtonian limit, to 0.25 in increments of 0.25. As n 

is decreased, the fluid thins more rapidly with shear. FIG 1 (a) and (c) illustrate vorticity contours in the cylinder wake, 

using n = 1.0 (Newtonian) and n = 0.25 (Shear-thinning), respectively at tU∞/D = 800. The two snapshots are taken at 

very similar phases during the vortex shedding cycle and it is observed that the attached wake and shed vortices in the 

shear-thinning case are smaller than those in the Newtonian case. The time-varying drag and lift coefficients in each 

case, during the periodic vortex shedding phase are illustrated in FIG 1 (b). It is observed shear-thinning resulted in a 

decrease in the average drag, but increase in the fluctuating components of both, drag and lift coefficients. Finally, 

FIG 1 (d) shows the time-averaged normalized viscosity contour (μ/μ0) for the n = 0.25 case. Regions of low viscosity 

are concentrated around the stagnation point, the attached boundary layer and the near-wake. On the other hand, 

viscosity appears to be constant in the relatively low-shear regions of the far-wake and free-stream. 



6 

 

FIG 2 (a) shows the variation of time-averaged drag and RMS lift coefficients with shear-thinning index, n. 

It also presents corresponding values reported by Liu et al. [27] for Newtonian flow at Reynolds number 100, with 

agreement to within 3% of those obtained for n = 1.0. As the fluid becomes increasingly shear-thinning, the average 

drag coefficient decreases monotonically, while the fluctuations in drag increase, leading to a general reduction in 

total drag (FIG 1 (b)). The decrease in average drag is attributed almost entirely to a drop in the mean viscous forces 

on the body (which reduces from 0.339 to 0.256), while the mean pressure forces do not show significant changes 

(increased from 1.010 to 1.020). The increase in the fluctuating component of drag and lift coefficients is related to 

smaller vortex formation lengths associated with increasingly shear-thinning fluids. FIG 2 (b) shows trends of Strouhal 

number (𝑆𝑡 = 𝑓𝐷/𝑈∞)  and vortex formation length variations with n, and a comparison with published results for St 

from Roshko [28] and Williamson [29]. Defined by Williamson [29], the vortex formation length is the distance 

downstream from the cylinder axis to a point where the magnitude of the velocity fluctuations is maximized on the 

wake center line. In addition to increasing the fluctuating components, a shorter formation length also results in an 

increase in the vortex shedding frequency, which is observed in the sweep along n; as n is decreased, the Strouhal 

number increases monotonically. The Strouhal number at the Newtonian limit was observed to be 0.167, which agrees 

very well with experimental results of Williamson [29] (St = 0.165) and Roshko [28] (St = 0.167). 

 

FIG 2: Variation of (a) time-averaged drag, RMS lift and (b) Strouhal number and vortex formation length with power-law index, 

n. For comparison, time-averaged drag and RMS lift coefficients from Newtonian simulations (n = 1.00) of and Liu et al. [27] and 

Strouhal number measurements by Roshko [28], and Williamson [29] are provided. In (a) red symbols indicate drag coefficient 

values and green symbols denote RMS lift coefficient values, while in (b) red symbols are used for Strouhal number measurements 

from literature. 

Next, we vary the Carreau number, Cu, keeping all other variables at their baseline values. This parameter determines 

the shear-rate at which viscosity transitions from the zero-shear plateau to the power-law region; larger values of Cu 

result in transition occurring at lower shear-rates and vice-versa. The tested values of Cu are 0.01, 0.10, 1.00 and 10.0. 

FIG 3 (a) and (b) show contour plots of instantaneous vorticity at tU∞/D = 800 and time-averaged normalized viscosity 

for Cu = 10.0, respectively. As observed in the sweep over n, shear-thinning induced by changing Cu also resulted in 



7 

 

early vortex separation from the boundary layer. The normalized viscosity field (FIG 3 (b)), on the other hand, shows 

a different trend, when compared with the corresponding plot for n = 0.25. Regions of low viscosity are observed to 

extend beyond the cylinder boundary layer, nearly twice as far upstream and even into the far wake. A large Cu shifts 

the point of transition from the zero-shear plateau, in the rheological chart for a Carreau fluid, to the left. This increases 

the sensitivity of fluid viscosity to changes in local shear-rate, resulting in more regions of the flow exhibiting shear-

thinning behavior. Similar viscosity distribution was also observed by Lashgari et al. [23], albeit for subcritical flows. 

 

FIG 3: Contour plots of (a) vorticity and (b) time-averaged normalized viscosity for Cu = 10.0. 

As Cu is increased from 0.01 to 1.00, the time-average drag coefficient decreases (FIG 4 (a)), due to lower friction 

drag on the cylinder, with relatively small changes in the surrounding pressure field. However, from Cu = 1.00 to Cu 

= 10.0, the average total drag increases, even though the viscous drag continues to diminish in magnitude. This 

increase is due to a significant rise in pressure forces, resulting from an increase in base suction. The RMS lift 

coefficient (FIG 4 (a)), on the other hand, first exhibits about a 2% drop with increase in Cu from 0.01 to 0.10, then 

increases for the remainder of the range of tested Cu. The inverse trend is observed with the formation length (FIG 4 

(b)), which shows a marginal increase from Cu = 0.01 to 0.1, then a monotonic decrease up to Cu = 10.0. FIG 4 (b) 

shows a monotonic increase in Strouhal number with Cu.  

 

FIG 4: Variation of (a) time-averaged drag, RMS lift coefficients and (b) Strouhal number and vortex formation length versus Cu. 

Finally, the viscosity ratio kμ is varied while keeping other parameters at their baseline values. Beginning with the 

Newtonian case with kμ = 1.0, the viscosity ratio is decreased up to kμ = 0.10. Reducing kμ decreases the lower-limit 

on viscosity, increasing the maximum local Reynolds number in the simulation. While it is acknowledged that kμ = 

0.10 could potentially lead to local Reynolds numbers beyond the range where the cylinder wake remains two-
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dimensional, this range is chosen to demonstrate an appreciable variation in measured quantities and sampling 

sufficiently many values of kμ to illustrate a trend. The resulting vortex street (FIG 5 (a)), unsurprisingly, shows smaller 

vortices and earlier separation, compared to the Newtonian case. The time-averaged normalized viscosity contour 

(FIG 5 (b)) shows similar concentration of low-viscosity regions as the n = 0.25 case, with a lower minimum viscosity 

of about 0.24.  

 

FIG 5: Contour plots of (a) vorticity and (b) time-averaged normalized viscosity for kμ = 0.10. 

The effect of kμ on time-averaged drag and lift coefficients, Strouhal number and vortex formation length is illustrated 

in FIG 6 (a) and (b). The mean drag coefficient decreases with kμ, which is explained by a reduction in friction drag 

and relatively small changes in the pressure drag. The shorter formation lengths also lead to an increase in the 

fluctuating component of the forces, resulting in larger RMS lift with decreasing kμ, and increase in the Strouhal 

frequency (FIG 6 (b)). 

 

FIG 6: Trends of (a) time-averaged drag, RMS lift coefficients and (b) Strouhal number and formation length with kμ. 

In summary, laminar vortex-shedding from an unconfined circular cylinder in shear-thinning Carreau fluids 

is simulated. The effect of varying model parameters on the cylinder wake and the force experienced by it is quantified. 

While the cylinder wake for the tested Carreau parameters resembles that from a Newtonian fluid, and vortex shedding 

remains periodic, the forces experienced by the cylinder show significant sensitivity to model parameters. Shear-

thinning results in a decrease in the shear forces on the cylinder, but an increase in the base suction which can result 

in a complex, non-monotonic relation between fluid shear-thinning tendency and the time-averaged drag. On the other 

hand, the shear contribution to lift on the body is marginal, due to which, the RMS lift experienced by the body 
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generally increases with shear-thinning tendency. In the steady flow regime, shear-thinning results in an increase in 

the recirculation bubble size [23], due to a decrease in shear-stress in the high shear regions adjacent to the recirculation 

bubble. On the contrary, in the unsteady regime, the increase in base suction due to shear-thinning drives the low-

pressure vortices closer to the cylinder. This leads to a shorter and narrower formation region, resulting in a smaller 

attached vortex and formation length. Scaling inversely with the formation length, the Strouhal frequency of vortex 

shedding increases with shear-thinning. The spatial distribution of viscosity appears to be more sensitive to changes 

in the Carreau number as compared to the power-law index or the viscosity ratio. The results obtained in this study 

can serve as benchmark for verification of Carreau flow solvers. 

Acknowledgement 

This work was sponsored by the National Science Foundation (NSF) Grant CBET 1511200. 

References 

1. Chhabra RP and Richardson JF (1999) Non-Newtonian Flow in Process Industries: Fundamentals and Engineering 

Applications; Butterworth-Heinemann, Oxford, UK, ISBN: 0-7506-3770-6. 

2. Carreau PJ (1972) Rheological Equations from Molecular Network Theories. J. Rheol, 16(1):99-127 

3.  Yasuda K (1979) Investigation of the analogies between viscometric and linear viscoelastic properties of 

polystyrene fluids, PhD Thesis, Massachusetts Institute of Technology. 

4.  Bell BC and Surana KS (1994) p-Version Least Squares Finite Element Formulation for Two-Dimensional 

Incompressible, Non-Newtonian Isothermal and non-Isothermal Fluid Flow. Int. J. Numer. Meth. Fluids, 18: 127-162. 

5. Bharti RP, Chhabra RP and Eswaran V (2006) Steady Flow of Power Law Fluids across a Circular Cylinder. Can. 

J. Chem. Eng., 84: 406-421.  

6. Bharti RP, Chhabra RP and Eswaran V (2007) Two-Dimensional Steady Poiseuille Flow of Power-Law Fluids 

Across a Circular Cylinder in a Plane Confined Channel: Wall Effects and Drag Coefficients. Ind. Eng. Chem. Res, 

46: 3820-3840. 

7. Sivakumar P, Bharti RP and Chhabra RP (2006) Effect of power-law index on critical parameters for power-law 

flow across an unconfined circular cylinder. Chem. Eng. Sci., 61:6035-6046. 

8. Patnana VK, Bharti RP and Chhabra RP (2009) Two-dimensional unsteady flow of power-law fluids over a 

cylinder. Chem. Eng. Sci., 64:2978-2999. 

9.  Bharti RP, Chhabra RP and Eswaran V (2007) Steady forced convection heat transfer from a heated circular 

cylinder to power-law fluids. Int. J. Heat Mass Tran 50 (5-6), 977-990. 

10. Sivakumar P, Bharti RP and Chhabra RP (2007) Steady flow of power-law fluids across and unconfined elliptical 

cylinder. Chem. Eng. Sci., 62: 1682-1702. 

11. Dhiman AK, Chhabra RP and Eswaran V (2006) Steady Flow of Power-law Fluids Across a Square Cylinder. 

Chem. Eng. Res. Des. 84:300-310. 



10 

 

12. Prhashanna A, Sahu AK and Chhabra RP (2011) Flow of power-law fluids past an equilateral triangular cylinder: 

Momentum and heat transfer characteristics. Int. J. Therm. Sci., 50: 2027-2041. 

13. Neofytou P and Tsangaris S (2006) Flow effects of blood constitutive equations in 3D models of vascular 

anomalies. Int. J. Numer. Methods Fluids 51:489-510 

14. Jung J, Lyczkowski RW, Panchal CB, Hassanein A (2006) Multiphase hemodynamic simulation of pulsatile flow 

in a coronary artery. J. Biomech. 39:2064-2073. 

15. Hanafizadeh P, Mirkhani N, Davoudi MR, Masouminia M and Sadeghy K (2016) Non-Newtonian blood flow 

simulation of diastolic phase in bileaflet mechanical heart valve implanted in a realistic aortic root containing Coronary 

arteries. Artif. Organs 40:E179-E191. 

16. Boyd J, Buick JM and Green S (2007) Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models 

in steady and oscillatory flows using the lattice Boltzmann method. Physics of Fluids 19 (093103) 2007; 

https://doi.org/10.1063/1.2772250 

17. Khechiba K, Mamou M, Hachemi M, Delenda N and Rebhi R (2017) Effect of Carreau-Yasuda rheological 

parameters on subcritical Lapwood convection in horizontal porous cavity saturated by shear-thinning fluid. Physics 

of Fluids 29, 063101 (2017); https://doi.org/10.1063/1.4986794 

18. Kefayati GHR and Tang H (2018) MHD thermosolutal natural convection and entropy generation of Carreau fluid 

in a heated enclosure with two inner circular cold cylinders, using LBM. Int. J. Heat Mass Transfer. 126 (2018) 508–

530. 

19. Coelho PM and Pinho FT (2003) Vortex shedding in cylinder flow of shear-thinning fluids I. Identification and 

demarcation of flow regimes. J. Non-Newtonian Fluid. Mech., 110:143-176. 

20. Coelho PM and Pinho FT (2003) Vortex shedding in cylinder flow of shear-thinning fluids II. Flow characteristics. 

J. Non-Newtonian Fluid. Mech., 110:177-193. 

21.  Coelho PM and Pinho FT (2003) Vortex shedding in cylinder flow of shear-thinning fluids III. Pressure 

measurements. J. Non-Newtonian Fluid. Mech., 121:55-68. 

22. Haque S, Lashgari I, Giannetti F and Brandt L (2012) Stability of fluids with shear-dependent viscosity in the lid-

driven cavity. J. Non-Newtonian Fluid. Mech., 173-174:49-61. 

23. Lashgari I, Pralits JO, Giannetti F and Brandt L (2012) First instability of the flow of shear-thinning and shear-

thickening fluids past a circular cylinder. J. Fluid. Mech., 701:201-227. 

24.  Pantokratoras A (2016) Steady flow of a non-Newtonian Carreau fluid across an unconfined circular cylinder. 

Meccanica, 51:1007-1016. 

25. Mittal R, Dong H, Bozkurttas M, Najjar FM, Vargas A and von Loebbecke A (2008) A versatile sharp interface 

immersed boundary method for incompressible flows with complex boundaries. J. Comp. Phys., 227:4825-4852. 

26. Kim J, Kim D and Choi H (2001) An immersed boundary finite volume method for simulations of flow in complex 

geometries. J. Comp. Phys., 207:457-492. 

27. Liu C, Sheng X and Sung CH (1998) Preconditioned multigrid methods for unsteady incompressible flows. J. 

Comp. Phys., 139:35-57. 

28. Roshko A (1953) On the development of turbulent wakes from vortex streets. NACA TN-2913. 

29. Williamson CHK (1996) Vortex Dynamics in the Cylinder Wake. Annu. Rev. Fluid. Mech., 28:477-539. 

 

https://doi.org/10.1063/1.2772250
https://doi.org/10.1063/1.2772250
https://doi.org/10.1063/1.4986794
https://doi.org/10.1063/1.4986794

