
Journal Article (2019)

Contents lists available at ScienceDirect

Journal Article

journal homepage: www.elsevier.com/locate/jcp

A Graph-Partitioned Sharp-Interface Immersed Boundary Solver for Efficient

Solution of Internal Flows

Chi Zhua, Jung-Hee Seoa, Rajat Mittala,∗

aDepartment of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States

A R T I C L E I N F O

Article history:

A B S T R A C T

In this Short Note, a graph-partitioning framework for a sharp-interface im-
mersed boundary method is proposed so as to increase its computational ef-
ficiency for simulating internal flows on large-scale parallel computers. Im-
mersed boundary methods are generally inefficient for internal flows with
complex geometries due to the larger proportion of grid points that fall out-
side the fluid domain for such configurations. The graph-partitioning frame-
work proposed here enables the solver to effectively ignore these points and
focus the computation on the active points inside the fluid domain. A novel
coarsening-partitioning process is proposed to ensure that sufficient overlap-
ping layers are available at the sub-domain interfaces to accommodate compu-
tational stencils associated with the discretization as well as the sharp-interface
boundary conditions. The benchmark test shows that the adoption of the graph
topology reduces the computational cost (wall-time and memory cost) sub-
stantially. Moreover, the computational cost is shown to only scale with the
number of computationally active grid points. The capability of the graph-
partitioned solver is further demonstrated by simulating the flow inside an
arterial network, a configuration which would otherwise be out of reach for
most immersed boundary methods.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Immersed boundary (IB) methods enable simulations of flow past bodies with complex shapes as well as mov-
ing/deforming bodies on stationary Cartesian grids. IB methods avoid the computational cost and complexities asso-
ciated with the use of body-conformal grids, which can be particularly severe for boundaries that are moving and/or
deforming [1]. Moreover, IB method solvers can be parallelized relatively easily by employing a Cartesian domain
decomposition topology [2].

While the above features of IB methods have made them popular for simulations of external flows, their application
to internal flows leads to some problems. Internal flow with geometrically complex boundaries are encountered in

∗Corresponding author: E-mail address: mittal@jhu.edu (R. Mittal).

Chi$Zhu,$Jung+Hee$Seo,$Rajat$Mi5al,
A$graph+par::oned$sharp+interface$immersed$boundary$solver$for$efficient$solu:onofinternal$flows,
JournalofComputa:onal$Physics,$Volume$386,$2019,$Pages$37+46,$ISSN$0021+9991,
h5ps://doi.org/10.1016/j.jcp.2019.01.038.

2 Chi Zhu etal / Journal Article (2019)

Fig. 1: Schematic of the computation domain for a patient-specific coronary artery network. Every seventh grid point in each direction is plotted
here.

a variety of application areas, including but not limited to, physiology (e.g. blood flow in arteries and airflow in
bronchial networks), chemical engineering (e.g. micromixing, bioreactors) and other configurations involving flow
in curved or branching pipes and channels. IB simulations typically employ a single rectangular (or cuboidal in 3D)
domain with a boundary non-conformal Cartesian grid covering this domain. A consequence of this is that only a
subset of the total points of the grid lie in the fluid domain, while the rest fall outside in what we refer to here as the
‘solid’ domain. These grid points within the solid are in-principle associated with wasted computational cost. For
external flows, the volume of the solid body is generally much smaller than the volume occupied by the flow and
therefore, the proportion of these wasted solid points is small. In contrast, for internal flows, the points within the
solid might account for a very large fraction (sometimes even the majority) of the total grid points, and represent
a significant source of computational inefficiency for an IB method based solution. For example, consider the flow
through the arterial network shown in Fig. 1, which is based on the computed tomography (CT) scan of a patient [3].
A uniform, isotropic grid with 650 × 410 × 468 (i.e. about 125 million) points provides sufficient resolution (roughly
20× 20 points across the narrowest branch) to resolve the details of the flow in the smallest artery of the network, but
this leads to 98.22% of the total points being in the solid.

For diffuse interface methods [4], there is no particular distinction between the fluid and solid points since the
same governing flow equations are solved for all the points in the computational domain, and a suitably localized
body force is used to represent the effect of the solid on the fluid. Thus, for diffuse interface methods there is no
simple way to reduce the collateral expense associated with these solid points, and the simulation of a flow such as
in Fig. 1 would not be feasible using these methods without using strategies such as local-grid refinement [5]. On
the other hand, for sharp-interface immersed boundary methods [6], except for, in some cases, a thin layer of points
immediately adjacent to the solid boundary, the grid points within the solid are ‘inactive’ in that they have no bearing
on the computed flow field. Thus, there is a possibility of designing algorithms that reduce or eliminate the overhead
cost associated with these inactive points and make simulations such as those in Fig. 1 tractable using IB methods.

Most sharp-interface IB method solvers impose a trivial equation at these inactive points (such as
(

u⃗, p
)

= (0, 0))
and assemble this equation with the flow equations for the fluid points into one large sparse system of coupled equa-
tions for the entire set of grid points. While these inactive grid points do not affect the computed flow field, they
do have a significant impact on the solution procedure and the computational cost. This is firstly because the sparse
matrix solvers usually carry out the same operations for the grid points inside the solid as they do for points within the
fluid region. Thus, the inactive solid points have a non-trivial contribution to the total floating-point operation (FLOP)
count as well as the memory requirement whether the solver is serial or parallel. The situation further deteriorates
when parallelization is taken into consideration. A Cartesian domain decomposition strategy is the obvious choice
for parallelization (see Fig. 2(a)). However, even though each Cartesian sub-domain/process superficially contains
nearly equal number of grid points, the number of active grid points (effective load) can vary significantly depending
on the sub-domain topology and the geometry of the immersed body. For complicated geometries, there might be
cases where many sub-domains consist entirely of inactive grid points leading to large imbalance of the effective load.

Chi Zhu etal / Journal Article (2019) 3

(a)
(b)

No. of Active Points ×105
0 0.5 1 1.5 2

N
o.

of
S
u
b
-d
om

ai
n
s

0

20

40

60

80

Grid: 650× 410× 468
Total active points: 2214453
Domain decomp.: 12× 8
Percent imbalance: 675%

(c)

No. of Active Points ×104
0 2 4 6 8

N
o.

of
S
u
b
-d
om

ai
n
s

0

50

100

150

200

250

300

Grid: 650× 410× 468
Total active points: 2214453
Domain decomp.: 24× 16
Percent imbalance: 1032%

(d)

No. of Active Points ×105
0 2 4 6

N
o.

of
S
u
b
-d
om

ai
n
s

0

20

40

60

80

Grid: 960× 616× 700
Total active points: 7129872
Domain decomp.: 12× 8
Percent imbalance: 688%

Fig. 2: (a) Example of a 2 × 2 (x direction × y direction) 2D domain decomposition using Cartesian topology. The gray planes depict the boundary
of the parallel sub-domains; the active grid points in each sub-domain is shown in different colors. (b) Number density of active grid points in
96 sub-domains. (c) Number density of active grid points in 384 sub-domains. (d) Number density of active grid points in 96 sub-domains with
increased grid resolution.

In order to further examine this issue, we consider again the arterial network geometry in Fig. 2(a). The 125
million point grid is decomposed into 96 (12 × 8) Cartesian domains with equal number of total grid points, but
this results in a wide distribution of active grid points per domain (see Fig. 2(b)). As a matter of fact, 47 of the 96
sub-domains (i.e. 49%) do not contain any active grid points at all. We quantify the load imbalance by the parameter
λ = (Lmax/L − 1) × 100%, where Lmax and L are the maximum and mean load across the processes[7]. In the current
context, the true computational load for each process is assumed to be proportional to the number of active grid points
in this process. For the Cartesian decomposition in Fig. 2(b), the percent imbalance is 675%, indicating severe load
imbalance. Moreover, as shown in Fig. 2(c), increasing the number of sub-domains to 384 (24 × 16) makes the
problem worse, with 251 sub-domains (i.e. 65%) now containing no active grid points and λ = 1032%. This issue is
also not alleviated by increasing the grid resolution as shown in Fig. 2(d). Lastly, even in many of the domains that
contain active points, a significant proportion of boundary communication between adjacent sub-domains involves
‘useless’ communication to and from inactive points, thereby further increasing the computational overhead.

Users of IB methods are aware of this problem and have come up with various strategies to circumvent this
issue. Frankel and colleagues [8] developed a multiblock method and applied it to the flow inside a thoracic aortic
aneurysm. Instead of using a single computational domain to cover the whole geometry, they employed a large
number of smaller domains (blocks) to follow the overall shape of the geometry more closely. Each block was
discretized using a uniform Cartesian mesh with the same resolution. However, the block sizes and locations had to
be determined manually, although in Ref. [9], this process has been automated. Also, the number of inactive grid
points is significantly reduced only when a relatively large number of blocks are used. For instance, Ref. [9] found
it difficult to obtain high grid usage efficiency in a patient-specific cavopulmonary connection and the grid usage was
only 40% when 1400 sub-domains were used. In a different approach, Zelicourt et al [10] discarded all of the inactive
grid points by re-indexing the active grid points into a one-dimensional array, essentially converting the Cartesian
mesh into an unstructured mesh. The advantage of this strategy was successfully demonstrated in a single processor

4 Chi Zhu etal / Journal Article (2019)

Fig. 3: Two dimensional schematic illustrating the ghost-cell method adopted in the current sharp-interface immersed boundary method.

implementation. However, this approach requires significant modification of any existing solver and furthermore, an
efficient framework is still required to implement this method on large-scale parallel computing systems.

In this paper, we present an easy-to-implement, graph-partitioning approach for sharp-interface IB methods
that can solve internal flow problems with complex geometries more efficiently on large-scale parallel computers.
Compared with other methods, this method still operates on a single-domain Cartesian mesh and employs a well-
established open-source tool to partition the active grid points for effective load balancing. Moreover, an effective
precoarsening process is proposed to ensure that sufficient overlapping layers are available at the sub-domain inter-
faces to implement the discretization. The effectiveness of the method is demonstrated by simulating a small set of
cases.

2. Methodology

The current approach can be viewed as a parallel framework to efficiently handle the underlying data structure for
certain genre of immersed boundary methods. The proposed method is implemented with the ghost-cell method based
sharp-interface immersed boundary method (ViCar3D) developed by Mittal et al. [6, 11], wherein the flow is governed
by the incompressible Navier-Stokes equations. Though the solver is applied to 3D problems, the description in this
section is mostly for a 2D configuration. Fig. 3 is an illustration of the procedure used in ViCar3D to implement
the boundary conditions on the immersed boundary. First, all the grid points are separated into solid points and fluid
points based on their location relative to the immersed boundary. Second, the ghost cells, which are points in the solid
that have at least one neighbor in the fluid, are identified. Then, a normal probe is extended from the ghost cell into
the fluid region, and an image point is defined such that the boundary intercept is the midpoint of the probe. Finally,
a bilinear (or trilinear in 3D) interpolation is performed in the shaded area to obtain the value at the image point, and
the boundary conditions are applied along the probe.

The key to solving internal flow problems more efficiently is to operate only on the active grid points, which, in
the aforementioned sharp-interface IB method, are composed of the fluid points and the ghost points. The distribution
of the active grid points closely shadows the shape of the immersed boundary, which may be highly irregular. To
handle these irregular geometries, graph-partitioning with the open-source software package METIS [12] is adopted.
METIS is widely used in the finite-element modeling community and is designed to deal with unstructured grids. It
takes as input a graph constructed from the grid points and puts out partitions of these grid points that can be used
in parallel computations. These partitions can be optimized to be well-balanced in total volume and have minimal
communication interfaces. However, implementation of graph-partitioning within the context of the sharp-interface
IB method requires some additional considerations, and these are described here.

The basic elements of a graph are the vertices and the edges. In this case, the vertices are the set of active points
(i.e., the fluid and ghost points) while the edges represent connectivities between these active points. The existence
of an edge between two vertices implies a coupling between these vertices. For a Cartesian mesh, the most common
coupling is caused by the discretization of the derivatives. For instance, a second-order central scheme for the second
derivatives in a two-dimensional grid couples the grid point with its neighbors along two axial directions. However,
due to the ghost-cell method depicted in Fig. 3, the coupling can also occur along the diagonal directions. In order

Chi Zhu etal / Journal Article (2019) 5

(a) (b)

Fig. 4: Vertex (solid circle) and the edges (dash lines) it forms with its neighbors (circles). (a) Inside the fluid region; (b) near the immersed
boundary.

(a) (b)

Fig. 5: (a) A zoom-in view at the interface between two partitions. Only two partitions are shown here and all the grid points are active grid
points. The grid points inside the dash line are the first sub-domain overlapping layer of partition 2 from partition 1, and the grid points inside the
dot line are the first sub-domain overlapping layer of partition 1 from partition 2. (b) Illustration of the coarsening-partitioning process when two
sub-domain overlapping layers are required.

to apply the ghost-cell method correctly, the coupling (or edges) along the diagonal direction should also be included
when present (see Fig. 4).

Once the graph constructed from the active grid points is supplied, METIS generates a map where each vertex is
assigned a partition number. Fig. 5(a) shows an example of partition in 2D. Active grid points with the same partition
number are grouped into one sub-domain, which is assigned to one MPI process. Layers of vertices that overlap
adjacent partitions are usually required to ensure the accuracy and smoothness of the solution at the sub-domain
interface. As shown in Fig. 5(a), a one-layer overlap between sub-domains is always well-defined via comparison
of partition numbers of two edge-sharing vertices. However, multi-layer overlaps are required for reasons such as
larger spatial discretization stencils [13], ghost-cell discretization when the grid cells near the interface have large
aspect ratios, and cell merging in cut-cell type methods [14, 11], but these may not always be correctly defined in the
current situation. For example in Fig. 5(a), a two-cell thick sub-domain overlapping layers would be ill-defined for
the highlighted point in partition-2, since a second overlap layer for this point would intrude back into partition-2.
Although such points constitute a very small proportion of the total number of interface points, they lead to large
numerical errors and even numerical instability, if not treated properly. More complicated situations will arise in
3D problems or when the number of required overlapping layers increases, and this significantly complicates the
implementation process.

To solve this problem, we have devised a coarsening process which is carried out before the partitioning step.
Assuming that sub-domain overlapping layers of thickness Nol are required, the original grid is first coarsened by a
factor of Nol in each direction; Fig. 5(b) shows an example of coarsening in 2D for Nol = 2. Following this, the graph-

6 Chi Zhu etal / Journal Article (2019)

Fig. 6: An example of a Cartesian bounding box enclosing the partition and one sub-domain overlapping layer. The red solid circles represent the
active points in the current partition, and the black circles are the active grid points from surrounding partitions.

partitioning is carried out on the coarsened mesh and the resulting partitioning is then simply applied to the original
(uncoarsened) mesh. By following this procedure, ill-defined situations such as in Fig. 5(a) can be avoided, and well-
defined and consistent sub-domain overlapping layers with sufficient thickness are guaranteed for all interface points.
The grid points inside the sub-domain overlapping layers are assembled into a vector, which is then communicated to
the neighboring partitions.

The graph partitioning leads to complex shaped sub-domains, and the usual practice is to employ an unstructured
grid topology to address the point inside the sub-domain [15]. In the current graph-partitioned solver we avoid
the complexities arising from this by retaining a structured (i.e. (i, j, k)) topology for each sub-domain. This is
accomplished by defining a Cartesian bounding box that encloses each partition and its sub-domain overlapping layers
(see Fig. 6 for example). The following pseudo code shows how the Cartesian bounding box is implemented with
the graph topology. Here, (nx, ny, nz) is the size of the Cartesian bounding box. Two benefits are provided through

1: for i = 1 to nx do

2: for j = 1 to ny do
3: for k = 1 to nz do

4: if point (i, j, k) does not belong to current partition then
5: Skip
6: else

7: Computation on point (i, j, k)
8: end if

9: end for

10: end for
11: end for

this practice: first, matrix type data structure provides faster data access than the vector type in calculating multi-
direction derivatives. Second, for legacy IB method solvers that employ Cartesian parallel topology, this practice
greatly simplifies the transition from Cartesian to graph topology. However, these benefits come at the price of some
extra memory usage, since ‘dummy’ points have to be added to fill the locations in the Cartesian bounding box that
are not occupied by the active points associated with this sub-domain. Fortunately, METIS usually provides very high
quality, compact partitions, and the extra memory usage is quite manageable in practice. Furthermore, since these
dummy points carry no useful information, no computational operations are carried out for them.

It is noted that the adoption of Cartesian bounding box makes the current method very similar to the multiblock
method developed by Frankel and colleagues [8, 9]. But there are several noteworthy differences. First, due to the
irregular shape of the partitions generated by METIS in our approach, the sizes of the Cartesian bounding boxes would
vary. Also, these boxes could partially overlap with their neighbors. Second, each block in the method developed
by Frankel and colleagues [8, 9] behaves as a single Cartesian domain, which means computations are carried out
on all grid points (active and inactive) in the block and data on the entire face are passed to neighbors of the block

Chi Zhu etal / Journal Article (2019) 7

(a) (b)

Fig. 7: (a) Schematics and dimensions of the baseline configuration of the wavy channel. (b) Schematics of the computational domain of the wavy
channel rotated by 5◦ and 10◦.

for parallel computing. Consequently, their method only achieves high grid usage efficiency when a large number
of blocks are employed[9]. On the other hand, the current method remains efficient even when a small number of
partitions are used, since the computation and communication are focused only on the active grid points.

In ViCar3D, the Navier-Stokes equation is solved by the fractional step method [16]. The advection-diffusion
equation is solved with a point successive-over-relaxation (SOR) method, and the pressure Poisson equation is solved
with a biconjugate gradient stabilized method (BiCGSTAB) that is tailored for the current ghost-cell method [17].

Though the proposed method is implemented in the sharp-interface IB method developed by Mittal et al. [6], it is
worth emphasizing that it can be effectively applied in any flavor of IB method that has a separation between the solid
and fluid points. The definition of the active grid points would vary depending on how the boundary conditions at the
immersed boundary are enforced. Moreover, due to the irregular shape of the partitions, solvers designed for general
sparse matrix systems (e.g. BiCGSTAB, GMRES) should be adopted. Other than this, the proposed method should
require very limited modification of the solution procedure and code structure for any existing IB method solver.

3. Benchmark Test

The accuracy and versatility of the original sharp-interface IB method have been demonstrated previously in
[6, 11]. In this section, we focus on the performance benefits the proposed framework provide for internal flow
problems. The first test is flow through a wavy channel, the baseline geometry and dimensions of which are illustrated
in Fig. 7(a). The wavy wall has a sinusoidal profile (y = A cos (2πx/λ)) with wavelength λ = 2H and amplitude
A = 0.5H. The top and bottom walls have no phase shift and are separated to form a channel with height H.
The channel size is half wavelength in the spanwise and five wavelengths in the streamwise direction. A uniform
steady inflow V0 is prescribed at the inlet, and a Neumann boundary condition is applied at the outlet. No slip and no
penetration boundary condition is prescribed in the spanwise direction and on the top and bottom walls. The Reynolds
number based on the channel height H and inlet velocity V0 is 400, and this Reynolds number leads to a complex,
fully three-dimensional unsteady flow inside the channel. This type of channel is a good test for the current method
since it naturally introduces large regions with inactive points. In addition, to further demonstrate the efficiency of
the current solver in handling even larger proportion of inactive points, the entire channel is rotated with angle θ to
introduce even more inactive points while maintaining the fluid volume and appropriate inflow velocity condition. As
shown in Fig. 7(b), two additional cases with θ equals 5◦ and 10◦ are simulated. Cartesian meshes with the same
resolution are used to solve these three flows and the time-step for all the cases are 0.001H/V0. Thus, we generate
a range of cases where the fluid domain and the flow field are almost the same but the sub-domain topology and the
number of inactive points are quite different. Hence, these latter two factors are the only ones that can affect the
comparative computational performance for these cases.

Further details about the simulations are listed in Table 1, where Nx, Ny and Nz represent the number of grid
points in x, y and z direction, respectively. These three channels are solved using grids with the same resolution. It
is apparent that as the angle increases, the total number of grid points as well as the number of inactive grid points

8 Chi Zhu etal / Journal Article (2019)

Table 1: Summary of the simulation and performance details for carrying out 10,000 time-steps for the different wavy channel configurations.

θ (Nx,Ny,Nz) Total Grid
Points

Active Grid
Points
(Proportion of
Total Grid Points)

Wall Time
Per Active
Grid Point
(seconds)

Communica-
tion Cost

Total
Allocated
Memory
(GB)

Percent
Imbalance
(λ)

0◦ (640, 128, 80) 6,553,600 3,094,080 (47%) 2.61E-2 1.42% 252 6%

5◦ (638, 176, 80) 8,983,040 3,084,560 (34%) 2.54E-2 1.48% 252 6%

10◦ (630, 232, 80) 11,692,800 3,088,400 (26%) 2.56E-2 1.45% 252 6%

10◦∗ (630, 232, 80) 11,692,800 3,088,400 (26%) 4.86E-2 8.28% 342 289%
∗Cartesian parallel topology with 36 × 8 = 288 decomposition along x and y direction

(a) (b)

(c)

(d)

Fig. 8: Compute flow on the spanwise center-plane of the channel using the graph parallel topology. (a) Velocity magnitude based on the mean
flow and (b) fluctuation kinetic energy (FKE) for θ = 0◦ channel. (c) Velocity magnitude based on the mean flow for the θ = 5◦ channel. (d)
Velocity magnitude based on the mean flow for θ = 10◦.

increase rapidly, but the number of active grid points is nearly the same. The active grid points are partitioned into
288 sub-domains using METIS, and the simulations are carried out on TACC-Stampede2 with 288 Intel®Skylake
Cores. The flow generated in these channels is transitional in nature, and all results shown here are accumulated over
10,000 time steps after the simulations become statistically stationary. Fig. 8(a,b) plot the velocity magnitude and the
fluctuation kinetic energy at the center plane of the baseline case. The complex, unsteady nature of the flow ensures
that the solver performs non-trivial computations at each time-step, thereby making this comparison a reasonable test
of the solver efficiency. Fig. 8(c,d) plot the flow field for θ = 5◦ and 10◦. As can be seen here, the flow physics are
very similar among the three cases and the flow field should therefore not be a factor in the performance comparison.

It is clear in Table 1 that the wall time per active grid point is quite similar among the first three cases, with the
maximum difference being lower than 3% of the baseline case. This is a direct indicator that the inactive grid points
have negligible effect on the speed of the simulation, indicating that they are effectively ‘invisible’ to the solver. The
communication cost, which is measured as the percentage of total wall time that is spent on pure MPI communication
(send/receive operations), is also maintained around 1.45% for all three cases. Moreover, the memory usage monitored
through Intel®Vtune™Amplifier also shows negligible differences between the various cases that employ the graph
partitioning. This further demonstrates that the solver is very efficient in ignoring the inactive grid points. The load
is also well balanced when graph topology is adopted, with only 6% imbalance for all three cases. Also included
in the table is the solver performance of the 10◦ case with the original Cartesian domain decomposition. It is seen
that the allocated memory for this case goes up by 35% compared to the baseline case. It is noted that the memory
consumption for the last two cases does not scale with the ratio of the active to total grid points. The reasons for this
are that firstly, each processor stores a copy of the surface mesh that represents the immersed body, and secondly, there
are some variables that are stored even for the ‘dummy’ points inside each Cartesian bounding box. It is also noted

Chi Zhu etal / Journal Article (2019) 9

(a)
(b)

No. of Active Points ×104
1.8 2 2.2 2.4 2.6

N
o.

of
S
u
b
-d
om

ai
n
s

0

5

10

15

20

Percent imbalance: 10%

(c)

No. of Active Points
5000 5500 6000 6500

N
o.

of
S
u
b
-d
om

ai
n
s

0

10

20

30

40

50

60
Percent imbalance: 11%

(d)

No. of Active Points ×104
6 6.5 7 7.5 8

N
o.

of
S
u
b
-d
om

ai
n
s

0

5

10

15

20
Percent imbalance: 6%

Fig. 9: (a) Results of the graph partitioning for the coronary arteries with 96 partitions and 2 sub-domain overlapping layers. (b) Number density
of active grid points in 96 sub-domains. (c) Number density of active grid points in 384 sub-domains. (d) Number density of active grid points in
96 sub-domains with increased grid resolution. The grid resolution, number of active points and number of domains in (b-d) are the same as those
in Fig. 2(b-d).

that the wall time per active grid point goes up by 86%, and the communication cost increases by 984%. The percent
imbalance of the Cartesian topology is as high as 289%, representing a highly imbalanced computing load. Thus,
even for this relatively simple, nominally 2D internal flow case, the current method provides significant advantages.

It is worth noting that the graph partitioning here is performed as a pre-processing procedure, and the partition
information is supplied to flow solver as an input. Hence, the computational cost of the graph partitioning procedure
is not factored into the overall computational cost. The partitioning process is however very fast, and the wall time
required for partitioning this specific problem is equivalent to O(100) time-steps for the flow solver.

4. Flow through an Arterial Network

One of the major applications for the upgraded solver is the modeling of cardiovascular flows. Fig 1 shows a
section of the coronary artery reconstructed from the computed tomography (CT) scan of a patient[3]. This arterial
network shows several small arteries branching from the same primary vessel. As noted earlier, such a geometry is
virtually out of reach for all immersed boundary type methods and here, we use this configuration to demonstrate the
feasibility of simulating such flows with the current graph-partitioned immersed boundary method.

In the current simulation, a constant pressure drop of 3mmHg (399.97Pa) is prescribed between the inlet and all
the outlets. This is within the range of physiological conditions for the coronary artery and results in a Reynolds
number of about 450 for the largest artery [3]. In order to provide reasonable resolution of the flow in the smallest
arteries of this network (approximately 20×20 grid across the cross-section of the smallest artery), the computational
domain is discretized by 650, 410 and 468 grid points in x, y and z directions, respectively. This leads to around 125
million grid points in total, which make this problem very challenging for typical IB methods that employ Cartesian
parallel topology. However, only around 2.2 million (or 1.78%) of the total grid points here are active, making this an
excellent case to apply the proposed methodology.

10 Chi Zhu etal / Journal Article (2019)

(a)
(b)

Fig. 10: (a) Wall pressure distribution; (b) velocity magnitude in the slice shown in (a).

Following the procedure described earlier, 96 partitions are created and 23,067 grid points are assigned to each
partition on average (see Fig. 9(a)). From Fig. 9(b), it can be noted that the load is reasonably well-balanced among
sub-domains with λ = 10%. Moreover, compared to the Cartesian topology shown in Fig. 2(c,d), the load balance is
well maintained with either increased number of partitions or increased grid resolution as demonstrated in Fig. 9(c,d).
During the simulation, an adaptive time-step is used to maintain a maximum CFL number of 0.75 while reducing
the wall time needed to reach stationary state (which requires about 2500 time-steps). Fig. 10(a) shows the wall
pressure distribution and a monotonic pressure drop is observed from the inlet to the outlet. The distribution of total
velocity on the cross-section of all branches is plotted in Fig. 10(b), and we note that there are a number of small-scale
features and sharp gradients in the contours of the narrowest branches, confirming the need for the relatively high grid
resolution employed here.

5. Conclusions

A graph-partitioning framework for efficient simulation of internal flow problems with a sharp-interface IB method
on parallel computers is presented in this Short Note. The solver is subjected to a carefully designed benchmark test,
which clearly shows that the computational cost, including wall-time and memory usage, only scales with the number
of active grid points. The effectiveness of the method is also demonstrated by successfully simulating flow in a
network of branching arteries on a Cartesian grid that has a total of O(108) points. This mesh size would effectively
be out of reach of most immersed boundary methods, but the proposed method can reduce the computation effectively
to the O(106) active grid points, which is considerably more manageable.

Acknowledgments

The authors acknowledge support from NSF Grants IIS-1344772 and CBET-1511200, AFOSR Grant FA9550-
16-1-0404, and computational resource by XSEDE TACC-Stampede through NSF Grant TG-CTS100002. The first
author would like to thank Drs. Kourosh Shoele and Vijay Vedula for their valuable suggestions.

References

[1] R. Mittal, G. Iaccarino, Immersed Boundary Methods, Annual Review of Fluid Mechanics 37 (2005) 239–261.
[2] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing Interface, The MIT Press, 2014.
[3] P. Eslami, J. H. Seo, A. A. Rahsepar, R. George, A. C. Lardo, R. Mittal, Computational Study of Computed Tomography Contrast Gradients

in Models of Stenosed Coronary Arteries, Journal of Biomechanical Engineering 137 (2015) 091002.
[4] C. Peskin, Flow patterns around heart valves: a numerical method, Journal of Computational Physics 271 (1972) 252–271.
[5] B. E. Griffith, R. D. Hornung, D. M. McQueen, C. S. Peskin, An adaptive, formally second order accurate version of the immersed boundary

method, Journal of Computational Physics 223 (2007) 10–49.
[6] R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, A. von Loebbecke, A versatile sharp interface immersed boundary method for

incompressible flows with complex boundaries, Journal of Computational Physics 227 (2008) 4825–4852.

Chi Zhu etal / Journal Article (2019) 11

[7] O. Pearce, T. Gamblin, B. R. De Supinski, M. Schulz, N. M. Amato, Quantifying the effectiveness of load balance algorithms, in: Proceedings
of the 26th ACM international conference on Supercomputing, ACM, 2012, pp. 185–194.

[8] K. Anupindi, Y. Delorme, D. A. Shetty, S. H. Frankel, A novel multiblock immersed boundary method for large eddy simulation of complex
arterial hemodynamics, Journal of Computational Physics 254 (2013) 200–218.

[9] Y. T. Delorme, M. D. Rodefeld, S. H. Frankel, Multiblock high order large eddy simulation of powered fontan hemodynamics: Towards
computational surgery, Computers & Fluids 143 (2017) 16 – 31.

[10] D. de Zélicourt, L. Ge, C. Wang, F. Sotiropoulos, A. Gilmanov, A. Yoganathan, Flow simulations in arbitrarily complex cardiovascular
anatomies - An unstructured Cartesian grid approach, Computers and Fluids 38 (2009) 1749–1762.

[11] J. H. Seo, R. Mittal, A Sharp-Interface Immersed Boundary Method with Improved Mass Conservation and Reduced Spurious Pressure
Oscillations., Journal of Computational Physics 230 (2011) 7347–7363.

[12] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM Journal on Scientific Computing
20 (1998) 359–392.

[13] C. K. Tam, J. C. Webb, Dispersion-relation-preserving finite difference schemes for computational acoustics, Journal of Computational
Physics 107 (1993) 262 – 281.

[14] T. Ye, R. Mittal, H. Udaykumar, W. Shyy, An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed
Boundaries, Journal of Computational Physics 156 (1999) 209–240.

[15] I. M. Smith, D. V. Griffiths, L. Margetts, Programming the finite element method, John Wiley & Sons, 2013.
[16] Y. Zang, R. L. Street, J. R. Koseff, A Non-staggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier-Stokes

Equations in Curvilinear Coordinates 114 (1994) 18–33.
[17] C. Zhu, J. H. Seo, V. Vedula, R. Mittal, A highly scalable sharp-interface immersed boundary method for large-scale parallel computers, in:

23rd AIAA Computational Fluid Dynamics Conference, 2017, p. 3622.

