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This paper reports on simulations of flow-induced aeroeleastic pitching of an airfoil. 
Incompressible, viscous flow over a modified NACA0015 airfoil is coupled with a two degree-
of-freedom model of an elastically supported airfoil and we examine the reponse as a function 
of spring stiffness, equilibrium angle-of-attack, as well as location of the elastic axis. We also 
highlight some features of the associated flow and vortex wake patterns. Finally, we report on  
the application of a novel force partitioning method that enables us to dissect the contribution 
of the various vortices and other mechanisms on the aerodynamic forces experienced by the 
fluttering airfoil. 

I. Introduction 
   
 nvestigations of unsteady aerodynamics in the context of dynamic stall and stall flutter pitching airfoils have been 

carried out for a number of years (Ericsson & Reding [1], McCroskey [2]). Numerous studies have reported on the 
large-scale separation and reattachment over the suction surface of dynamically pitching airfoils, as well as on the 
strong influence of large vortex structures shed off the leading edge for this configuration. More recently, Lee and 
Gerontakos [3] carried out an extensive study of the separation, reattachment, and transition of the flow over the 
surface of a sinusoidally oscillating airfoil. They point to the significant effect of the leading-edge vortex on the 
unsteady dynamics  as well as its effect on the delay of separation and stall of a pitching airfoil. Other studies have 
focused on the effect of parameters such as oscillation frequency and amplitude on the onset of dynamic stall 
(Amiralaei et al. [4], Lind & Jones [5], Young & Lai [6]), and have found that the oscillation frequency plays a crucial 
role in the onset of dynamic stall. In another study, Bhat & Govardhan [7] used a sinusoidally oscillating airfoil, along 
with calculations of energy transfer over a cycle, to map out flutter boundaries as a function of oscillation frequency 
and amplitude.  
 Most of these aforementioned studies, have primarily utilized prescribed  oscillations as a tool to understand these 
unsteady effects and there are far fewer studies involving flow-induced, or free oscillations. While prescribed flutter 
provides some insights about the fluid dynamics of aeroelastically fluttering airfoils, it misses many features that are 
introduced by the two-way coupling between the flow and the foil. Dimitriadis and Lee [8] carried out a study of an 
airfoil with pitch and heave degrees of freedom, and showed the occurrence of various bifurcations in the dynamical 
response of the system. Further, they were able to classify these bifurcations and examine the mechanism behind the 
observed stall flutter during these different regimes. In another study of flow-induced oscillations, Ducoin et al. [9] 
used a combination of experimental data and quasi-steady numerical simulations to analyze the stability of a flexible 
hydrofoil and attributed the onset of the pitch-up instability (and consequently, the tendency to reach static divergence) 
to the upstream location of the center-of-pressure with respect to the elastic axis. They also showed that viscous effects 
during stall cause the center-of-pressure to move downstream towards the elastic axis, thus delaying static divergence. 
While the work of Dimitriadis and Lee employed experiments, a number of earlier studies have investigated flow-
induced oscillations in airfoils and flat plates using simplified and low-order numerical techniques (Dowell [10], 
Holmes & Marsden [11], Jumper et al. [12]). However, high fidelity computational modeling is not so common, likely 
due to the computational expense and complexity. 
 Here, we use high-fidelity flow simulations to model the flow-induced pitching oscillations of an airfoil at Re = 
1000. In order to establish a baseline for the analysis of the flow-induced flutter of the airfoil, we also report on static 
airfoil characteristics at this low Reynolds number. As mentioned before, due to the fact that very little data currently 
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exists for flow-induced oscillations at these Reynolds numbers, we aim to provide some preliminary insight into the 
system using broad parametric sweeps of elastic stiffness, equilibrium angle-of-attack, and hinge location for pitching 
oscillations. The primary aim of this parametric survey is to use this initial understanding of the system to inform 
more detailed investigations of aeroelastic wing flutter. 
 

 

II. Modeling and Simulation Methodology 

A. Problem Description 
 

Our model (see Figure 1) consists of a NACA0015 airfoil, with the trailing-edge rounded at 87% chord to alleviate 
resolution requirements. This airfoil is attached to linear springs corresponding to each degree of freedom, i.e., a 
tension/compression spring in the heave direction and a torsion spring for pitching oscillations. In this paper, the focus 
is on pitch oscillations, and consequently, the tension/compression spring is “locked” and only angular motion is 
allowed to take place. The torsion spring has spring and damping constants given by !" and #" respectively, which 
are important parameters in the dynamical response of the system. Furthermore, the location along the chord at which 
the body is hinged, i.e. the elastic axis, is denoted by $%. This is another parameter that is explored in this study. This 
system is immersed in an incompressible fluid with freestream velocity given by &' and the fluid is governed by the 
incompressible Navier-Stokes equations. 

The dynamical equation for the rigid-body system described above is: 
 

2)
*+, - +
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*&'+/

- +
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*&'0 +0
- − 23 = +5	

 
where ) is the moment of inertia of the body, * is the fluid density, + is the chord length, and 2 and 23 are respectively 
the instantaneous and equilibrium angles of attack respectively. The dynamical equation is scaled by the fluid 
quantities to simplify the interfacing between the solid and fluid solvers, This leads to nondimensional numbers 
representing the scaled moment of inertia, )∗ = 08

9:;
, mechanical damping, <"∗ =

0=>
9?@:A

 , and spring constant, 

!"∗ =
0B>

9?@C :C
 on the left-hand side of the above equation, and the forcing term on the right-hand side taking the form 

of the coefficient of moment, +5 = 05
9?@C :C

. We also introduce a small damping (15% of the critical damping) which 

mimics frictional losses in the torsional system, hence we set <"∗ = 0.3 !"∗ )∗, where the moment of inertia used is )∗= 
2.07. To be consistent with existing literature on flow-induced vibrations, we present our results in terms of a reduced 
velocity, &∗ = &'/HI+, where HI is the natural frequency of the torsion spring related to the the above parameters as 

HI =
J
0K

B>
8

. Finally, the Reynolds number in this study, defined as LM = &'+/N, is fixed at LM = 1000. 
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Figure 1. (a) Schematic of the aeroelastic model; (b) Computational setup 
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B. Computational Method 
 

We simulate the coupled fluid-structure system using the immersed boundary method code ViCar3D developed by 
Mittal et. al. [13,14], which allows us to preserve sharp interfaces along the surface of our geometry using a non-
conformal Cartesian grid. This is particularly valuable in fluid-structure interaction studies as it allows us to simulate 
a large variety of shapes as well as response motions without having to regenerate body conformal grid for the moving 
foil. The incompressible flow equations are solved using a projection technique, and the pressure Poisson equation is 
solved using the geometric multigrid method. Second-order finite differences are used for all spatial derivatives, and 
time integration is performed using a second order Adams-Bashforth method for the non-linear term. The fluid-
strucure coupling is carried out by using Lagrangian marker points on the surface of the solid body, where forcing 
quantities are calculated and passed on to the solid dynamical equation (Equation 1) explicitly using the forward-Euler 
method. The foil is immersed in a domain of size 18+×20+, and the grid resolution around the solid body provides 
about 125 points along the chord.  

III. Results and Discussion 
 

In presenting our results, we begin with a discussion of static airfoils at the Reynolds number of 1000, which matches 
the regime for which the aeroelastic flutter simulations are conducted. This data is meant to aid our subsequent analysis 
of the aeroelastically pitching foil. We then discuss pitching airfoils and focus on three key parameters: the reduced 
velocity, the equilibrium angle-of-attack, and the location of the hinge point. As mentioned previously, this is a small 
region of the vast parameter space that governs this problem. Nevertheless these results provide some interesting 
insight into the dynamics of pitching airfoils, and a starting point for subsequent work on understanding the physics 
of aeroelastic flutter. Finally, we present a novel force decomposition method, which could serve as a useful tool in 
the analysis of fluid-structure interaction problems, and we discuss this in the context of wing-flutter.  

Figure 2. Aerodynamic quantities for a static airfoil at Re = 1000: (a) Coefficient of lift (dotted line indicates TU 
slope); (b) Coefficient of drag and lift-to-drag ratio ; (c) Coefficient of moment about mid-chord; (d) Location of 

center-of-pressure VWX , shown as a fraction of chord length. 

(d) (c) 

(a) (b) 
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A. Static Airfoil Performance 
 

The current study focuses on the dynamical behaviour of aeroelastically pitching airfoils at Re = 1000. The flow at 
this Reynolds number can be resolved well and the computational requirements at this Reynolds number allow us to 
conduct a large parameter survey of this configuration. Figure 2(a) shows the lift curve for the truncated NACA0015 
airfoil used in this study. It is observed that the slope of the curve is lower than the 2Y slope that is predicted by thin-
airfoil theory. Tests indicate that the aerodynamic performance of the airfoil is mostly unaffected by the rounding of 
the trailing-edge at 87% chord. It is also noted that the static stall occurs around 20°. Some flow visualizations from 
these static airfoil simulations are shown in Figure 3, with the corresponding angles of attack marked on the +Z − 2 
curve. It is seen that there is some flow separation at 2 = 15°, but the flow over the suction surface is completely 
separated at 2 = 25°. The corresponding coefficient of drag and the lift-to-drag ratio are plotted in Figure 2(b). As 
expected, increasing angle-of-attack leads to increasing drag, and the onset of flow separation above 2 = 10° causes 
a large increase in the drag coefficient. The coefficient of pitching moment, calculated about the mid-chord, is shown 
in Figure 2(c) where pitch-down moment is defined as positive. We see that the magnitude of pitching moment 
increases with increasing angle-of-attack until  the airfoil stalls. In Figure 2(d), we plot the location of center-of-
pressure, which is an important parameter in determining the stability of the system to angular perturbations. It is 
interesting to note that the center-of-pressure initially moves upstream and subsequently moves downstream for 
increasing angle-of-attack – moving from about quarter-chord to roughly 0.37+ at stall. We will see that this plays an 
important role in the pitching response of the system, and the choice of $% used.  

 

B. Effect of Reduced Velocity 
 

As defined previously, the reduced velocity &∗ is the ratio of the time-scale associated with the natural frequency of 
the torsion spring to the convective time-scale. This ratio is considered an important parameter in flow-induced 
vibrations. For these simulations the system is initialized with a zero angular displacement and zero angular velocity 
and the simulations are run until the system reaches a stationary state.  

We begin with a qualitative analysis of the flow field around the pitching airfoil, shown in Figure 4 for two cases 
with 23 = 15°. Each panel of figures shows roughly equally-spaced snapshots of the system over one pitch up-pitch 
down cycle. On the left-hand side panel we show data from a case with &∗ = 4.6. This is compared with results from 
a case with &∗ = 7.3, shown on the right-hand side panel. These cases show a maximum pitch deflection of roughly 
20° and 60° respectively. We see in Figures 4(i)-(iv) that both of these cases produce fairly complicated vortex 
shedding patterns downstream of the airfoil. Also, both cases show the generation and shedding of a large leading- 

Figure 3. Flow visualizations for a static airfoil at `a = b°, db°, Tb° 
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edge vortex during the downward stroke of the pitching cycle. This has been reported in previous studies of forced 
pitching oscillations in airfoils. However, from a comparison of the flow fields in Figures 4(ii) and 4(iv) it is evident 
that the case with &∗ = 4.6 sheds one LEV per cycle, during the downward stroke, whereas the case with &∗ = 7.3 
sheds 2 LEVs of different intensities during each half-stroke of the cycle, and these are shed from the top and bottom 

Figure 4. (i)-(iv) Flow visualization snapshots over one period of oscillation; (v) Timeseries of pitch 
angle (degrees) and We corresponding to the same oscillation period; for two cases with `a = db°, and 

f∗ = g. h (left panel) and f∗ = i. j (right panel).  

(i) 

(ii) 

(iii) 

(iv) 

(v) 
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of the symmetric airfoil. This produces a double-peaked +Z variation over the oscillation cycle, shown in Figure 4(v), 
which is absent (or not as strong) in the case of &∗ = 4.6. As expected, these vortices have a large effect on the 
variation of +5 over a cycle (not shown here). 

 Figure 5 shows a plot of maximum pitching amplitude as a function of &∗ for three different equilibrium angles-
of-attack. The equilibrium angle-of-attack corresponds to 23 in the dynamical equation of motion for the system. It is 

Figure 5. Oscillation amplitude (in degrees) v/s reduced velocity at Re = 
1000, for three different values of equilibrium angle-of-attack (20). 

Figure 6. Pitching amplitude (in degrees) v/s reduced velocity for different values of hinge location for `a =
db°: (a) Vn = a. Tb; (b) Vn = a. jj; (c) Vn = a. ba. 

(a) (b) 

(c) 
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seen that for higher equilibrium angles-of-attack, the system is unstable at lower values of &∗. Additionally, even 
though higher values of &∗ are required to trigger the flutter instability at low equilibrium angles-of-attack, we see 
that the amplitude seems to saturate at high &∗, with the system effectively losing memory of the equilibrium angle-
of-attack. It is also seen that the system is capable of exhibiting very large amplitude oscillations, going as high as 
100° for the values of &∗ simulated in this study.  

C. Effect of Elastic Axis Location 
 

In Figure 2, the plot of center-of-pressure v/s angle-of-attack for the static airfoil showed that the center-of-pressure 
varied roughly between 0.25C and 0.4+ for the angles-of-attack studied. This suggests that locating the elastic axis 
aft of 0.4+ would result in an unstable system, since an increase in angle-of-attack, and hence lift,  would result in a 
higher pitching moment by virtue of the upstream location of the center-of-pressure. On the other hand, locating the 
elastic axis upstream of the center-of-pressure will have the opposite effect on pitching moment, thus stabilizing the 
system. However, it is not clear that this simplistic picture explains the situation of a dynamically pitching airfoil. In 
Figure 6 we show the pitching amplitude response of the airfoil, with 23 = 15°, for three different locations of the 
elastic axis. It is seen that if $% = 0.25, the airfoil is significantly stablilized as compared to $% = 0.50. The pitching 
amplitudes for the former are two orders-of-magnitude smaller than those for the latter. Overall, we see from Figure 
6 that small changes in the location of the elastic axis – from 0.25+ to 0.33+, as well as 0.33+ to 0.5+ – lead to the 
pitch amplitude changing by orders of magnitude. This points to the inherent nonlinearity of the coupled system and 
the sensitivity to parameters, even in the presence of a simplified and linear structural model. 

D. Force Partitioning Method 
 

We now present a recently developed method for decomposing the forces on an immersed body [15] into components 
that are readily identified with distinct physical mechanisms in the flow. The goal here is use this partitioning to 
generate insights into the physical mechanism that drive the dynamics of such aeroelastic systems. In many areas of 
fluid dynamics, and particularly in problems involving fluid-structure interactions, the ability to delineate the physical 
origin of the various forces acting on the body, and hence the forcing mechanism, can prove invaluable in better 
understanding and/or controlling the system under question. In general, the force due to the fluid on an immersed body 
in the o direction is given by,  

pq
(r) = (str + uv

(r))wx
q

 

 
where t is the unit vector on the surface of the immersed body, y is the surface of the body, and (o) denotes the 
direction of the force of interest. The pressure force on the body might however be attributable to different mechanisms 
such as vortex-induced force, added-mass, viscous diffusion and others. A number of methods have been proposed in 
the past to decompose the fluid force on a body into distinct components, and the method proposed here is based on 
the force projection method of Quarterpelle and Napolitano [16]. The essence of the method is the definition of a 
scalar potential, defined as: 

z0{(r) = 0	; 	t ⋅ z{(r) = tr	~t	y
0	~t	�  

 
where � is the outer boundary of the computational domain and tr is the component of the unit normal in the o  
direction. The incompressible Navier-Stokes momentum equation are then projected on to the gradient of this scalar 
field, and subsequently integrated over the volume of the domain, as follows: 

ÄÅ
ÄÇ ⋅ z{

r

É
+ z ⋅ ÅÅ ⋅ z{ r

É
= −zs ⋅ z{ r

É
+

1
LM z0Å ⋅ z{ r
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 Going further, we utilize Helmholtz decomposition to divide the velocity field into a potential flow and vortical 
flow component, Å = ÅÉ + ÅÑ	. Subsequent mathematical manipulations [15] then lead to the following expressions 
for the various force components on the body: 

pÖ
(r) = −* t ⋅
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1
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Figure 7. Timeseries of total and vortex-induced lift coefficients on a pitching airfoil, for `a = db and f∗ =
h. h. 

Figure 8. Contour plot of vortex-induced lift coefficient per unit fluid volume, for a pitching airfoil at `a = db 
and f∗ = h. h. Red and blue contours indicate positive and negative lift contribution respectively. The 

superposed contour lines correspond to the Ü-component of vorticity. 



 
 

 
American Institute of Aeronautics and Astronautics 

 
 

9 

pá
(r) = * z. z ÅÉ. ÅÑ +

1
2 ÅÉ. ÅÉ { r wà + * z. â×Å {(r)wà

äã
	

äã
	

pÑ
(r) = * t. z

1
2 ÅÑ

0 { r wx	
q

	

på
(r) = ç â×t ⋅ z { r − ér 	wx	

q
	

 
where pÖ

(r), pá
(r), pÑ

(r), and på
(r) are respectively kinematic, vortex-induced, potential-flow, and viscous forces on the 

body in the o direction., A particularly valuable aspect of this force decomposition tool is that it allows us to isolate 
the individual contributions of each vortex in the flow field to the total force on the body. This comes from the fact 
that the vortex induced force is a volume integral, as shown in the above equation for pá. Hence, by limiting the 
volume of integration, we can delineate the contribution any chosen flow structure. This is a powerful way to analyze 
the influence of the complicated wake structures seen in the representative snapshots of the flow in Figure 4.  
 

As a demonstration of this method, we show a sample case of a simulation with 23 = 15° and &∗ = 6.6. We have 
confirmed (not shown here) that the contributions from the kinematic and shear force, pÖ and på respectively, are 
orders of magnitude smaller, hence the dynamics is primarily driven by vortex shedding. Figure 7 shows a timeseries 
of vortex-induced lift coefficient, +á = pá/(

J
0
*&'0 +),  compared with a timeseries of total lift coefficient. We see 

that +áaccounts for nearly all the lift. In Figure 8 we show snapshots of the flow, coloured by local contributions of 
+á per unit volume. Here, contours coloured in red represent positive lift production. The large contribution of the 
LEV is evident from these figures, as is the positive contribution of the other vortices shed over the suction surface of 
the airfoil over the course of the oscillation cycle. It is also seen that the effect of each vortex diminishes with distance 
from the airfoil, as expected. Interestingly, while the core of the LEV is seen to contribute to positive lift, it is 
embedded in a region of vorticity that generates negative lift. It must be noted, however, that the net lift at this stage 
is positive. The exact contribution of different parts of the flow-field to the lift are yet to be investigated and is a 
subject of ongoing work.   

IV. Conclusions 
Computational simulations of flow-induced pitching oscillations of a NACA0015 airfoil have been carried out at 

Re = 1000. A parametric study of pitching response as a function of equilibrium angle-of-attack, reduced velocity, 
and location of elastic axis is reported on. It is seen that increasing the equilibrium angle-of-attack reduces the critical 
&∗ at which the system becomes unstable to angular perturbations. Further, the system loses memory of the 
equilibrium angle-of-attack for large amplitude oscillations. A study of the system’s sensitivity to the location of the 
elastic axis showed results that were largely in line with the static airfoil stability predictions, Further, a force 
partitioning tool was applied to a sample case of a pitching airfoil and it indicates the ability to dissect the contribution 
of various vortices to the aerodynamic forces on the airfoil. 

 

Acknowledgments 
This work is supported by AFOSR Grant FA9550-16-1-0404, monitored by Dr. Douglas Smith. 

References 
[1] L. E. Ericsson and J. P. Reding, “Fluid mechanics of dynamic stall part I. Unsteady flow concepts,” J. Fluids 

Struct., vol. 2, no. 1, pp. 1–33, 1988. 
[2] W. J. McCroskey, “Unsteady Airfoils,” Ann. Rev. Fluid Mech, vol. 14, pp. 285–311, 1982. 
[3] T. Lee and P. Gerontakos, “Investigation of flow over an oscillating airfoil,” J. Fluid Mech., vol. 512, pp. 

313–341, 2004. 
[4] M. R. Amiralaei, H. Alighanbari, and S. M. Hashemi, “An investigation into the effects of unsteady parameters 

on the aerodynamics of a low Reynolds number pitching airfoil,” J. Fluids Struct., vol. 26, no. 6, pp. 979–
993, 2010. 

[5] A. H. Lind and A. R. Jones, “Unsteady aerodynamics of reverse flow dynamic stall on an oscillating blade 
section,” Phys. Fluids, vol. 28, no. 7, 2016. 



 
 

 
American Institute of Aeronautics and Astronautics 

 
 

10 

[6] J. Young and J. C. S. Lai, “Oscillation Frequency and Amplitude Effects on Plunging Airfoil Propulsion and 
Flow Periodicity,” AIAA J., vol. 42, no. 10, pp. 2042–2052, 2004. 

[7] S. S. Bhat and R. N. Govardhan, “Stall flutter of NACA 0012 airfoil at low Reynolds numbers,” J. Fluids 
Struct., vol. 41, pp. 166–174, 2013. 

[8] G. Dimitriadis and J. Li, “Bifurcation Behavior of Airfoil Undergoing Stall Flutter Oscillations in Low-Speed 
Wind Tunnel,” AIAA J., vol. 47, no. 11, pp. 2577–2596, 2009. 

[9] A. Ducoin and Y. L. Young, “Hydroelastic response and stability of a hydrofoil in viscous flow,” J. Fluids 
Struct., vol. 38, pp. 40–57, 2013. 

[10] E. H. Dowell, “Nonlinear Oscillations of a Fluttering Plate,” AIAA J., vol. 4, no. 7, pp. 1267–1275, 1966. 
[11] P. Holmes and J. Marsden, “Bifurcation to divergence and flutter in flow-induced oscillations: an infinite 

dimensional analysis,” Automatica, vol. 14, no. 4, pp. 367–384, 1978. 
[12] E. J. Jumper, R. L. Dimmick, and A. J. S. Allaire, “The effect of pitch location on dynamic stall,” J. Fluids 

Eng., vol. 111, no. 3, pp. 256–262, 1989. 
[13] R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, and A. von Loebbecke, “A versatile sharp 

interface immersed boundary method for incompressible flows with complex boundaries,” J. Comput. Phys., 
vol. 227, no. 10, pp. 4825–4852, 2008. 

[14] J. H. Seo and R. Mittal, “A sharp-interface immersed boundary method with improved mass conservation and 
reduced spurious pressure oscillations,” J. Comput. Phys., vol. 230, no. 19, pp. 7347–7363, Aug. 2011. 

[15] C. Zhang, T. L. Hedrick, and R. Mittal, “Centripetal acceleration reaction: An effective and robust mechanism 
for flapping flight in insects,” PLoS One, vol. 10, no. 8, pp. 1–16, 2015. 

[16] L. Quartappelle and M. Napolitano, “Force and moment in incompressible flows,” AIAA J., vol. 21, no. 6, pp. 
911–913, 1982. 

 
 


