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ABSTRACT 

Numerical simulations have been used to study the 
phenomenon of autorotation of a flat plate hinged about its 
center in a freestream. The focus of the paper is on examining 
the effect of Reynolds number and plate thickness ratio on 
vortex induced rotation. The numerical solver employed is 
based on a sharp interface, Cartesian grid method that allows 
us to simulate flow with moving boundaries on stationary 
Cartesian grids. Simulations indicate that vortex shedding is 
the primary instigator of the plate motion and the transition 
from fluttering to autorotation depends on both these 
parameters.  

 
1. INTRODUCTION 

Studies on fluid-structure interaction have to a large 
extent focused on translational and vibrational motions 
induced by the fluid flow. In contrast flow induced rotation 
has not been given significant attention. This is despite the 
fact that flow induced rotation finds application in areas as 
diverse as the functional morphology of plants and animals 
[2], meterology, aeroballistics [3], chemical processing and 
even fluidic micro assembly [4,16]. Another interesting fluid 
problem which has direct relevance to flow induced rotation, 
is the motion of a falling objects. Maxwell [1] published one 
of the first studies on the tumbling motion of a falling cards. 
In recent years the problem has been studied in detail by many 
researchers[3,5-7] but despite this it is fair to say that much 
more work is needed to understand further the details of the 
associated flow phenomenon. Here we have used a newly 
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developed Cartesian grid method to study the flow-induced 
motion of a hinged plate which is pinned at its center and the 
details of this study are described in current paper. 

 
2. FLOW CONFIGURATION AND SIMULATION 
APPROACH 

The flow configuration used in all these simulations 
consist of a two dimensional flat plate with circular tip. The 
plate has a tip-to-tip length of L, thickness of t and is pinned at 
its center. The plate is immersed in a free stream with a 
uniform velocity of V . The key governing non-dimensional 
parameters of the flow problem are the Reynolds number 

0

ν/Re 0LV= , plate thickness ratio Lt /=τ  and the non 
dimensional moment of inertia, . Here L, w, t 

are the plate length, width and thickness respectively, I the 
moment of inertia about its center and 
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ρ  the fluid density.  It 

is to be noted that these non-dimensional parameters would 
also govern the motion of a freely falling plate where V  
would be the mean terminal velocity of the plate. Depending 
on the values of these parameters it is expected that the plate 
will either exhibits periodic oscillation (flutter) or end-to-end 
rotation (auto-rotation/ tumbling). The primary objective of 
the current study is to understand the role played by these 
parameters in determining the motion of the plate  
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The experimental study of Field et al. [6] on the 
motion of freely falling circular disks indicated that tumbling 
(end-over-end rotations) occurred for I*≥ 0.04 and Re≥ 200. 
Belmonte et al. [5] on the other hand, examined the motion of 
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rectangular flat plates and came up with a critical value of 
Froude number to be around 0.67. This Froude number is 
directly related to *I  and gives a critical value of 0.037 for 
this parameter. Further experimental studies of Willmarth et 
al. [9] and Iverson [10] establishes critical *I  values to be 
around 0.01 and 0.05 respectively above which autorotation 
was found to occur in both their experiments. It is therefore 
clear from the previous studies that the dependence of the 
plate motion transition with respect to *I  is well established. 
In contrast, our understanding of the effect of τ and Re on this 
transition is somewhat more limited. For understanding better 
the effect of these two parameters on the induced motion, a 
series of simulations has been carried out by varying τ and Re. 
In all these simulations the value of *I  was kept above 0.17 
eliminated the dependence of flutter to rotation transition on 
this parameter.  
  
Numerical flow solver: A previously developed Cartesian 
grid solver is employed in these simulations and details of the 
solution procedure can be found in [12] and [13]. The 
framework of the method developed in these papers is 
Eulerian-Lagrangian, i.e. the immersed boundaries are 
explicitly tracked as curves in Lagrangian fashion, while the 
flow computations are performed on a fixed Eulerian mesh. 
This affords the advantage of pure Lagrangian methods such 
as explicit interface information without ambiguities 
associated with a-posteriori reconstruction of the interface 
from an advected scalar (such as Volume-of-Fluid, Level Set 
or phase field). However, we dispense with mesh movement 
and thereby circumvent some of the problems associated with 
mesh management. In contrast with purely Eulerian interface 
capturing approaches (diffuse interface methods) the current 
method treats the immersed boundaries as sharp interfaces. 
The distinguishing feature of the present method is that the 
governing equations are discretized on a Cartesian grid which 
does not conform to the immersed boundaries. This greatly 
simplifies grid generation and also retains the relative 
simplicity of the governing equations in Cartesian coordinates.  

 
Figure1: Grid employed in the simulation. Every second grid point 
shown 
 
Therefore, this method has distinct advantages over the 
conventional body-fitted approach in simulating flows with 
moving boundaries, complicated shapes or topological 
changes.  

The interface is tracked using markers connected by 
piecewise quadratic curves parameterized with respect to the 
 

arc length. Details regarding interface representation, 
evaluation of derivatives along the interface to obtain normals, 
curvatures etc., have been presented in previous papers [12, 
13] and are not repeated here. Also described in earlier papers 
are details regarding the interaction of the interfaces with the 
underlying fixed Cartesian mesh. These include obtaining 
locations where the interface cuts the mesh, identifying phases 
in which the cell centers lie, and procedures for obtaining a 
consistent mosaic of control volumes in the cells. This results 
in the formation of control-volumes which are trapezoidal in 
shape. 

  The solver employs a second-order accurate central 
difference scheme for the spatial discretization and a mixed 
explicit-implicit fractional step scheme for time advancement. 
An efficient multigrid algorithm is used for solving the 
pressure Poisson equation. The key advantage of this solver 
for the current flow is that the hinged plate is modeled on the 
stationary Cartesian mesh. Only those cells that are cut by the 
solid boundary are modified to account for the presence of 
solid boundary.  

A large 62L×62L computational domain is employed 
for the current simulations. This significantly reduces the 
effect of boundaries interfering with the flow. A non uniform 
Cartesian mesh with 162×162 grid points is used which 
provides high resolution in the vicinity of the hinged plate as 
shown in the Fig 1. Freestream velocity conditions are 
imposed at the left, top and bottom boundaries and convective 
boundary condition is applied at the right boundary. In order 
to demonstrate the adequacy of the grid resolution and domain 
size simulations were carried out for a Reynolds number case 
of 600 on two different grids, one the 162×162 nominal grid 
and the other being a finer one with 50% more grid points in 
both the direction. Also domain adequacy has been verified by 
choosing again two different domains one being the nominal 
62L×62L and the other being 50% more in length in both the 
direction. In all these test simulations key quantities such as 
mean and root-mean-square lift, drag and moment coefficients 
were computed. These values are found to vary by less than 
3% from their nominal value thereby confirming the fidelity 
of the current simulations. 
 
3. Simulation Results 

Simulations of flow past the hinged plate have been 
carried out at Reynolds numbers of 50, 100, 200, 300,400 and 
600 and thickness ratios of 1/2, 1/3 and 1/5. A summary of the 
results from these simulations is plotted plotted in Figure 2, 
which shows a parametric space of τ, and Re. The range of 
values of τ and Re for which the plate executes angular 
oscillation (flutter) and rotational motion (autorotation) are 
indicated by open squares and filled squares respectively. The 
demarcation between the two regions of motion is a narrow 
region and is represented by the dotted curve as shown in the 
figure. In this region the plate was found to switch 
intermittently between both types of motion. The plot 
indicates that there is a minimum value of Reynolds number 
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below which auto rotation should never occur and this critical 
Reynolds number should occur some were between 100 and 
200. This is in rough agreement with the conclusion of Fields 
et al. [6] for freely falling circular plates where it was found 
that a minimum Reynolds number value of about 200 was 
necessary for the tumbling to set in. It is also clear that as the 
thickness ratio increases, the transition to autorotation is found 
to occur  

 

 
 

Figure 2. Phase plot showing region of transition from flutter to 
autorotation for the hinged plate 
 
at increasingly higher values of Reynolds numbers. As 
expected the observed trend in the data suggests that as τ 
approaches 1 (i.e. the plate becomes a circular cylinder) the 
plate would not autorotate for any value of Reynolds number. 
To examine this behavior further let us consider three cases 
from our current study. First is the case for which Re = 200 
and τ = 1 / 3 where autorotation is not observed. Figure 3a 
shows a span wise vorticity contour plot at one time instant 
for this case and this shows the presence of Karman vortex 
shedding in the wake of this plate. The second case chosen is 
this same plate at Re = 400 where autorotation is observed and 
Fig. 3b shows the vorticity contour plot for this case. The final 
case chosen is the Re = 400; τ= 1/2 case which does not 
autorotate and its vorticity contours are shown in Fig. 3c. 
Comparing the first two cases we find even for plates of 
relatively low thickness ratios, the mere presence of vortex 
shedding does not necessarily lead to autorotation. On the 
other hand, comparison of the second and third case serves to 
show that even in the presence of relatively high Reynolds 
number vortex shedding, thick plates tend to resist 
autorotation. The question now is how to explain these 
observed trends in terms of the flow physics. It seems clear 
from our simulations that plate rotation is a result of the 
oscillatory moment produced on the plate due to vortex 
shedding. As the amplitude of this oscillatory moment 
increases, the plate tends to execute larger amplitude angular 
 

oscillations and for high enough moment amplitude, this leads 
to autorotation. The idea then is to explain why reduction in τ 
and increase in Re would tend to increase the moment 
amplitude. We put forth a simple explanation for this behavior. 
First, computations show that most of the moment is produced 
due to the surface pressure and not the shear stress. This is so 
because not only are shear stress levels relatively low at these 
Reynolds numbers, but the average moment arm for shear 
stress is smaller than that for pressure. Second, it appears that 
the pressure on the windward side of the plate does not 
contribute much in terms of moment and that the moment on 
the plate is produced primarily by low pressure on the leeward 
side of the plate due to the shedding of vortices. If we 
consider that the presence of a vortex near one of the tips of 
the plate in the lee side of the plate produces a uniform suction 
pressure on one half of the plate surface extending from the 
plate center to the tip of the plate where the vortex is located. 
For the plate with rounded tips, it can be shown that this 
uniform pressure distribution will produce a moment, which is 
proportional to (1-τ). Thus, decreasing values of τ should 
increase the tendency of the plate to auto rotate. Now 
obviously, the pressure distribution due to vortex shedding is 
not uniform. In fact, as the Reynolds number increases, the 
vortices that roll up, tend to be of higher strength, are more 
compact and roll up closer to the tip of the plate. Thus, as the 
Reynolds number increases, the magnitude of the suction 
pressure increases, and furthermore, this higher suction 
pressure acts closer to the  

 

 

Figure3: Vortex contours at different stages of rotation for a) Re=200 
(flutter), t/L=1/3 b) Re=400 (auto-rotating), t/L=1/3 and c) Re=400 
(flutter), t/L=1/2

increases, the magnitude of the suction pressure increases, and 
furthermore, this higher suction pressure acts closer to the 
plate tip. This results in a higher moment and consequently, an 
increased tendency towards autorotation. In addition to the 
flutter-to-tumble transition, the current simulations also allow 
us to examine the scaling of the flutter/tumble frequency. 
Figure 4 shows the Strouhal frequency St = ΩL/V0 where Ω is 
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the flutter or tumble frequency obtained from examining the 
temporal variation of the plate angle plotted against the 
Reynolds number. Also plotted here is the variation of the 
vortex shedding Strouhal frequency for a 2D, normal fixed 
plate [14] and a circular cylinder [15]. It is evident from this 
plot that the flutter frequency is in reasonable agreement with 
the Strouhal frequency of these bluff bodies. This is expected 
since for low amplitude flutter, the vortex shedding from the 
hinged plate is expected to be quite similar to that observed 
for these bluff bodies. Interestingly, even the frequency for the 
autorotating cases is in reasonable agreement with the  
 

 
Figure 4. Variation of Strouhal number with Reynolds number 
for various cases 
 
observed frequencies for the normal flat plate. This strongly 
suggests that the tumbling frequency is primarily determined 
by the Karman vortex shedding process. However, the vortex 
shedding process is itself altered by the autorotation (or 
tumbling) and that is most likely responsible for the variation 
in tumbling frequency with Reynolds number.  

Figure 5 shows the values of drag and lift coefficients 
plotted against the thickness ratio. The filled triangle plotted 
on this figure represents the value of lift and drag coefficients 
obtained by Skews [11] at a Re~105. Note that in the work of 
Skews[11] plates with squared tips were used. Furthermore, 
the Reynolds number in that study was O(105) which is 
significantly higher than the current study. Figure 5 however 
indicates a reasonable agreement between the experiments and 
the current simulations suggesting that once autorotation 
occurs, the hydrodynamic forces are relatively insensitive to 
the flow parameters.  

In conclusion, the current simulations show that in 
the range of parameters studied here, the transition from 
flutter to tumble depends significantly on the thickness ratio 
and Reynolds number. The simulations suggest a simple 
physical explanation for this dependence and also allow us to 
hypothesize the effect that change in the cross sectional shape 
of the plate would have on this transition. Based on our 
results, we suggest that the flutter and tumble frequency of 
 

large aspect ratio plates is governed by the Karman vortex 
shedding process. Additional simulations are currently being 
carried out to understand other aspects of this flow 
configuration. 

 
 

 

a) 

b) 
 

Figure 5. Drag and lift coefficients plotted against thickness 
ratio τ=t/L for the autorotating cases. 
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