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A FOURIER–CHEBYSHEV SPECTRAL COLLOCATION
METHOD FOR SIMULATING FLOW PAST SPHERES AND

SPHEROIDS
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SUMMARY

An accurate Fourier–Chebyshev spectral collocation method has been developed for simulating flow past
prolate spheroids. The incompressible Navier–Stokes equations are transformed to the prolate spheroidal
co-ordinate system and discretized on an orthogonal body fitted mesh. The infinite flow domain is
truncated to a finite extent and a Chebyshev discretization is used in the wall-normal direction. The
azimuthal direction is periodic and a conventional Fourier expansion is used in this direction. The other
wall-tangential direction requires special treatment and a restricted Fourier expansion that satisfies the
parity conditions across the poles is used. Issues including spatial and temporal discretization, efficient
inversion of the pressure Poisson equation, outflow boundary condition and stability restriction at the
pole are discussed. The solver has been validated primarily by simulating steady and unsteady flow past
a sphere at various Reynolds numbers and comparing key quantities with corresponding data from
experiments and other numerical simulations. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Unsteady separation and vortex shedding from three-dimensional bodies are intriguing phenom-
ena that present us with a number of unanswered questions [1,2]. Such flows are encountered
routinely in nature and in engineering applications, and therefore the importance of understand-
ing these flows cannot be overemphasized. In particular, vortex shedding from particles assumes
importance in particulate flows at high particle Reynolds numbers since this can have a
significant effect on the enhancement of turbulence [3]. In most cases, particles can be modelled
as spheres or spheroids, and therefore a detailed study of the vortex dynamics in spheroid wakes
would improve our understanding of particle–turbulence interaction. These flows. however, do
not lend themselves easily to experimental analysis or numerical simulations. Due to the inherent
complexity of these flows, much of the data from experiments has been qualitative in nature.
In fact, the bulk of our knowledge about three-dimensional separated wake flows rests on
surface oil flow patterns [4] and dye visualization [5–8]. Advances in experimental techniques
have, however, allowed researchers to obtain more quantitative information and recently
detailed measurements of the wake of spheroids have been made [9,10].
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Accurate numerical simulation of unsteady, separated flows past three-dimensional bodies is
an expensive proposition and it is in fact difficult to find any well-documented, accurate
simulations that solve the full equations of motion over spheroids without any approximations.
In order to reduce the expense of these simulations, many researchers have limited themselves
to solving the boundary/thin layer equations [11–16]. These simulations have added consider-
ably to our knowledge of these flows. However, since the boundary layer approach cannot be
extended to the separated region, few of these simulations have been able to provide detailed
information in the separated wake region. Furthermore, most of the calculations have focussed
on obtaining steady state solutions, and unsteady three-dimensional separation has for the
most part not been addressed.

Spectral methods provide the highest accuracy on a per point basis and also allow for the
possibility of using the intrinsic symmetries in the spheroidal geometry in developing an
efficient solution procedure. The most natural approach to solving problems in spheroidal
geometries is to use surface harmonic functions. For spherical geometries, the surface har-
monic functions are the associated Legendre functions and these have been used in a variety
of numerical studies in the past [17–19]. As demonstrated by Orszag [20], the main advantage
of this approach is the absence of the ‘pole problem’. However, since no fast transforms exist
for surface harmonic functions this approach can be quite expensive. The spectral element
method can also be used for simulating such flows and Tomboulides et al. [2] have used this
method to simulate flow past a sphere up to a Reynolds number of 1000.

The possibility of using a double Fourier series on a sphere has been investigated by Orszag
[20] and Fourier-based pseudo-spectral methods have been used for solving a number of
relatively simple problems, like the shallow water equation [22], the two-dimensional Poisson
equation [23] and surface flow [24]. The main advantages of this approach are simplicity, and
the existence of the fast Fourier transform (FFT), which can result in a significant reduction
in the computational expense. However, as pointed out by Orszag [20], the main disadvantage
here is the existence of the ‘pole problem’ and the associated restriction on the time step for
explicit time integration schemes.

Here a Fourier–Chebyshev spectral collocation based solver has been developed for direct
numerical simulation of three-dimensional, viscous, incompressible flow past prolate spheroids.
Flow past spheres can be solved as a special case. A number of issues including stability
restriction at the pole, efficient inversion of the three-dimensional Poisson equation and
non-reflective outflow boundary conditions have been addressed in developing the solver. A
series of steady, as well as unsteady simulations of flow past a sphere have been performed
using this solver and results compared with established experimental data. Three-dimensional
flow visualizations of the sphere wake are used to demonstrate the fidelity with which the
solver computes the complex vortex dynamics in these wake flows. Steady flow past a prolate
spheroid has also been computed and comparisons made with available numerical results.

2. COMPUTATIONAL METHODOLOGY

The high accuracy of spectral methods make them attractive for flow simulations. However, it
is usually quite difficult to apply these methods in complex geometries and most spectral
simulations have consequently been limited to simple geometries [25]. Here we have developed
a spectral collocation method for computing flow over spheroidal bodies. The method exploits
special properties of the spheroidal co-ordinate system for constructing an algorithm that is
efficient both in terms of CPU time and memory usage and should allow us to explore the
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parameter space of the flow configuration. A description of the salient features of this
algorithm is given in this section.

2.1. Spatial and temporal discretization

The basic shape that is considered is a prolate spheroid. The governing equations are the
unsteady, incompressible Navier–Stokes equations given by

Continuity 9 ·u=0, (1)

Momentum conservation
(u
(t

+u ·9u= −9P+
1

Red

92u, (2)

where u and P are the velocity and pressure respectively. Furthermore, in the above equations,
Red is the Reynolds number based on the freestream velocity (U�) and major axis of the
spheroid, which is denoted by d. The above equations are transformed to the prolate
spheroidal co-ordinate system where the mapping between the Cartesian (x, y, z) and prolate
spheroidal (j, h, f) co-ordinate systems (shown in Figure 1) is given by

x=a cosh j cos h, y=a sinh j sinh cos f, z=a sinh j sin h sin f, (3)

where

jbody5j5jouter, 05h5p, 05f52p, (4)

and a is the distance between the centre and focii of the ellipsoid given by

a=
1−E2, (5)

where E is the ratio of the minor to major axis of the ellipsoid. Thus, the parameter space of
this flow consists of Reynolds number (Red), spheroid aspect ratio (E) and angle-of-attack (a).

The governing equations are discretized on an orthogonal curvilinear body-fitted grid for
which the surface grid is shown in Figure 1. In the following discussion, Nj, Nh and Nf are the
number of grid points in the j-, h- and f-directions respectively. The azimuthal direction f

is periodic over 2p and this allows us to use a Fourier collocation method in this direction. In
the h-direction, which is referred to as the wall-tangential direction, the flow is periodic not
over p but over 2p, and this allows us to use a Fourier collocation method for computing
derivatives along this direction. It should be pointed out that care needs to be taken in
calculating the h-derivatives of vector variables since vectors aligned along h and f flip
direction as one goes over the pole. The singularity in the co-ordinate transformation at the
poles, which are located at h=0 and p, can be avoided by distributing the collocation points

Figure 1. Surface mesh used in the current simulation. The Cartesian as well as the spheroidal co-ordinate systems are
shown. The poles are located at h=0, p.
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in such a manner so as to avoid these locations. Thus, the collocation points in the
wall-tangential direction are defined as

hj=
p

Nh

�
j−

1
2
�

; j=1, . . . , Nh. (6)

The semi-infinite flow domain is truncated to a large but finite distance and a Chebyshev
collocation method is used in this non-periodic direction. The distribution of the Gauss–Lo-
batto collocation points is given by

ji=
1
2

cos
�p(i−1)

Nj−1
n

(jbody−jouter)+
1
2

(jbody+jouter); i=1, 2, . . . , Nj. (7)

Thus, spectral discretization is used along all three directions and this results in a highly
accurate computation of the derivatives.

A two-step time split [26–28] scheme is used for advancing the solution in time. The
intermediate velocity field is obtained first by advancing through the advection–diffusion
equation. A second-order-accurate, semi-implicit method is used for this step, where all
convective terms are treated explicitly and diffusion terms are treated implicitly. Details
regarding implicit treatment of diffusion terms will be provided in Section 2.3. A second-order
Adams–Bashforth is employed for the explicit terms and the implicit terms are discretized
using a Crank–Nicolson scheme. The next step is pressure-correction and this requires the
solution of the pressure Poisson equation, which is solved with a homogeneous Neumann
condition on the boundaries. Finally, the pressure-correction is added to the intermediate
velocity and a divergence-free velocity field is obtained. A higher-order intermediate velocity
boundary condition is used, which results in accurate imposition of the no-slip, no-penetration
boundary condition on the body. Details of the time split scheme can be found in Mittal and
Balachandar [28].

2.2. Outflow boundary conditions

Since the flow domain is truncated to a finite extent in the current simulations, appropriate
boundary conditions are required at the outer boundary. Inviscid flow past the spheroid is
computed first and this is used as the inflow boundary condition as well as the initial
condition. The outflow boundary condition is not known a priori and a well-posed outflow
boundary treatment has to be devised that will allow vortical disturbances to exit the domain
with no significant reflection. A number of different non-reflective outflow boundary condi-
tions have been used before with varying degree of success and the reader is referred to the
paper of Sani and Gresho [29] for a comprehensive review on this topic. The global nature of
the spectral methodology makes the simulation especially sensitive to boundary conditions and
it has been found that simple boundary conditions that work well in conjunction with
conventional finite difference methods can lead to catastrophic instability in spectral simula-
tions [30]. A non-reflective boundary condition has been previously developed and tested in
spectral simulations of flow past cylinders [28] and has been adapted for the current spheroid
simulations. The approach is to smoothly parabolize the governing equations near the outflow
boundary by multiplying the j-direction diffusion term with a smooth attenuation function.
Thus, if the Laplacian operator can be written as a sum of one-dimensional operators along
the three directions as 92�9j

2 +9h
2 +9f

2 , then the diffusion term in the momentum equation (2)
is modified as:
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1
Red

92u=
1

Red

[F(j, h)9j
2 +9h

2 +9f
2 ]u. (8)

Here, F(j, h) is the attenuation function, which is equal to 1 in most of the domain and
smoothly goes to 0 at the outflow boundary where the wake exits the computational
domain. Thus, the governing equation is modified in a relatively small region near the
outflow boundary and the impact of this on the flow in the upstream portion of the wake is
minimal. The resultant parabolized equation does not require any outflow boundary condi-
tion and the governing equation can be solved at the outflow boundary. This boundary
treatment has been tested extensively in previous work on cylindrical geometries and details
of this test can be found in Mittal and Balachandar [28]. In the current simulations of flow
past spheres it has been found that the boundary condition allows vortical disturbances to
exit the computational domain in a smooth manner without any significant reflections.

2.3. Stability condition at the poles

Usually, the wall-normal spacing is extremely small near the body as compared with the
grid spacing in wall-tangential directions and thus implicit treatment of just the wall-normal
viscous term removes the viscous stability constraint to a large extent [28]. However, as can
be seen from Figure 1, due to the topology of the grid, the azimuthal resolution increases
tremendously at the poles, which are located at h=0 and p. The azimuthal resolution near
the poles is greater than the resolution at the equator by a factor of about 2Nh/p. Therefore,
for a typical mesh with Nh=80, this implies that the f resolution at the pole is higher than
at the equator by a factor of about 50! Consequently, if the convection and diffusion terms
in the f-direction are treated explicitly it can lead to a severe stability constraint. However,
implicit treatment of the non-linear convection terms and the cross-derivative terms is not
desirable since it leads to coupled, non-linear operators that are computationally expensive
to invert. Thus, other techniques have to be used in order to reduce the stability restriction.

Here we resort to low-pass filtering of the variables in the f-direction near the poles,
which allows us to reduce the ‘effective’ azimuthal resolution near the poles. At the end of
the advection–diffusion time step, the intermediate velocity field is passed through a filter
that removes the high wavenumber content. It should be pointed out that the filter cut-off
varies in space with the most severe truncation occurring at the azimuthal gridline closest to
the pole. Since the nominal azimuthal resolution near the poles is significantly higher than
what is needed to resolve the flow gradients, it is expected that this filtering procedure will
not have any significant effect on the accuracy of the computed flow. However, during the
course of performing the various non-axisymmetric simulations of flow past a sphere pre-
sented here we have found that modes up to at least kf=1 need to be retained everywhere,
since kf=1 is often the most unstable mode that leads to vortex shedding [34]. The filtering
procedure mitigates the convective stability constraint to a large extent but the viscous
stability constraint can still be quite severe near the poles and this necessitates implicit
treatment of the viscous terms in the f-direction. Implicit treatment of all components of
the f-direction viscous term leads to an operator that is quite expensive to invert. Instead,
we identify that component of the f-direction viscous term that is the largest near the poles
(which is 1/sin2 h) and treat only this component implicitly. This leads to the following
Helmholtz-like equation

F(j, h)
sinh j

(

(j

�
sinh j

(u
(j

�
+

1
sin2 h

·
(2u
(f2−

2Re
Dt

u=r, (9)
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where F(j, h) is the function that smoothly parabolizes the equation near the outflow
boundary, and r contains all the explicit terms. Note that since the grid spacing in the
h-direction is significantly larger near the body than in the other two directions, the viscous
terms in this direction can be treated explicitly and this leads to a simpler operator on the left
side of Equation (9). In fact, when the above equation is transformed in the f-direction, we
obtain a set of one-dimensional Helmholtz equations, which can be solved quite easily using
the matrix diagonalization technique [31].

2.4. In6ersion of the pressure Poisson equation

The pressure Poisson equation has to be solved in a fully implicit manner so as to exactly
satisfy conservation of mass at the end of the full time step and fast inversion of the Poisson
equation is the key to the overall viability of the solver. The f-transformed pressure Poisson
equation in prolate spheroidal co-ordinates can be written as:

92F. = 1
h2 sinh j

(

(j

�
sinh j

(F.
(j

�
+

1
h2 sin h

(

(h

�
sinh h

(F.
(h

�
−

kf
2

s2 F. =R. , (10)

where R. denotes the right-hand-side of the equation, F. is the pressure that is solved for in the
time split scheme, kf is the wavenumber in the f-direction and

h2=a2(sinh2 j+sin2 h) and s2=a2 sinh2 j sin2 h (11)

are the metrics of the transformation. Thus, in transformed space each azimuthal Fourier
mode can be solved for separately. However, the curvilinear nature of the spheroidal
co-ordinate system introduces non-constant coefficients into the Laplacian operator and
transforming the equation in the h-direction results in a large set of coupled ODEs. Further-
more, unlike the elliptic co-ordinate system [28], the coupling here is of a broadband nature
and the resultant matrix operator does not have a banded structure that can be exploited for
devising a direct inversion technique. One approach is to use iterative methods like GMRES
or multigrid, but then the efficiency of the inversion depends on a number of factors, including
the choice of preconditioner and relaxation scheme. An efficient direct inversion procedure is
clearly most desirable and here we have used the special properties of the metrics associated
with the spheroidal system to devise a fast direct inversion procedure.

The key to the direct solution procedure lies in recognizing that the Laplacian operator in
Equation (10) can be made separable by multiplying it by h2. The matrix diagonalization
procedure [31] can then be used to invert the operator directly. The attractiveness of this
procedure lies in the fact that it requires a relatively small amount of storage and inversion can
be accomplished through a series of matrix–vector multiplications. With the help of optimized
linear algebra routines, this inversion can be accomplished quite efficiently.

It should also be pointed out that a conventional Fourier scheme cannot be used in the
h-direction since variables are not periodic in that direction over the range 0–p. Instead, we
use a restricted Fourier series that employs a cosine series for the even f modes and a sine
series for the odd f modes. When the pressure is expanded in terms of this restricted Fourier
series, the ‘parity’ conditions at the pole [20,32] are satisfied exactly and a compact system of
equations is obtained.

2.5. Grid clustering in the wake region

From the point of view of computational efficiency, it is desirable to provide enhanced
resolution in the wake region, where flow gradients are large. In the current solver, a smooth
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Figure 2. Typical grid used in the current simulation. Note that only a two-dimensional projection of the grid is
shown. The three-dimensional grid can be obtained by rotating this mesh about the x-axis. For this mesh a value of
g equal to −0.35 is used to provide grid clustering in the wake, and this places 70% of the mesh points between

−p/2BhBp/2.

mapping is introduced in the h-direction that allows us to cluster more points in the wake
region. The mapping used here is

tan h̃=
sin h(1−g2)

cos h(1+g2)−2g
, (12)

where h̃ represents the computational space with the clustered grid and g is the parameter that
controls the clustering. Values of g used in the current simulation range between −0.4 and
−0.2, with the larger negative value providing greater clustering in the wake. A typical mesh
used in the current simulations is shown in Figure 2.

3. RESULTS AND DISCUSSION

Simulations of flow past a sphere at various Reynolds numbers have been used to test the
spatial accuracy as well as to validate the solver. Simulations have been carried out in the
axisymmetric as well as the non-axisymmetric regime and results compared with available
experimental data. Numerical experimentation indicate that for simulation of flow past
spheres, the solver is stable for CFL#0.6 and this is used as a guideline in choosing the size
of the time step. Typical non-dimensional time step (DtU�/d) for the simulations presented
here varies from 0.001 to 0.004. Furthermore, the solver operates at 960 Mflops on 1 CPU of
the CRAY T-90 and requires about 8 ms per grid point per time step. Steady simulations of
flow past spheroids have also been performed and comparisons made with available numerical
data.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 921–937 (1999)
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3.1. Simulations of flow past spheres

3.1.1. Spatial accuracy. A series of simulations of flow past a sphere have been carried out
in order to demonstrate the high spatial accuracy of the solver. An axisymmetric flow
configuration with Red=100 has been used to test grid convergence in the wall-normal and
-tangential direction. We first simulate this flow on a dense 121×128×2 (Nj×Nh×Nf)
mesh to obtain a solution with high accuracy and this is used as the reference for computing
the errors on coarser meshes. A relatively small Dt of 0.0015 is used and the solution integrated
forward in time to 30d/U�. Furthermore, a uniform mesh is used in the h-direction so as to
simplify the convergence analysis. In order to check the accuracy in the wall-normal direction,
the number of collocation points in the h-direction is fixed at 128 and the number of
collocation points in the wall-normal direction reduced successively. The solution is computed
on each of these coarse meshes and the root-mean-square difference between this solution and
the reference solution normalized by the number of wall-normal collocation points provides an
estimate for the truncation error in the computed solution. For the wall-normal test we
compute this error along the wake centreline, and Figure 3 shows the error in the wall-normal
component of velocity plotted against the number of collocation points in the wall-normal
direction. As expected, exponential convergence is obtained. The convergence test for the
h-direction proceeds in a similar way by fixing the number of wall-normal collocation points
to 121 and successively coarsening the grid in the tangential direction. An h-grid line is chosen
in the near-wake where there are significant tangential gradients and the errors computed on
this grid line. Figure 3 shows the errors in the wall-normal component velocity plotted against
the number of tangential collocation points and again we observe exponential convergence.

With the pole filtering strategy adopted here we expect some deterioration in the local
accuracy of the solver. However, since the filtering comes into effect only in a limited region
in the very near-wake, we also expect that the global accuracy will not be affected substan-
tially. In order to test this, we have performed a series of simulations of a non-axisymmetric
configuration that consist of a flow past a sphere at an angle-of-attack of 5°. A 61×64×48
(Nj×Nh×Nf) mesh is used to compute the reference solution and the pole filtering is turned
off in this simulation. Subsequently, the pole filtering is turned on and the solution computed
on a series of meshes with fewer azimuthal collocation points. The global error for each mesh
is then computed by calculating the root-mean-square difference between the computed
solution and the reference solution and this is normalized by the total number of collocation

Figure 3. Semi-log plot of error (o) vs. number of collocation points (N) that shows exponential convergence in all
three directions.
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Figure 4. Comparison of computed drag coefficient with the experimental correlation of Clift et al. [35]. Computed
drag coefficient for spheres as well as spheroids is shown, The various flow regimes for sphere wakes are also indicated

on this plot. A, Axisymmetric; NA, non-axisymmetric; S, steady and US, unsteady.

points in the domain. This error is also plotted in Figure 3 and we find that the convergence
is not as regular as in the other two directions. However, there is an exponential decrease in
the error with increasing collocation points and this confirms that the pole filtering strategy
does not have a deleterious effect on the global order of accuracy.

3.1.2. Axisymmetric simulations. Experiments [6,33] and stability analyses [34] shows that the
sphere wake in a uniform flow remains axisymmetric up to a Reynolds number of about 210.
Three simulations of flow past a sphere have been carried out in this regime and numerical
values of the drag coefficient are given in Table I. In addition, the plot in Figure 4 shows the
drag coefficient for all the simulations presented in this study. We find that the computed drag
coefficient shows excellent agreement with the experimental correlation of Clift et al. [35]. Also
included in the table are the grids used for the various simulations and the outer radius of the
computational domain (Ro) The separation angle measured from the rear stagnation point has
also been computed and is found to be within 1° of the corresponding angle given in Clift et
al. [35] and within 2° of the values obtained in the simulations of Tomboulides et al. [2].
Finally, the length of the standing eddy (Le) measured from the base of the sphere is also
compared with the numerical results of Pruppacher et al. [36] and very good agreement is
observed. The corresponding values obtained by Tomboulides et al. [21] have also been shown
in the table and it is found that their values are somewhat underpredicted at the lower
Reynolds numbers.

3.1.3. Non-axisymmetric simulations. Natarajan and Acrivos [34] investigated the linear
stability of the steady axisymmetric flow past a sphere and found that the flow undergoes a
regular bifurcation at a Reynolds number of about 210, which results in the development of
a non-axisymmetric wake. However, in contrast to the circular cylinder wake, loss of symmetry
in the sphere wake does not necessarily lead to vortex shedding. Flow visualization studies
[6,37] that use dye injected from the cylinder surface show that this flow regime is characterized
by two tails of dye that extend from the end of the recirculation zone in the downstream

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 921–937 (1999)
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Table I. Comparison of computed results of flow past a sphere with experimental and numerical data.

Red Nj×Nh×Nf Ro/d Current simulations Experiments/other simulations Flow

CD us (°) Le/d CD
a us

c (°) us
c (°) Le/d

b Le/d
c

0.45 0.4050 81×60×2 15 1.57 39.8 0.44 A, S1.57 40.7 40.5
A, S0.660.7249.048.61.260.7247.21.261581×60×275

0.90 0.87100 81×60×2 15 1.09 52.3 0.87 A, S1.09 53.4 54.0
— —250 81×60×16 15 0.68 66.2 1.6 NA, S0.70 66.5 —
— — NA, S350 81×80×32 15 0.62 70.5 — 0.60 70.6 —

0.5573.40.57500 22.5 NA, US———121×80×32 74.4—

A, Axisymmetric; NA, non-axisymmetric; S, steady; US, unsteady.
a Clift et al. [35]; b Pruppacher et al. [36]; c Tomboulides et al. [21].

direction and this has been termed as the ‘double-thread’ wake. Furthermore, experiments
[6,33] indicate that the double thread wake is stable up to a Reynolds number of about 280,
which corresponds well with the Hopf bifurcation that Natarajan and Acrivos [34] find at a
Reynolds number of 277.

Here we have performed one simulation at a Reynolds number of 250 that lies in the middle
of the steady non-axisymmetric regime. A symmetric flow is obtained first and subsequently a
small perturbation is given in the near wake for a short time period. This disturbance grows
under the influence of the instability mechanism until a saturated state is reached. As expected,
a non-axisymmetric steady state is attained. The drag and separation angle obtained are
compared with experimental results in Table I and good agreement is obtained. In addition,
Figure 5 shows a contour plot of uf for this flow and we find that it qualitatively compares
well with the spatial form of the eigenfunction corresponding to the steady non-axisymmetric
mode found by Natarajan and Acrivos [34] and shown in Figure 8(a) of their paper.

Two non-axisymmetric simulations have been performed at Reynolds number of 350 and
500. The grid and domain size employed in these simulations are indicated in Table I. At these
Reynolds numbers, the sphere wake exhibits strong vortex shedding and this allows us to
validate the solver in the unsteady regime. For both these simulations, a mean axisymmetric
flow is obtained first and subsequently a small non-axisymmetric disturbances is provided for
a short time in the near wake. The disturbance grows in time due to the inherent instability of

Figure 5. Contour plot of the azimuthal component of velocity uf, for flow past a sphere at Red=250. Natarajan and
Acrivos [34] have computed the eigenfunction corresponding to the most unstable mode in this steady, non-axisymmet-
ric regime. The azimuthal velocity corresponding to this mode is shown in Figure 8(a) of their paper and it compares

well with the contours obtained in the current simulation.
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Figure 6. Time variation of drag and side-force coefficients computed from simulations of flow past a sphere. (a)
Red=350 (b) Red=500.

the flow and the simulations are continued well beyond the time where a stationary flow is
obtained. The mean drag and separation angle obtained from these simulations are tabulated
in Table I and we find good agreement with experimental results. The time variation of the
force coefficients for both these flows has been shown in Figure 6 and a number of interesting
observations can be made. First, we find that in contrast to the cylinder wake where the
maximum lift force is comparable with the drag force [38], in the sphere wake, the side force
on the sphere is about an order of magnitude smaller than the drag force. This has significance
in the context of fluid–structure interactions since it implies that the sideways motion of
spheres immersed in a uniform flow would be quite small and could perhaps be neglected in
some applications. Secondly, the presence of vortex shedding is most evident through the
oscillatory nature of the side force. This plot, therefore, also indicates that vortex shedding is
more organized at the lower Reynolds number since the side forces vary in a periodic manner
for Red=350, whereas the variation of the side force for Red=500 indicates a more chaotic
shedding process.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 921–937 (1999)
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In contrast to conventional lower-order methods, spectral methods accurately resolve most
of the scales that can be represented on the mesh and this is particularly useful for studying the
intricate details of the vortex dynamics of these complex flows. Vortex shedding in the sphere
wake is an extremely complicated phenomenon and our knowledge of the mechanism of vortex
formation and vortex dynamics in the sphere wake is quite limited. Experiments [6,8] indicate
that the unsteady sphere wake undergoes a sequence of distinct transitions in a short Reynolds
number range between 300 and 1000 and with each transition, the vortex shedding becomes
increasingly complex. Here we examine the vortical structures obtained in the current simula-
tions and compare them with those observed in experiments.

A number of different techniques can be used for identifying and extracting vortical
structures. The most straightforward approach is to visualize contours of vorticity. However,
with this approach, regions of high strain rate, like, for example, boundary layers, are the main
features that are extracted and these might not correspond to regions with high rotation.
Furthermore, regions of high strain extracted through this method can hide the real topology
of the vortical structures. In the visualization of three-dimensional vortical structures in
cylinder wakes [39,40], it has been found that identifying vortical structures by the imaginary
part of the eigenvalue of the velocity gradient tensor (denoted by li) brings out the vortex
topology in a clear and crisp manner. As shown by Chong et al. [4] and Dallmann et al. [42]
complex eigenvalues of the deformation tensor are found in regions where the rotation
dominates over strain and the streamlines are locally circular. Thus, the imaginary part of the
complex eigenvalues of the deformation tensor can be used to identify vortical structures. In
the figures presented here, vortical structures in the sphere wake have been visualized by
plotting one isosurface of li. For further details on this method, the reader is referred to the
papers by Chong et al. [41] and Dallmann et al. [42].

Figure 7. Two views of the vortex topology observed in the wake of a sphere at Red=350. The vortical structures
have been visualized by plotting one isosurface of li corresponding to a value of 0.1. (a) Perspective view of the wake
which shows the interconnected loop structure of the vortices. (b) View along the plane of symmetry. The symmetry
plane is indicated by a dash–dot line. The isosurface has been terminated near the sphere surface so as to clearly show

the position of the sphere.
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Figure 8. Perspective view of the vortex topology observed in the wake of a sphere at Red=500. The vortical
structures have been visualized by plotting one isosurface of li corresponding to a value of 0.06. The figure shows the
absence of planar symmetry in the near wake and the formation of vortex rings in the downstream region of the wake.

The isosurface has been terminated near the sphere surface so as to clearly show the position of the sphere.

Figure 7 shows two views of the vortex topology observed for Red=350 at one time instant.
The most striking feature observed in the bottom view is the apparent symmetry of the wake
about a plane passing through the wake centreline. Planar symmetry in the unsteady sphere
wake has been observed in experiments in the range 300BRedB420 by Sakamoto and Haniu
[8] and has also been confirmed in the simulations of Tomboulides et al. [21]. In addition to
this, recent flow visualizations of Provansal et al. [43] also clearly shows the presence of planar
symmetry in this range of Reynolds numbers. Change in the orientation of the plane of
symmetry can be detected by computing the phase angle between the two component of side
force. For this flow we find that the two components are virtually phase locked with negligible
change in the phase angle thereby indicating that the flow in the near wake maintains a fixed
plane of symmetry at all times during the shedding process. Furthermore, the top figure shows
the three-dimensional structure of the wake and it can be seen that vortex shedding is
characterized by the appearance of interconnected vortex loops similar in shape to those
observed in the experiments [6,8]. The Strouhal number, which is given by St= fd/U�, where
f is the shedding frequency, is computed from the time variation of the azimuthal component
of velocity in the near-wake and is found to be equal to 0.140. The Strouhal number
determined in experiments by Sakamoto and Haniu [8,45] at this Reynolds number lies
between 0.13 and 0.15, and therefore the Strouhal number predicted by the current simulation
is in good agreement with the experiments.

Although extensive tests of the outflow boundary condition have been carried out previously
in cylindrical geometries [28], the adequacy of the domain size for the current simulations still
needs to be demonstrated. Therefore, in order to check the influence of the domain size and
exit boundary condition on the computed flow field, another simulation has been carried out
at a Reynolds number of 350. For this simulation, a domain size with Ro/d=22.5 has been
chosen and this is 50% larger than the previous simulation. Furthermore, in order to maintain
the same nominal resolution as the previous simulation, a 121×80×32 grid is employed. The
mean drag and separation angle computed from this simulation is found to be within 1% of
the values obtained on the smaller domain. The Strouhal number depends directly on the
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vortex dynamics in the wake is therefore expected to be more sensitive to the domain size.
However, we find that the Strouhal number computed in the big domain is virtually identical
to that obtained in the small domain simulation. This clearly shows that the outflow boundary
condition performs satisfactorily and that a domain size of Ro/d=15 is adequate for the
current simulations.

At the higher Reynolds number of 500, experiments [6,8] indicate that the wake does not
exhibit any planar symmetry. The vortex loops are formed in a somewhat irregular fashion and
the azimuthal location at which these loops are formed changes slowly from cycle to cycle. A
similar scenario emerges from our simulation. Figure 8 shows a flow visualization of this wake
and it can be observed that flow is more complex than was observed at the lower Reynolds
number. The figure shows that the vortex loops have a structure similar to that observed at the
lower Reynolds number; however, the loops themselves do not have any preferred orientation.
The phase angle for the side forces has been computed and we find that the phase angle drifts
continuously in a quasi-periodic fashion. Another interesting feature is the reorganization of
these vortex loops into vortex rings in the downstream region of the wake. The presence of
vortex rings at these Reynolds numbers has been reported previously only in the experiments
of Margavey and Bishop [6] and the current simulation provides the first numerical confirma-
tion of this phenomenon. The computed Strouhal number is about 0.186, which lies within the
range of 0. 18–0.19 measured by Sakamoto and Haniu [8,45] and also matches reasonably well
with the value of 0.176 predicted by Tomboulides et al. [21].

Figure 9. Streamline patterns obtained from simulations of steady flow past a prolate spheroid with aspect ratio
E=0.5. (a) a=0°, Red=100 (b) a=10°, Red=50 (c) a=10°, Red=100.
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3.2. Simulations of flow past a prolate spheroid

In this study, simulations of flow past spheroids have been limited to the steady regime since
the meagre amount of data available on prolate spheroids is limited to numerical results for the
zero angle-of-attack, steady flow case. The first simulation carried out is for a prolate spheroid
of aspect ratio 0.5 with an angle-of-attack of 0° and Reynolds number of 100. A 81×40×2
mesh with clustering in the wake is used for this simulation. Figure 9(a) shows the streamline
pattern obtained for this flow and it shows the presence of a small symmetric separation
bubble. Masliyah and Epstein [45] performed simulations of steady, symmetric flow past
prolate spheroids using a second-order finite difference scheme in conjunction with the
vorticity–streamfunction formulation. For the same configuration simulated here, they com-
puted an eddy length of 0.31 and a total drag coefficient of 1.18, which compares well with the
corresponding prediction from our simulations of 0.29 and 1.17 respectively. Furthermore the
ratio of skin friction to form drag found in their simulations was 3.0 and the corresponding
value in the current simulation is 2.94. Thus, we find that there is reasonably good agreement
between our simulations and the simulation of Masliyah and Epstein [45].

In addition to the zero angle-of-attack simulation, two simulations have been carried out for
the same prolate spheroid at an angle-of-attack of 10°. These represent good test cases for
evaluating the performance of the solver and the stability of the numerical scheme. In general,
grid curvature is more pronounced for ellipsoidal geometries and thus the cross-derivative
terms that are treated explicitly are expected to play a more significant role. Furthermore, in
flows with non-zero angle-of-attack, there is mean convection across the poles and this is a
particularly severe test of the pole filtering strategy. One simulation has been carried out at a
Reynolds number of 50 and employs a 81×40×16. The second simulation is at a Reynolds
number of 100 and has been performed on a 81×60×16 mesh. It is found that both these
simulations are stable for CFL#0.5, thereby indicating that the pole filtering strategy is
effective even for these simulations. The drag coefficient obtained from these simulations is
plotted in Figure 4. It can be seen that at these lower Reynolds number, since the skin friction
makes the dominant contribution to the total drag, the drag coefficient for spheroids that have
a larger surface area, is higher than the corresponding values for the sphere. The streamline
pattern on the symmetry plane for both these simulations is also shown in Figure 9(b) and (c).
It is found that there is no flow separation in the symmetry plane at the lower Reynolds
number, however, at the higher Reynolds number, a small separation bubble is found.
Bifurcation of separation patterns in three-dimensional separated flows is an extremely
complicated and interesting subject [1] and an investigation is currently underway to study
pattern formation and vortex dynamics in these non-axisymmetric wakes.

4. CONCLUSIONS

A highly accurate Fourier–Chebyshev pseudo-spectral method has been developed for simulat-
ing three-dimensional, viscous incompressible flow past spheres and spheroids. The solver
employs a Chebyshev scheme in the wall-normal direction and a Fourier scheme in the
azimuthal direction. In the other wall-tangential direction, a restricted Fourier series that
satisfies the parity conditions across the poles is used. A number of issues including stability
condition at the pole, outflow boundary condition and efficient inversion of the pressure
Poisson equation have been addressed. In particular, the stability restriction at the poles is
relaxed to a large extent by using an approach that combines implicit treatment of selected
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terms with low-pass filtering of the velocity field near the poles. The solver has been validated
primarily by computing flow past a sphere in the steady as well as unsteady regime and good
agreement of critical parameters, like drag coefficient and Strouhal number, is obtained with
established experimental [8,35,44] and numerical [21,36] results. Furthermore, it has been
shown that the solver is capable of accurately predicting the complex vortex dynamics in the
unsteady wake of these three-dimensional bluff-bodies. Simulations of flow past spheroids
have been carried out in the stable wake regime and for the zero angle-of-attack, axisymmetric
case, we find that our results match reasonable well with the numerical results of Masliyah and
Epstein [45].
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