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Abstract

Numerical stability and accuracy of finite-difference schemes on a skewed non-uniform mesh are investigated to pro-
vide guidelines for mesh design and for devising appropriate solution methods when mesh skewness is unavoidable. In
the current analysis, a linear advection–diffusion equation in a Cartesian coordinate system is transformed into a cur-
vilinear one corresponding to a skewed mesh. A finite-difference approximation of the transformed equation leads to
the leading-order error terms which are responsible for time-step restrictions and numerical instability. A truncation
error analysis of central-difference approximation reveals the effects of mesh non-uniformity and skewness on the solu-
tion quality. In addition, a modified wavenumber analysis is performed for the central- and upwind-difference schemes
coupled with time-integration methods, to examine the effects of mesh skewness angle and flow direction relative to the
mesh angle on the numerical stability. In general, severe mesh skewness leads to restrictions on the allowable cell Peclet
number and time-step size and also increases phase and amplitude errors.
� 2005 Elsevier Inc. All rights reserved.
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0. Introduction

Finite-difference schemes have been used widely to obtain numerical solutions of governing equations
for fluid flow inside or around complex geometries. Geometric complexity and complicated boundary
conditions often necessitate the use of skewed meshes, which can have a strong effect on the numerical
stability properties and accuracy of the scheme. The detrimental effects of highly skewed meshes on the
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solution quality and numerical stability have been reported in a number of recent large-eddy simula-
tions [1–3]. For example, You et al. [1] observed severe numerical instability in a large-eddy simulations
of rotor tip-leakage flow which advects through a highly skewed mesh. By performing numerical tests,
they found that a simulation employing the divergence or skew-symmetric form of the nonlinear terms
in the Navier–Stokes equations produces a more stable solution than employing the advection form.
Mittal et al. [2] and Wang and Moin [3] also observed numerical instability associated with mesh skew-
ness in large eddy simulations of flow over a turbine blade and a naval hydrofoil, respectively. The
motivation of the present study is to gain a better understanding of the mesh skewness related insta-
bility in large-eddy simulations with non-dissipative numerical schemes and to devise appropriate
remedies when severe mesh skewness is unavoidable.

As an example, Fig. 1 shows two meshes designed for flow over a compressor blade with a large stagger
angle of 57�. The mesh in Fig. 1(a) is skewed everywhere, whereas in Fig. 1(b), mesh skewness is limited to
the blade chord region, and the inlet and outlet sections are Cartesian. Except for the skewness angle, the
Fig. 1. Two computational meshes used in conjunction with immersed boundary method for flow over a two-dimensional compressor
blade (1/6 lines plotted) and contours of instantaneous spanwise vorticity in the wake. Mesh size of 449 · 351 · 129, same grid spacing,
and Reynolds number of 104 based on the blade chord and inflow free-stream velocity are employed for both (a) and (b). 40 contour
levels in the range of �20 to 20 are shown. Negative values are dashed.



186 D. You et al. / Journal of Computational Physics 213 (2006) 184–204
same mesh parameters such as spacings and stretching ratios are employed for both meshes. Since the grid
lines are better aligned with the flow direction in the first case, better resolution is expected in the wake.
However, the second grid, which is essentially Cartesian in the wake, exhibits better numerical stability
characteristics. It is found that numerical instability becomes a serious problem in the blade wake when
the vortex is convected along the skewed mesh.

In this example, it is also noted that numerical instability is related to not only the numerical scheme and
mesh skewness but also the flow features simulated and mesh resolution. Numerical instability represented
by the �wiggles� is less severe or non-existent in the blade boundary layer region, where the mesh is also
highly skewed as shown in Fig. 1. A major difference between the skewed mesh regions around the blade
and in the downstream wake is the flow characteristics and mesh resolution. In contrast to the strong vortex
structures in the wake, the flow near the blade surfaces is dominated by a parallel boundary layer flow
aligned to the one set of grid lines with better resolution. In Reynolds-averaged Navier–Stokes (RANS)
computations of related problems (e.g. [4–6]), numerical wiggles are generally absent because of strong dis-
sipation, and hence the mesh skewness effects are ignored, even though they can affect the accuracy of the
solution.

Truncation error analysis has been a popular tool to study the effects of mesh non-orthogonality and
skewness. Thompson et al. [7] showed that the truncation errors from a finite-difference approximation
of the first derivative of a function on a non-orthogonal mesh are significantly amplified if the mesh
becomes highly skewed. The truncation error analysis of Lee and Tsuei [8], based on the upwind discret-
ization for the advection terms in a curvilinear coordinate system, revealed that the errors are affected by
the grid cell size and skewness angle, as well as the flow direction. Recently, Sankaranarayanan and
Spaulding [9] investigated the effects of grid non-orthogonality on the solution of the shallow water
equations, which only include the first-order temporal- and spatial-derivative terms. They concluded that
truncation errors, essentially the dispersion errors, of the finite-difference approximations increase with
grid skewness. Mesh skewness has also been identified as the source of the numerical dispersion error
and reduced numerical stability in the time-marching equation for an electric field in electro-magnetic
applications [10,11].

However, the effects of mesh skewness on the quality of the numerical solution and on the procedure to
obtain the solution of full Navier–Stokes or even linear advection–diffusion equations are still not well
understood. The truncation error analysis based on spatial discretization alone, as in [7,8], cannot elucidate
the detailed effects of mesh skewness on the stability of numerical integration. Also, as will be shown later,
mesh skewness significantly influences the numerical errors associated with the discretization of diffusion
terms and thereby results in stability problems for the advection–diffusion type equations. As the large-eddy
simulation technique, which is relatively sensitive to mesh quality, is applied to increasingly more complex
geometries, an improved understanding of the effects of mesh skewness and non-uniformity on the solution
and the numerical procedure is of great importance.

The objective of this study is to examine the cause of numerical instability in finite-difference approx-
imations of partial differential equations on a skewed mesh, and its effect on the solution quality. For
this purpose, a finite-difference representation of an advection–diffusion equation involving temporal
and spatial derivatives on a skewed mesh is constructed by a coordinate transformation. The derivatives
with respect to the curvilinear coordinates are then replaced with finite-difference expressions on a uni-
form grid in the transformed domain. Unlike previous investigations, the present study takes a more
comprehensive approach in that the unsteady advection–diffusion equation is analyzed as a whole,
and various spatial-discretization schemes and time-integration schemes are considered. Both the trun-
cation error and modified wave number analyses are performed to reveal the various effects of the mesh
skewness and non-uniformity.

Specific goals of the present study are (i) to gain a physical insight into the characteristics of spatial dis-
cretization errors related to the mesh non-uniformity and skewness and (ii) to understand the effect of mesh
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skewness on the solution procedure including both the spatial discretization and temporal integration. To
achieve these goals, the modified equation for a semi-discretized system will first be derived to reveal the
leading order truncation error terms causing numerical instability. Then, a modified wavenumber analysis
will be utilized to investigate the effects of mesh-skewness on the solution procedure including the charac-
teristics of numerical errors and the maximum allowable time-step size for the temporally and spatially
discretized equation in the computational domain.
1. Truncation error analysis

The Taylor�s series expansion of any function f(n) describing a non-uniform mesh distribution along
n ¼ j

N results in:
Fig. 2.
compu
f ðnÞ ¼
f 0ð0Þnþ f 00ð0Þ

2!
n2 þ f 000ð0Þ

3!
n3 þ � � � ;

f 0ð0Þ j
N

� �
þ f 00ð0Þ

2!
j
N

� �2 þ f 000ð0Þ
3!

j
N

� �3 þ � � � ;

(
ð1Þ
where j = 0,1,2, . . .,N, and N is the number of mesh points. f(0) has been set to zero. For example, the
exponential and hyperbolic tangent functions commonly used for non-uniform mesh generations are given
by:
f ðnÞ ¼ 1

expðbÞ � 1
fexpðbnÞ � 1g; ð2Þ
and
f ðnÞ ¼ 1� tanh½bð1� nÞ�
tanhðbÞ . ð3Þ
These can all be expressed as Eq. (1).
In this study, a stretched or compressed and skewed mesh with a constant skewness angle in a two-

dimensional physical domain (x,y), as shown in Fig. 2, is constructed using a mapping function which con-
sists of the first two terms in Eq. (1):
ðx; yÞ ¼ ða0nþ a1n
2; ða0nþ a1n

2Þ tan hþ b0gþ b1g2Þ; ð4Þ
Coordinate systems and definitions of mesh skewness angle, flow direction, and convection velocity: (a) physical domain; (b)
tational domain.
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where a0, a1, b0, and b1 are constants representing mesh spacing and stretching/compression in the x and y

directions with n and g being independent variables in the transformed generalized coordinates in the com-
putational domain (n,g). h is the mesh-skewness angle as defined in Fig. 2.

The derivatives of independent variables in the Cartesian coordinates with respect to those in the trans-
formed coordinates are:
xn ¼ a0 þ 2a1n; xnn ¼ 2a1; xnnn ¼ 0;

xg ¼ 0; xgg ¼ 0; xggg ¼ 0;

yn ¼ ða0 þ 2a1nÞ tan h; ynn ¼ 2a1 tan h; ynnn ¼ 0;

yg ¼ b0 þ 2b1g; ygg ¼ 2b1; yggg ¼ 0.

ð5Þ
Chain rules are utilized to relate metric coefficients in both coordinates as:
nx gx
ny gy

 !
¼

xn yn
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 !�1

¼
1=xn �yn=xnyg
0 1=yg

 !
; ð6Þ
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A combination of Eqs. (6) and (7) with Eq. (5) results in:
nx ¼
1

a0 þ 2a1n
; ny ¼ 0; nxx ¼

�2a1
ða0 þ 2a1nÞ3

;

gx ¼
� tan h
b0 þ 2b1g

; gy ¼
1

b0 þ 2b1g
;

gxx ¼
�2b1tan2h

ðb0 þ 2b1gÞ3
; gxy ¼

2b1 tan h

ðb0 þ 2b1gÞ3
; gyy ¼

�2b1
ðb0 þ 2b1gÞ3

.

ð8Þ
To facilitate the analysis, the two-dimensional linear advection–diffusion equation is considered instead of
the Navier–Stokes equations:
ou
ot

þ ~C
x ou
ox

þ ~C
y ou
oy

¼ 1

Re
o2u
ox2

þ o2u
oy2

� �
. ð9Þ
All the coordinate variables, velocity components, and time are non-dimensionalized by the reference
length scale L, the convection velocity C, and L/C. ~C

xð¼ Cx=C ¼ cos aÞ and ~C
yð¼ Cy=C ¼ sin aÞ are the

non-dimensionalized convection velocities in the x and y directions, respectively, and Re = CL/v, where
v is viscosity. The coordinate transformation of Eq. (9) with respect to n and g results in:
ou
ot

þðnxunþgxugÞcosaþðgyugÞsina¼
1

Re
ðnxxunþn2xunnþ2nxgxungþgxxugþg2xuggþgyyugþg2yuggÞ. ð10Þ
A semi-discretized equation is constructed by treating the spatial derivatives in Eq. (10) with the following
second-order central-difference approximations:
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ð11Þ
Finally, an inverse coordinate transformation of the semi-discretized equation using chain rules, in combi-
nation with Eqs. (5) and (8) results in the modified equation in the physical domain:
ou
ot

þ ou
ox

cos aþ ou
oy

sin a� 1

Re
o2u
ox2

þ o2u
oy2

� �
¼ Error. ð12Þ
Error on the right-hand side of Eq. (12) is arranged in the following form:
Error ¼ A1uxx þ A2uxy þ A3uyy þ B1uxxx þ B2uxxy þ B3uxyy þ B4uyyy þ C1uxxxx þ C2uxxxy þ C3uxxyy

þ C4uxyyy þ C5uyyyy ; ð13Þ

where coefficients Ai, Bi, and Ci are categorized in terms of the source of the errors in Table 1.

The following relations are applied to relate the grid spacings in the computational domain to those in
the physical domain:
Dni;j ¼ Dn ¼ ðnxDxÞi;j þ ðnyDxÞi;j ¼
Dxi

a0 þ 2a1ni
¼ Dxi

xni
;

Dgi;j ¼ Dg ¼ ðgxDxÞi;j þ ðgyðDy þ Dx tan hÞÞi;j ¼
Dyj

b0 þ 2b1gj
¼

Dyj
ygj

;

ð14Þ
where xni ¼ a0 þ 2a1ni and ygj ¼ b0 þ 2b1gj for i, j = 0,1,2, . . .,N.
1
tion error coefficients in Eq. (13) in terms of their sources
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The error terms in Eq. (13) influence the solution with respect to both amplitude and phase. To examine
the details, a solution of Eq. (12) is considered by letting u ¼ /ðtÞeiðkxxþkyyÞ:
o/
ot

¼ � iðkx cos aþ ky sin aþ ePÞ þ
1

Re
k2x þ

1

Re
k2y � eA

� �� �
/; ð15Þ
where kx and ky are wavenumbers in the x and y directions, respectively, and
eP ¼ B1k
3
x þ B2k

2
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2
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3
y ;
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2
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2
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4
x þ C2k

3
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2
xk

2
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3
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4
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ð16Þ
The eP and eA terms describe deviations from the exact solution in phase and amplitude in the physical do-
main. Coefficients of odd-derivative error terms (Bi) are related to the phase speeds of dispersion errors
while their signs correspond to the directions of propagation. On the other hand, the coefficients of
even-derivative terms either enhance or reduce the dissipation of the original advection–diffusion equation,
and alter the amplitude of the solution. In the following subsections, the contributions of both dispersion
and diffusion error terms to the numerical solution and to stability are discussed in detail.

1.1. Uniform Cartesian mesh

When a uniform Cartesian mesh is employed, the errors are reduced to their simplest and well-known
forms:
eP ¼ ePðbaseÞ ¼ �Dx2

6
fk3x cos ag �

Dy2

6
fk3y sin ag; ð17Þ

eA ¼ eAðbaseÞ ¼
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12
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12

1
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� �
. ð18Þ
Truncation errors corresponding to the central-difference approximations of diffusion terms amplify the
solution while the errors related to the advection terms do not affect the amplitude of the solution. In this
baseline case, mesh spacings are the only parameters determining the dispersion and dissipation errors.

1.2. Non-uniform Cartesian mesh

Mesh stretching or compression results in amplitude and phase errors which include contributions from
both advection and diffusion terms.
eP ¼ ePðbaseÞ þ ePðstretchingÞ;

ePðstretchingÞ ¼
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ð19Þ
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where pi ¼ xnn=x2ni and qj ¼ ygg=y
2
gj
. This type of mesh non-uniformity has been studied extensively and is

known to a source of numerical instability [7,12,13].



Table 2
Mesh parameters for five different mapping functions

a0 a1 r p

0.3 0.7 1.0083 to 1.0456 0.4925 to 14.1994
0.5 0.5 1.0067 to 1.0198 0.4504 to 3.8447
1.0 0 1.0000 0
1.5 �0.5 0.9806 to 0.9933 �3.8447 to �0.4504
1.7 �0.7 0.9564 to 0.9917 �14.1994 to �0.4925

Note: r ¼ xðnþDnÞ�xðnÞ
xðnÞ�xðn�DnÞ for N = 100.
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A sufficient condition for maintaining the order of accuracy (second-order in this study) is that the mag-
nitudes of pi and qj are bounded as xni and ygj approach zero [7]. Therefore, not only the mesh stretching or
compression ratio, but also the smoothness of the mesh distribution function have a significant effect on the
solution quality and stability. Absolute values of non-dimensionalized pi and qj are roughly 0.5–14 for 0.7–
4.5% of mesh stretching/compression ratio r in the examples considered in Table 2.

Figs. 3 and 4 show the phase and amplitude errors as a function of mesh skewness angle (h) at
Re = 10�2 and 104, respectively. Each figure contains the total truncation error and truncation errors
in terms of their sources for both stretched and compressed mesh cases. In this section, the truncation
ε

a

q

ε

b

q

ε

c

q

Fig. 3. Truncation errors as a function of mesh skewness angle (h). a = h, Re = 10�2, Dx = Dy, and kx = ky = 1 are used: (a) phase
error in case of p = 3.84; (b) phase error in case of p = �3.84; (c) amplitude error in case of p = ±3.84. —, total error; - - - -, base error;
� � �, stretching error; – -–, skewness error; – Æ–, combination error. Errors are normalized with the total error at h = 0�.
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Fig. 4. Truncation errors as a function of mesh skewness angle (h). a = h,Re = 104, Dx = Dy, and kx = ky = 1 are used: (a) phase error
in case of p = 3.84; (b) amplitude error in case of p = 3.84; (c) amplitude error in case of p = �3.84. —, total error; - - - -, base error; � � �,
stretching error; – -–, skewness error; – Æ–, combination error. Errors are normalized with the total error at h = 0�.

192 D. You et al. / Journal of Computational Physics 213 (2006) 184–204
errors related to the mesh stretching/compression are discussed, and other curves will be discussed in
Sections 1.3 and 1.4.

In the diffusion-dominated case, the phase errors associated with mesh stretching/compression propagate
in opposite directions depending on signs of pi and qj for given kx and ky (� � � in Figs. 3(a) and (b)). The ampli-
tude errors cause a reduction in the effective viscosity in Eq. (9), and hence amplify the solution in time for
both stretching and compression cases (see error terms (20)A and (20)C in Eq. (20) and � � � in Fig. 3(c)).

If the viscosity is negligible, the effect of mesh non-uniformity is only significant for amplitude errors (� � �
in Figs. 4(b) and (c)). Amplification or damping of the solution is determined by the signs of error terms
(20)B and (20)D. This can cause the non-physical deformation of a vortex propagating through a non-
uniform mesh region at a high Reynolds number. A highly stretched mesh ðpi cos a > 0 and qj sin a > 0Þ
is also responsible for numerical instability by enhancing amplification errors (� � � in Fig. 4(b)). Similar
observations were made by Cain and Bush [12].

1.3. Uniform skewed mesh

As observed in the uniform Cartesian mesh case, advection terms only modulate phase errors while dif-
fusion terms are responsible for amplitude errors. However, the characteristics of both errors are strongly
affected by the tangent functions of skewness angle (h).
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eP ¼ ePðbaseÞ þ ePðskewnessÞ;

ePðskewnessÞ ¼ �Dx2

6
k3y cos a

� �
tan3h|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð21ÞA

þf� � �gtan2hþ � � � ; ð21Þ

eA ¼ eAðbaseÞ þ eAðskewnessÞ;

eAðskewnessÞ ¼ �Dx2

4

1

Re
k4y

� �
tan4h|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð22ÞA

þf� � �gtan3hþ � � � . ð22Þ
For skewness angles greater than 45�, the error terms (21)A and (22)A dominate other error terms be-
cause of the tan3h and tan4h factors, respectively. On the other hand, magnitudes of the error terms are
rapidly reduced as h approaches zero.

The most notable feature in the skewness related errors is the excessive dissipation ((22)A). The numer-
ical dissipation is a peculiar aspect of mesh skewness errors since it is non-existent in central-difference
schemes on a Cartesian mesh (see Sections 1.1 and 1.2) except for the region of high mesh compression
(� � � in Fig. 4(c)). The numerical dissipation is especially notable in the case of small Re (– -– in
Fig. 3(c)) while the numerical dissipation is not significant except for an impractical skewness angle
(h � 80�) in the case of high Re (– -– in Figs. 4(b) and (c)). On the other hand, as seen in Fig. 4(a) (– -–),
the mesh skewness significantly enhances the phase error in the high Re case while the phase error is not
significant in the diffusion-dominated case.

Therefore, if a uniform (or mildly non-uniform) skewed mesh is employed, the excessive numerical dis-
sipation will deteriorate the solution in the case of low Reynolds number, while the enhanced numerical
dispersion will be a main concern in the high Reynolds number case.

1.4. Non-uniform skewed mesh

All error terms in Eq. (13) or in Table 1 are present on a non-uniform skewed mesh. More drastic effects
on both phase and amplitude errors can be induced by the combination of mesh stretching/compression
and skewness
eP ¼ ePðbaseÞ þ ePðstretchingÞ þ ePðskewnessÞ þ ePðcombinedÞ;

ePðcombinedÞ ¼ � 2Dx2i
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3
y

� �
tan3h|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð23ÞA

þf� � �gtan2hþ � � � ; ð23Þ
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2
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4
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2
y

( )
tan2h|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð24ÞA

þ Dx2i
2

pik
2
y cos a

� �
tan2h|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð24ÞB

þf� � �g tan h. ð24Þ
The combined effect of mesh non-uniformity and skewness on the phase errors is induced by the discreti-
zation of viscous terms. With moderate to high viscosity, phase errors are dominated by the (23)A term
which propagate in opposite direction depending on the sign of qj (– Æ– in Figs. 3(a) and (b)). In an advec-
tion-dominated case, as shown in Section 1.3, the total dispersion error is characterized by the error terms
generated from the discretization of advection terms (Eq. (21)).
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Both the combination error (24)A and the skewness only error (22)A are important in the viscous-
dominated case, and they result in amplification of the solution except for a very large skewness
angle (h > 78� in the case considered in Fig. 3(c), see — and – Æ– for total and combination amplitude
errors). However, in the advection-dominated case, the error term (24)B becomes the dominant one.
This error also appears as either amplification or damping effects depending on the convection velocity
~C
xð¼ cos aÞ and mesh stretching parameter pi. For instance, mesh stretching (pi cos a > 0) causes a

significant amplification of error which can lead to numerical instability (– Æ– in Fig. 4(b)). In
contrast, mesh compression (pi cos a < 0) results in enhanced dissipation by the factor of tan2h
(– Æ– in Fig. 4(c)).

In addition to the non-uniform Cartesian mesh case where mesh stretching results in enhanced amplifi-
cation (see Section 1.2), a stretched and highly skewed mesh further enhances amplification error and pro-
motes numerical instability. This situation is often encountered in the vortex shedding from the trailing
edge of a turbine or compressor blade (see Fig. 1 and [1,2]). From this perspective, the meshes employed
by Wu and Durbin [14] and Mittal et al. [2] were able to avoid skewness in the wake region similar to
the one considered in Fig. 1(b).

Interestingly, numerical instability in the blade boundary layer was less severe or non-existent even
though mesh skewness angles are quite large in the example considered in Fig. 1 (hmax = 57�) and in the
simulation of Wu and Durbin [14] (hmax = 63.2�). In both cases, the streamwise mesh stretching ratios in
the blade region are much smaller than those in the wake region. Therefore, in the high Reynolds number
case, the amplitude error terms (20)A, (20)C, and (24)A become negligible. In addition, unlike the unsteady
convecting vortex structures in the wake, the flow in the boundary layer is predominantly aligned to one set
of grid lines. This indicates that numerical instability noted in the present study may be caused by not only
the numerical scheme and mesh skewness but also the characteristics of the flow and grid resolution. This
feature will be further discussed in Section 2.4.

The present truncation error analysis also explains the findings of Armenio and Piomelli [15]. They per-
formed large-eddy simulation of a plane turbulent channel flow employing both Cartesian and skewed
meshes, and obtained similar results in both cases. Since they used a uniform mesh spacing in the stream-
wise direction, the particularly detrimental effect of combining mesh skewness with stretching/compression
was not present.
2. Modified wavenumber analysis

The truncation error analysis revealed how mesh stretching and skewness affect the quality of the
numerical solution in terms of phase and amplitude errors. However, the analysis was limited to
the spatial-discretization errors in a semi-discretized equation, since the inclusion of at least second-
order time discretization makes the analysis very complicated. On the other hand, the modified wave-
number analysis allows a quantitative investigation of the effects of mesh skewness on the solution
quality and also on the temporal stability of the solution method in the transformed computational
domain.

In interpreting the results of the present modified wavenumber analysis, it should be noted that the
errors and stability of the solution method are determined in the computational coordinates (n,g). There-
fore, the absolute magnitudes and relative variations of the errors different in the physical domain (x,y).
However, since the actual computation is performed in the transformed coordinates, it is more meaningful
to discuss the stability limit of time-integration in those coordinates.

By assuming a solution of the following form:
uðn; g; tÞ ¼ /ðtÞeiðknnþkggÞ; ð25Þ
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the partial differential equation (10) becomes an ordinary differential equation
d/ðtÞ
dt

¼ k/ðtÞ; ð26Þ
where � �

k ¼ �i nxkn cos aþ gxkg cos aþ gykg sin a�

1

Re
ðnxxkn þ gxxkg þ gyykgÞ

� 1

Re
ðn2xk2n þ 2nxgxknkg þ g2xk

2
g þ g2yk

2
gÞ

¼ �i
cos a
Dxi

ðknDnÞ þ
ðtan a� tan hÞ cos a

Dyj
ðkgDgÞ

 !
� i

1

Re
pi
Dxi

ðknDnÞ þ
qj tan hðtan h� 1Þ

Dyj
ðkgDgÞ

 !

� 1

Re
1

Dx2i
ðknDnÞ2 �

2 tan h
DxiDyj

ðknDnÞðkgDgÞ þ
1þ tan2h

Dy2j
ðkgDgÞ2

 !
. ð27Þ
Finite-difference approximations of the spatial derivatives replace wavenumbers kn and kg in Eq. (27) with
modified wavenumbers. Modified wavenumbers corresponding to the second-order central-difference
approximations of the first and second derivatives are
k1Cn ¼ sinðknDnÞ
Dn

;

k1Cg ¼ sinðkgDgÞ
Dg

;

k2Cn ¼ 2ð1� cosðknDnÞÞ
Dn2

;

k2Cg ¼ 2ð1� cosðkgDgÞÞ
Dg2

;

ð28Þ
in the n and g directions.
For comparison, the modified wavenumbers for the second-order upwind approximations of the first

derivatives,
k1Un ¼
ðsignnÞið3� 4 cosðknDnÞ þ cosð2knDnÞÞ þ ð4 sinðknDnÞ � sinð2knDnÞÞ

2Dn
;

k1Ug ¼
ðsigngÞið3� 4 cosðkgDgÞ þ cosð2kgDgÞÞ þ ð4 sinðkgDgÞ � sinð2kgDgÞÞ

2Dg
;

ð29Þ
are also considered, where
signn ¼ � for nx cos a > 0;

signn ¼ þ for nx cos a < 0;

signg ¼ � for gx cos aþ gy sin a > 0;

signg ¼ þ for gx cos aþ gy sin a < 0.

ð30Þ
The modified wavenumbers, k1CnðgÞ and k1UnðgÞ, are compared in Fig. 5. Distinct features of modified wavenum-
bers also influence the global properties of the discretized ordinary-differential equation (Eq. (26)). Note
that the modified wavenumber of second-order central-difference does not introduce imaginary values,
while the upwind scheme shows a dissipative feature, especially at high wavenumbers (Fig. 5(b)). The pres-
ent analysis can also be extended to other spatial-discretization methods including compact schemes.

For a quantitative analysis, a two-dimensional wavenumber space is constructed by discretizing the do-
main of �p 6 knDn,kgDg 6 p with 360 equal intervals in both directions. In this domain, the wavenumbers
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Fig. 5. (a) Real parts and (b) imaginary parts of modified wavenumbers. —, exact (spectral); - - - -, second-order central-difference; � � �,
second-order upwind-difference. — and - - - - are coincident with the line of k0D = 0 in (b).
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kn and kg are used to represent a spectral (exact) solution, while they are replaced withmodified wavenumbers
to represent finite-difference approximations. Advection terms are approximated by either central- or up-
wind-differences, and diffusion terms including cross-derivative terms are approximated by central difference.

2.1. Mesh skewness effects on numerical errors

The numerical errors associated with spatial discretizations on a skewed mesh are considered in a loca-
tion of Dxi = Dyj = D in Eq. (27) where pi(= qj) and D are set to 3.84 and 5.05 · 10�3 which correspond to
the mesh stretching ratio r = 2% in the considered mapping function (see the second set of mesh parameters
in Table 2). Eq. (27) is rewritten in this location as
kDt ¼ �isPexððknDnÞ þ ðtan a� tan hÞðkgDgÞÞ � ispiDððknDnÞ þ tan hðtan h� 1ÞðkgDgÞÞ

� sððknDnÞ2 � 2 tan hðknDnÞðkgDgÞ þ ð1þ tan2hÞðkgDgÞ2Þ; ð31Þ
where Pex ¼ ~C
x
ReD ¼ ReD cos a and s = Dt/(ReD2).

In Fig. 6, the real parts of the differences between the numerical and exact values of kDt/s (defined in Eq.
(31)) are shown. The numerical values are computed using modified wavenumbers for discretizations on a
Cartesian mesh (h = 0) with flow direction a = 45� and Re = 104 (or Pex = 35.7) (see Fig. 2 for definitions
of h and a). Two different methods of discretization are considered: a second-order central-difference
scheme for both advection and diffusion terms (henceforth denoted CD2), and a hybrid scheme consisting
of second-order upwinding for advection terms and second-order central-differencing for diffusion terms
(henceforth UD2).

In this Cartesian mesh, compared to the exact values, CD2 shows amplifications of solution which are
enhanced in the high wavenumber regions (Fig. 6(a)). On the contrary, as shown in Fig. 6(b), UD2 pro-
duces enhanced dissipation. The amplitude error characteristics of CD2 is dramatically changed when a
highly skewed mesh is employed. Fig. 7 depicts the differences between the numerical approximations
and exact values of kDt/s for a skewed mesh with h = 60�, a = 45�, and Re = 104. Unlike the Cartesian
mesh case, CD2 on a skewed mesh introduces dissipation errors in the lower left and upper right regions
of wavenumber space as shown in Fig. 7(a). The numerical dissipation even in a stretched mesh is a peculiar
aspect of mesh skewness related errors since it is usually non-existent in central-difference schemes in a
Cartesian mesh. On the other hand, similar to the Cartesian mesh case, UD2 suffers from excessive numer-
ical dissipation in a highly skewed mesh (Fig. 7(b)).



Fig. 6. Real parts of (kDt/s)numerical � (kDt/s)exact in wavenumber space at h = 0�, a = 45�, and Re = 104. (a) CD2; (b) UD2.
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In a highly skewed mesh, the central differencing is still preferred to the upwind differencing due to its
less dissipative feature which is particularly important in the large-eddy simulation of turbulent flow. As
will be discussed in Section 1.3, the use of the central differencing is advantageous in terms of allowable
maximum time-step size. The highly enhanced amplitude errors accompanying from the use of the upwind
differencing lead to a significantly reduced allowable time-step size.



Fig. 7. Real parts of (kDt/s)numerical � (kDt/s)exact in wavenumber space at h = 60�, a = 45�, and Re = 104. (a) CD2; (b) UD2.
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2.2. Mesh skewness effects on the cell Peclet number

Applying the first-order Euler explicit time-integration method and second-order central-difference
scheme to Eq. (26), and assuming a uniform skewed mesh of Dx = Dy = D and pi = 0 in Eq. (31), results
in the following amplification factor:



Fig. 8.
Pexmax f
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1þ kDt ¼ � ifsPexðsin/þ ðtan a� tan hÞ sin cÞg þ f1� 2sð1� cos/� tan h sin/ sin c

þ ð1þ tan2hÞð1� cos cÞÞg; ð32Þ
where / = knDn and c = kgDg, respectively. For a stable solution, |1 + kDt| 6 1 needs to be satisfied. This
constraint gives:
0 < s 6
1

Y max

; 0 < Pex2 6
4Y ð1� sY Þ

sX 2
; ð33Þ
where
X ¼ sin/þ ðtan a� tan hÞ sin c;
Y ¼ 1� cos/� tan h sin/ sin cþ ð1þ tan2hÞð1� cos cÞ.

ð34Þ
For instance, in the non-skewed, uniform mesh (h = 0) case with a = 45�, we obtain the well-known results
for a linear convection–diffusion equation [16]:
0 < s 6
1

4
; 0 < Pex2 6 4. ð35Þ
Fig. 8 shows the maximum allowable Peclet numbers (Pex) and time-step sizes (s) as a function of mesh
skewness angle for two sets of convection velocities, a = 45� and a = �45�. Regardless of the flow direction,
the maximum allowable viscous time-step size s decreases with the mesh skewness angle. In general, the
allowable Peclet number also decreases with the mesh skewness angle when it is greater than 45�. From
the relation CFL ¼ ~CDt=D ¼ s� Pe, the convective time-step also decreases with the mesh skewness angle.
Furthermore, the maximum allowable Peclet number shows a dependence on the flow direction. This sug-
gests that in addition to mesh parameters, the flow direction also affects the stability of the numerical
scheme. This issue will be further discussed in Section 1.4.

2.3. Mesh skewness effects on time-integration schemes

In this section, the temporal stability of the numerical approximations of the governing equation and its
dependence on the mesh skewness angle are discussed. In general, large mesh skewness limits the allowable
q

Maximum allowable s = Dt/(ReD2) and Peclet number as a function of mesh skewness angle (h). —, Pexmax for a = 45�; - - - -,
or a = �45�; � � �, smax for a = 45�; – -–, smax for a = �45� in Eq. (32). � � � and –-– are identical.
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time-step size due to increased discretization errors and enhanced magnitude of amplification factor. This
issue is examined employing a third-order Runge–Kutta time-integration method.

The stability of a third-order Runge–Kutta scheme (RK3) is determined using the amplification factor
[17]:
a

Fig. 9.
with a
r ¼ 1þ kDt þ ðkDtÞ2

2
þ ðkDtÞ3

6
; ð36Þ
where for stable solutions, the condition |r| 6 1 must be satisfied. Fig. 9 shows the variation of the maxi-
mum allowable time-step size (s) with h variation for three different values of Re (

ffiffiffi
2

p
; 102

ffiffiffi
2

p
, and 104

ffiffiffi
2

p
)

when a is set to 45�. In the small to moderate values of Re, the maximum time-step sizes are reduced with
increasing skewness angle h (Figs. 9(a) and (b)). In those cases, for a given skewness angle, the allowable
time-step sizes are in the order of CD2, UD2, and spectral methods. In the advection-dominated case,
the peak allowable s is found in the skewness angle (h) around the flow direction (a) (Fig. 9(c)) and, for
a given skewness angle, CD2 leads to a higher allowable time-step size than UD2 and spectral schemes.

Other explicit time-integration methods such as the second-order Runge–Kutta (RK2) and second- and
third-order Adams–Bashforth schemes (AB2 and AB3) have also been considered. In those schemes, the
variation in the allowable time-step size as a function of mesh skewness angle is similar to that in RK3,
and the values of allowable time-step sizes are found in the order of RK3, RK2, AB2, and AB3 for a given
skewness angle.
q

b

q

c

q

Maximum allowable s = Dt/(ReD2) as a function of mesh skewness angle (h) when a third-order Runge–Kutta scheme is used
= 45�. (a) Re ¼

ffiffiffi
2

p
; (b) Re = 102; (c) Re ¼ 104

ffiffiffi
2

p
. —, CD2; - - - -, UD2; � � �, exact (spectral).
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The present analysis also has implications for large-eddy simulation of turbulent flow on a highly skewed
mesh. When an eddy-viscosity type subgrid-scale model is used, the ratio of instantaneous, local eddy-
viscosity to the molecular viscosity can reach O(103–104). In such cases, the allowable time-step (Dtmax)
experiences a sudden drop due to the enhanced effective viscosity since Dt = sReD2. This problem is further
exacerbated when a highly skewed mesh is employed. For example, at h = 50�, Dt is reduced from 370D2 for
Re ¼ 104

ffiffiffi
2

p
(Fig. 9(c)) to 18D2 for Re ¼ 102

ffiffiffi
2

p
(Fig. 9(b)). Therefore, when mesh skewness is indispensable,

a fully implicit time-integration method is highly preferred.

2.4. Flow direction and mesh skewness

In Section 1.3, the case in which the grid is skewed to a fixed flow direction (a = 45�) was considered. In
this section, the effects of flow direction for a fixed skewness angle on the allowable time-step size and on the
numerical errors are investigated.

The allowable time-step sizes of numerical schemes are significantly altered by the change of flow direc-
tion. Fig. 10 shows the maximum allowable time-step size s as a function of flow direction a when a third-
order Runge–Kutta scheme is used with a fixed mesh skewness angle h = 50� and Re = 104. As already
found in the previous section, CD2 (—) allows a higher time-step size than UD2 (- - - -) and spectral (� � �)
methods for a given flow direction. The local maximum time-step size is obtained when the flow direction
is aligned to the mesh lines.

Figs. 11(a) and (b) show the variations of errors in both real and imaginary parts of kDt/s as a function
of flow direction. As shown in Fig. 11(a), in this case, the amplitude errors obtained from CD2 are invariant
to the flow direction (— and - - - - lines). In contrast, UD2 shows sensitivity to the variation of flow direction
(a), where the local minimum in dissipation errors occur when the flow direction is aligned to the mesh lines
(� � � and –-– lines). As discussed in Section 1.1, the present skewness angle (h = 50�) also produces dissipa-
tion errors for a range of wavenumbers in CD2 (for example, — in Fig. 11(a)), however, these errors are
much smaller than those in UD2. In contrast to the real part of k, CD2 shows high sensitivity of the imag-
inary part of k to the variation of flow direction. UD2 results in similar magnitudes of phase errors to those
in CD2.

The situation considered here is often observed in real flows, in which a vortex is convected through a
skewed mesh region. The present analysis suggests that the phase errors in CD2 may introduce different
wave speeds, thereby generating a non-physical distortion of vortex shape. On the other hand, UD2
a

Fig. 10. Maximum allowable s = Dt/(ReD2) as a function of flow direction (a) when a third-order Runge–Kutta scheme is used with
h = 50� and Re = 104. —, CD2; - - - -, UD2; � � �, exact (spectral).
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Fig. 11. Real and imaginary parts of (kD/s)numerical � (kDt/s)exact as a function of flow direction (a) with a fixed mesh skewness angle
(h = 50�) and Re = 104. (a) Real part; (b) imaginary part. —, CD2 for (knDn,kgDg) = (1,1); - - - -, CD2 for (knDn,kgDg) = (1,�1); � � �,
UD2 for (knDn,kgDg) = (1,1); – -–, UD2 for (knDn,kgDg) = (1,�1).
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introduces amplitude errors which are dependent on the flow direction and thereby causes a non-physical
distortion of vortex strength as well as the shape.
3. Summary

The effects of mesh non-uniformity and skewness on numerical flow simulations have been studied in
detail using the advection–diffusion equation as a model for the Navier–Stokes equations. Truncation error
and modified wavenumber analyses of this equation reveal the influence of mesh non-uniformity and skew-
ness on the numerical accuracy and stability.

The current model equation does not include the pressure gradient term and its associated effects. How-
ever, within the context of the current analyses, the primary effect of the pressure gradient is expected to be
an acceleration or deceleration in the fluid velocity, leading to a spatially varying value of the convection
velocity (C). This is not expected to fundamentally change the conclusions of the current study since the
analyses are local in nature where the assumption of a constant convection speed is still valid. Also, ex-
cluded from the current analyses are issues of discrete mass, momentum and energy conservation. In gen-
eral, schemes that conserve these quantities discretely such as those in [18–21] are preferable over those that
are not strictly conservative. However, even these conservative schemes are subject to truncation errors and
spurious effects of the type discussed in the current paper.

The key findings of the present truncation error and modified wave number analyses can be summarized
as follows:

� Although the central-difference scheme is dissipation-free on a uniform Cartesian mesh, on a uniform
skewed mesh, it exhibits large numerical dissipation in the low Reynolds number case while numerical
dispersion is a major concern in the high Reynolds number case.

� The amplification error and resulting numerical instability are further enhanced if mesh skewness is cou-
pled with mesh stretching.

� The numerical instability encountered in actual computations on a highly skewed mesh can be explained
by the present analysis. The mesh stretching ratio needs to be reduced as the mesh skewness angle
increases.



D. You et al. / Journal of Computational Physics 213 (2006) 184–204 203
� The temporal stability of numerical schemes is highly affected by the mesh skewness. The maximum
allowable time-step size is reduced because of increased discretization errors and enhanced amplification
factor.

� The angle between mesh lines and flow direction also affects numerical errors and stability.

The robustness of the central-difference scheme in terms of amplitude errors, compared to the upwind
schemes, is quite noticeable when the flow direction is varied for a fixed mesh skewness angle. The cen-
tral-differencing shows insensitivity of the amplitude error to the flow direction. When a highly skewed
mesh is employed, the maximum allowable time-step size is achievable by aligning one set of mesh lines
parallel to the flow direction.

The numerical characteristics of central-difference schemes relative to upwind schemes on a skewed mesh
is quantitatively the same as on a Cartesian mesh. In general, central-differencing shows significantly lower
dissipation than upwind-differencing, although it tends to exhibit larger dispersion errors. The low dissipa-
tive features are especially important in the large-eddy simulation of turbulent flow. Therefore, in relative
terms, the central-difference scheme is still preferred to the upwind-difference scheme on a significantly
skewed mesh judged by the amplitude errors and the allowable time-step size.

The present study further suggests that a sufficiently refined mesh capable of resolving the important
flow scales is needed when a highly skewed mesh is employed since the amplitude errors at high wavenum-
bers significantly enhanced by the mesh skewness. Finally, in a highly skewed mesh system, the allowable
time-step size experiences a severe reduction when an explicit time-integration method is employed. There-
fore, an implicit time-integration method is more suitable.
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