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A finite-difference formulation is applied to track solid—liquid boundaries on a
fixed underlying grid. The interface is not of finite thickness but is treated as a dis-
continuity and is explicitly tracked. The imposition of boundary conditions exactly
on asharp interfacehat passes through the Cartesian grid is performed using simple
stencil readjustments in the vicinity of the interface. Attention is paid to formu-
lating difference schemes that are globally second-order accurataridt. Error
analysis and grid refinement studies are performed for test problems involving the
diffusion and convection—diffusion equations, and for stable solidification problems.
Issues concerned with stability and change of phase of grid points in the evolution of
solid-liquid phase fronts are also addressed. It is demonstrated that the field calcu-
lation is second-order accurate while the position of the phase front is calculated to
first-order accuracy. Furthermore, the accuracy estimates hold for the cases where
there is a property jump across the interface. Unstable solidification phenomena
are simulated and an attempt is made to compare results with previously published
work. The results indicate the need to begin an effort to benchmark computations of
instability phenomena. © 1999 Academic Press

1. INTRODUCTION

1.1. Motivation

Consider several objects embedded in a dorfesdrs shown in Fig. 1. Each of the object:
is separated from the surrounding fluid, designated phase 0, by a bouglae shall use
the term “immersed boundary” for this type of internal boundary in the flow field. Suc
boundary may arise in several types of flow problems. For example, this may be a boul
that represents a solid geometry through which fluid flows. The solid boundary, asinr
fluid—structure interaction problems, may execute motions under the influence of the
around it. In other situations this boundary may represent a phase discontinuity at v
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Phase 0

a2

FIG. 1. lllustration of immersed boundaries in a flow field. The immersed boundaries can be stationary
moving. They can enclose solid, liquid, or gaseous phases. Furthermore, the boundary can move or defor
interaction with the flow around it.

a phase transition occurs, such as in the solidification of material from the melt, or in-
vaporization of fluid. The boundary may also separate two fluids as in the case of bubl
or drops immersed in an ambient fluid. For the purposes of the discussion presented
we consider the solution of a transport equation for the varialiethe domairg2 in which
the boundarie§;; are embedded,

d
8—T+U-V¢=V~kv¢+f, Q)
whereu is the convective speed which may be a functiog @ind f is a body—force term.
On the phase boundaries different types of boundary conditions may apply and may

written in the general form
¢
# (o 5m) =en @

In some cases the boundary may be a discontinuity in the vaigalitewhich case jump
conditions may be prescribed @k such as

B, =p  or [k—] . @)

Whether such boundaries in the flow domain are stationary or moving, computing
lutions for the flow equations requires applying boundary conditions of the Dirichle
Neumann, or mixed type on the surface. If the boundary moves, one would like to track
boundary in time. If the properties are discontinuous across the boundary, the discontin
would be required to be maintained. While the deformation of the boundary may be indus
by the transport processes around it, the boundary in turn can transmit its influence tc
surrounding in the form of stresses or energy supplied at the infinitesimally thin surface.
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example of the former is the force applied by a stretched membrane due to internal fc
developed within it and an example in the latter category is the release of latent heat or
of combustion at the boundary. Such interactions of the boundary and the flow field
need to be calculated accurately.

In this paper we compute the motion of solid—liquid phase fronts by explicitly tracki
the interface over a fixed Cartesian grid. Ideally one would like to simulate the effec
the boundary;; by treating it explicitly, without smearing the information at the interface
i.e., with minimum numerical diffusion. There are many ways of doing this; for a fix
boundary, when the shape is truly complex, one can resort to block-structured dot
decomposition (Shyy, 1994), overset meshes (Steger, 1991; Johnson and Belk, 199
unstructured boundary-conforming curvilinear grids (Venkatakrishnan, 1996) to discre
the domain. For moving boundaries which may undergo large deformations, or are su
to topology changes in the course of their evolution, fixed grid techniques are advantag
Generating boundary-fitted grids to conform to such complex boundaries becomes diffi
To circumvent this difficulty a variety of methods have been developed and applied to t
fronts on fixed meshes. The popular methods for tracking moving boundaries in an Eule
framework are the volume-of-fluid method and its refinements (Hirt and Nichols, 19
Brackbill et al, 1992; Kothe and Mjolsness, 1992; Scardovelli and Zaleski, 1999), 1
level-set method (Osher and Sethian, 1988), and the phase-field method (Caginalp,
Langer, 1986; Kobayashi, 1993; Wheedgral,, 1992). These methods perform very wel
in problems involving free surfaces. For the particular problems of interest here, nan
tracking of solid—liquid phase fronts, the level-set method (Céeal., 1997; Sethian
and Strain, 1992; Zhanet al., 1998), the phase-field method (Kobayashi, 1993; Wheel
etal, 1992), and enthalpy type methods (Voller and Prakash, 1987) have been employe
these purely Eulerian methods, the interface is not tracked explicitly but is deduced bas:
afield variable such as the distance function, order parameter, or local enthalpy. Theinte
is of finite thickness and may occupy a few grid points in a direction normal to it. Althou
these methods converge to the sharp interface models as the grid size decreases, nul
difficulties restrict operation of these methods to interface thicknesses proportional tc
grid size.

In mixed Eulerian—Lagrangian methods, the interface is tracked explicitly, while 1
computations are performed on fixed grids. Examples of this approach are the imme
boundary technique (Peskin, 1977; Unverdi and Tryggvason, 1992; Juric and Tryggve
1996; Udaykumaet al., 1997), cut-cell type approaches (Ststyal., 1996; Udaykumar
and Shyy, 1995b; Udaykumaat al., 1996; Pembeet al, 1995; Quirk, 1992), the im-
mersed interface method (LeVeque and Li, 1994), and the fictitious domain metf
(Glowinskiet al., 1994). In essence, these methods differ from the purely Eulerian met
in that the boundaries are tracked explicitly as a set of curves.

Among mixed methods there are widely different ways of handling the interaction of
interface with the flow field. The most widely used mixed technique is the immersed bou
ary technique which was originated by Peskin (1977) and used extensively by Tryggv:
and co-workers (Unverdi and Tryggvason, 1992; Juric and Tryggvason, 1996) anc
the present group (Udaykumat al., 1997; Kanet al., 1998). While explicitly track-
ing the interface, the method transmits the information regarding the discontinuity ac
the interface to the grid in much the same way as purely Eulerian methods. As der
strated by Beyer and LeVeque (1992) this results in a method that is glaDéilyaccu-
rate, whereh is the grid spacing. On the other hand, the cut-cell treatment (Udaykur
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and Shyy, 1995b; Udaykumat al., 1996) proceeds to reconstruct the domain on eithe
side of the interface with considerable detail in regard to the piecing together of the fr
tional cells that arise due to the passage of the boundary through the grid. Thus, sme:
of the interface is totally avoided in this method, with a conservative control volume tre
ment that demands great care in assembling flux information in cells adjoining the int
face. However, such methods can become tedious, particularly when 3D computation:
considered.

As far as solidification simulations are concerned the outstanding work with Euleria
Lagrangian methods has been that of Juric and Tryggvason (1996). They showed the
terface tracking can be used effectively in 2D to solve the problem of complex evolvi
solidification morphologies. Also, in their work, the physical parameters are directly 1
lated to the physically identifiable quantities, such as surface tension and anisotropy, ur
in the phase-field methods (Wheektral.,, 1992), where the computational parameter:
are only indirectly related to the actual physical quantities. Although phase-field meth
have been used to obtain impressive results of the dynamics of phase fronts, the pres
of a free parameter in such methods, namely the interface thickness parameter, rer
the method less suited to direct comparison/benchmarking. Therefore, the work of J
and Tryggvason (1996) (hereinafter abbreviated as JT96) is important as a starting
for benchmarking calculations of unstable solidification front calculations. However, ev
though the interface is explicitly tracked in JT96, the discontinuities at the interface are ¢
spread over a few grid cells. In solid—liquid phase front evolution these discontinuities ¢
arise from property jumps, sources of latent heat and solute, or capillary terms that a
the infinitesimally thin interface. Truly sharp interface methods have been few. Previc
work in this regard has been performed by Udaykumar and Shyy (1995b) using the cut-
method, by Almgren (1993) using a variational formulation, and by Sstital. (1988)
using the boundary integral approach. Recently LeVeque and co-workers (LeVeque
Li, 1994) have introduced the immersed interface method for tracking interfaces explici
while maintaining sharp discontinuities, and this method has shown promise for proble
involving elliptic PDEs. The method has also been combined with the level-set approac
alleviate problems involved in tracking interfaces explicitly and has been applied to tre
interfaces in Hele—Shaw flow (Hoet al, 1997). In the context of finite-element meth-
ods, Schmidt (1996) has applied a variational formulation to compute dendritic growth
2D as well as 3D. In this paper, we seek to present a simple finite-difference method
tracking sharp interfaces on a fixed Cartesian mesh. In contrast to a previous finite-volt
approach presented in Udaykuneaal. (1996), the present finite-difference formulation is
easier to implement. Traditional finite differencing is involved in the bulk of the domail
In cells containing the interface, modification of the stencil based on explicit knowled
of the interface is performed and the resulting discrete equations are solved over the w
domain. The simplicity of the treatment facilitates error estimation for the finite diffe
encing. The computations performed support the expected error estimates. We ma
concerted effort to benchmark our results by directly comparing with the work of JT¢
In contrast to JT96, where the immersed boundary method was used and the inter
spread over a few grid cells, here property jumps and interface boundary condition:
well as source terms at the interface are treated as discontinuities and included as
in the discretization procedure. In contrast to the immersed interface method (LeVe
and Li, 1994), the discretization procedure is simple and performed in the Cartesian di
tions and not in a rotated frame of reference. Therefore, it is elementary to extend fro
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simple finite-difference scheme implemented on a Cartesian grid without immersed bo
aries. Extension to higher dimensions and to Navier—Stokes equations should follow &
the lines laid out in this paper. Work in this direction is in progress and will be repor
elsewhere.

1.2. Remarks on Explicit Interface Tracking

When interfaces are tracked explicitly, periodic reorganization of the interface inforr
tion becomes necessary. This can result from dilation or compression of the interface o
be due to topological changes of the boundary. In 2D, mergers and breakups of bounc
can be handled quite effectively, as demonstrated in Udaykumar and Shyy (1995a) and
and Tryggvasson (1996). In 3D the operations to be performed can be more complic
(Jayaramaet al., 1997; Snyder and Woodbury, 1993). Therefore, in 3D situations, expli
tracking of interfaces will be work-intensive in the context of mergers and breakups
comparison to purely Eulerian methods. In the presence of surface tension, the grow
parasitic modes on the surface can result when an explicit interface update is carrie
using reasonable time step sizes (Tu and Peskin, 1992). Thus, an implicit scheme for |
face motion needs to be devised. If the flow solver is also implicit, as in Udaykehadr
(1997), this presents no constraints since the interface and flow field evolution can be
coupled through the iterations and taken simultaneously to desired levels of converge
A related problem, that of stiffness due to surface tension, has been addresseddtyaHou
(1994) and an alternative formulation for the interface motion has been derived in tern
the variable® (the angle made by the tangent to the interface with the horizontal) éie
interfacial perimeter). It has been shown that this formulation alleviates the stiffness f
interface tracking schemes in the presence of surface tension. The violation of the en
condition, i.e., the inability of an explicit curve-evolution scheme to detect and circumv
crossover of the curve or the formation of cusps and fishtails, was pointed out by O
and Sethian (1988). This situation can be encountered in problems such as curvature-(
growth, where the tendency to form cusps on the interface exists. When cusps are exp
or encountered, special measures can be taken to surgically remove such points fro
interfacial string (Glimnet al, 1988; Chorin, 1990).

While one has to be cognizant of the above issues in adopting an explicit tracking stra
there are situations in which explicit interface information in fact becomes desirable.
instance is when a solid-liquid boundary is being tracked and where the no-slip conditic
to be applied. This can be done for fixed grid flow solvers by applying the no-slip condit
at the exact location of the interface as in the cut-cell or immersed interface approac
Next, in the dynamics of membranes such as in problems of cell dynamics @aig
1988; Kanet al, 1998) and adhesion (Jonesal., 1995) in biofluids or the stretch of
pliable aerodynamic surfaces (Smith and Shyy, 1996; Fauci and Peskin, 1988), the fi
generated within the membranes depend on the stretching and bending of the memb
This requires information on the tangential dilatation of the interface. Further, for the c
in which a boundary is anchored to a surface, such as the adhesion of the memt
of a cell to a substrate, the forces transmitted to the membrane need to be calcu
(Demboet al.,, 1988), and explicit tracking is ideally suited to providing this informatior
The ability of mixed Eulerian—-Lagrangian methods to incorporate both solid—liquid no-
boundaries as well as fluid—fluid interfaces has been demonstrated in our previous
(Shyyet al,, 1996; Udaykumaet al., 1997).
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2. THE NUMERICAL METHOD

2.1. Main Features

There are pros and cons to each of the various methods for solving moving bounc
problems and the choice of a method is dictated by the physics and desired nume
accuracy. The main advantage of explicitly tracking solid—liquid boundaries is that
smearing of the boundary is involved. This renders explicit tracking methods suitable
solving flows around solid objects embedded on fixed Cartesian meshes (Goirier and Po
1996; Quirk, 1992; Youngt al., 1992; Meltoret al., 1993; Pembegt al., 1995; Goldstein
etal, 1993, 1995; Glowinskeét al., 1994; Shyyet al., 1996; Udaykumaet al,, 1996, 1997).

In this work we choose to track the solid—liquid front explicitly. Our effort is directec
toward developing an accurate yet simple way of solving equations of the type in Eq.
on a uniform Cartesian mesh in the presence of embedded boundaries. We demonstrat
the present method achieves the following objectives:

1. The interface is tracked as a discontinuity and boundary conditions of the Dirichl
Neumann type are applied on the tracked fronts.

2. The inclusion of embedded boundaries into the discretization scheme involves sin
measures in the vicinity of the interface. Such points are few compared to the overall ¢
size.

3. Based on truncation error analysis, a discretization scheme can be developed sc
global second-order accuracy in the field variable can be maintained. We show that
holds true in going from one to two dimensions and in the presence of moving boundar

4. For the solidification problem the interface velocity is computed directly from th
Stefan condition and the normal gradients of the temperature are evaluated to second-
accuracy. The curvature-dependent boundary conditions are imposed at the exact inte
location. This is in contrast to the approach of JT96, who adopted a Newton iterat
technique to obtain the value of interface velocity so that the interface boundary condit
was satisfied. Since we treat the interface as a sharp discontinuity, such measures at
required in our case. This facilitates unambiguous characterization of discretization err

5. The stiffness ofthe interface evolution in curvature-driven growth is alleviated by usi
an implicit formulation to couple the interface evolution with temperature field evolutiol
Therefore the time step restriction in our case is a convective criterion.

6. The issue of change of phase of a grid point when the boundary crosses over
dealt with by a simple analogy with purely Lagrangian methods. This involves redefini
the stencils in the points adjoining the interface to account for the grid points that he
changed phase. The approach taken is shown to have no negative impact on the acc
of the computations.

We now describe the main components of the technique.

2.2. A Finite-Difference Algorithm for Solid—Liquid Moving Boundaries

In the following we will follow the basic ideas of the immersed interface method ar
the cut-cell approach by applying one-sided differencing to obtain the discretization
the governing equations at control points that lie next to the boundary. Our objective is
solve a PDE of the form given in Eq. (1) in such a way thatCih?) accurate spatial and
O(8t?) accurate temporal discretization can be maintained. To illustrate the methods
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Underlying fixed} :
Cartesian grid

iy

FIG. 2. Configuration for the solidification problem. The normal points from the solid to the liquid phase.

issues involved we choose as an example the solution of Eq. (1) for a typical moving bo
ary problem, such as solidification/melting of pure material from the melt. The problem
illustrated in Fig. 2, may be formulated as follows:

Let the transported variabebe the temperature in each phase. Then on the boundan
the solid the temperature is specified and is given by the Gibbs—Thomson condition (Ke
etal, 1988),

or =¢m(1— "Lf) @)

whereo is the surface tensiohy is the latent heat of fusion, is the curvature, andi, is the
melting temperature. At macroscopic scales, the effects of surface tension are negligibl
the above boundary condition reduces to the statement that at the interface the tempe
is equal to the melting temperature. The interface moves in accordance with the interf
heat balance condition (Stefan condition):

1 A A
Vo= ol [ks(%); “ (%)J- ©)

We wish to solve Eq. (1) in the regions occupied by the solid and liquid, as shown in Fi
above, to desired levels of accuracy. We also wish to impose the boundary condi
Eq. (4), on the temperature fields in the two regions. Then the boundary between the pl
is advanced using Eq. (5).

We will now describe the various components of the solution algorithm which meets
accuracy goals but also maintains a simple discretization scheme that can easily be ext
to 3D. These can be listed as follows: interface tracking; communication between inter
and flow solver; discretization of field equations and application of boundary conditic
and interface update.
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FIG. 3. Convention for definition of interface normal. The arclength parametrization allows identification
the phase on each side of the interface. The solid lies to the right as the interface is traversed in the dirgction
the arclength. Open circles denote interfacial markers.

We will now detail our approach in each of the above components and provide the reley
accuracy estimates.

I. Tracking the Interface

The interface is described by interfacial markers defined by the coordiésgsThe
spacing between the markers is maintained at some fraction of the grid spa&img; O
ds < 1.5h. The convention adopted is that as one traverses the interface along the arcler
the solid lies to the right. This is illustrated in Fig. 3. The functieuis) = a,s? + bys+ ¢
andy(s) = ays® + bys + ¢, are generated. The coefficierstg,, by, andc,,, at any
interfacial pointi are obtained by fitting polynomials through the coordinakes;(y;i_1),

(%i, ¥i), and &i 11, Yi+1). The coefficients,,y, bx,y, andc,,y are stored for each marker
point. The normal to the interface then points from the solid to the liquid and is given b

— X
nxz¢ nyzis (6)

1/2° 1/2°
(x2+y2) (x2+y2)
The curvature is then obtained, for the 2D planar case, from

ySXSS - ySSxS

k=V-N= (y52+X52)3/2 (7)

The derivativess, Xss, ¥s, andyss are evaluated using central differencing along the arc
length coordinates. Cubic splines were also tried without observable differences in tt
results for previous test problems. Therefore, central differencing was adopted since
easily applicable to different end conditions for the boundaries.

Il. Relationship between Interface and Grid

Once the interface has been defined, the information on its relationship with the ¢
has to be established. There may be several interfaces (henceforth called objects]
mersed in the domain. Each of the objects may enclose material with different transj
properties. Therefore, with respect to phase 0, which is the surrounding fluid, there r
be a discontinuity in transport properties, such as viscosity and conductivity across
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FIG. 4. Procedures leading to phase and border cell identification. (a) The box represents points in the vi
of an interfacial markew. (b) Interfacial marker placement in relation to the box identified. (c) lllustration c
normal drawn from the grid point(j) to the interface. The open ellipse represents the intersection point of t
normal with the interface which is defined by the curxés), y(s).

boundary separating phase 1, which is enclosed within object 1 and phase 0. One |
to identify the phase inside object 1 as phase 1. This is accomplished in the follow
way.

On a Cartesian grid, it is a trivial matter to identify the cell in which a given interfaci
point lies. Figure 4a shows ax44 block of cells surrounding an interfacial pointwvhich
is denoted by an open circle. One obtains, for each of the grid pointg;{ shown in
Fig. 4b, lying in the block, the normal from the point to the interface. The locati
xn(, j), yn(, j) where this normal intersects the interface is also obtained. This is ea
done by employing the parametrization of the curve and the resulting polynomials:

X(S) = axS? + s+,  Y(S) =as’+bys+cy. (8)

Now let the normal be described by the lipe- ax + b. Since the normal passes througt
Xi, Yj, andxn, ynitis a simple matter to deduce that

a_yn_yi_ 1 2a,S, + by

= =— =— ) 9
XN — X; (dy/dx), 2ays, + by ©)

Solving for s,, the arclength value where the normal contacts the interface, as show
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Fig. 4c, we get

s = —Px(Xn=x) —by(yn—y;)
2ay(yn — yj) + 2ax(xn— %)

(10)

Substituting forxn andyn as functions o, by using the expressions in Eg. (8) above, one
gets an equation fa, in the form

(283 + 2a%)s? + (3axby + 3ayby)sh + (2a,cy + 2a,Cy + b + b — 2ayy; — 2a,% ) s,
+ (cxbx + bycy — Xibx — yj¥i) = 0. (11)

The solution fors, is obtained by the Newton—Raphson method, by providing the initi
guesss! = s,. s, is the arclength value at the interfacial point to which the box show
in Fig. 4a belongs. Oncs, is known,xn and yn are obtained from Eq. (9).The normal
atxn, ynis then calculated using Eq. (6), the derivatixgsxss, Ys, andyss being readily
calculated using Egs. (8) and the valuesofNow for the pointsX;, y;) lying in the block
in Fig. 4a, to determine on which side of the interface the point lies, one obtains the vec

(XN —=x)i 4+ (yn—yj)j

A= .
VXN =x)Z+ (yn — ;)2

12)

By taking the scalar produét= f - %, if § > 0, the pointx;, y; lies outside object 1, i.e.,
in phase 0, since the normal to the interface, by the convention adopted previously, pc
from phase 1 to phase 0.df< 0, the point lies inside the interface. When the peinty;

in the box lies outside object 1, the point is assigned a valuelodnd when it lies inside

it is assigned a value 6f1. This leads to the picture shown in Fig. 5a. Then, the “true
border cells are obtained such that at least one neighbour (aloxgothg direction) of a
point (x;, y;) has a point with a flag of opposite sign. The flags of the cells that are not tr
border cells are reset to 0. This leads to the picture in Fig. 5b. For a closed object, in wi
we wish to assign the phase of the control points, the overall picture at this stage will
as shown in Fig. 5c, where the flags corresponding to each point have been illustrate
means of gray levels.

In order to identify all the points inside the object with the phadevalue, we proceed
as follows. All the true border cells are stored in a 1D array running from 1 to the tof
number of border cells (designated). The indices of these border cells, i.e.and j
values corresponding t@ andyj, are also stored a®(1— nb), and jb(1— nb). Now,
one successively arrives at each border cell that lies within the object, i.e., a cell with a ve
of +1. The immediate neighbourth(+ 1) and (b & 1) are checked for the negative value
of the flag. If, say, the left cell has a flag value-ef then one proceeds to the right and set:
the value in each cell as one marches along to the valuelofThis procedure is stopped
when the next negative flag is hit. If a particular border cell has more than one neighb
with a negative flag, then the above procedure is conducted in both directions. The re:
after setting the negative cells back to zero, is as shown in Fig. 5d, where the interior of
object has been assigned the phase 1 and the exterior the phase 0.

The above procedures occur only in the vicinity of the interface every time the interfe
is moved. The operations involved in obtaining the information above are therefore acc
plished economically. All the necessary information to be stored is placed in 1D arrays
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FIG. 5. (a) Identification of the side of the interface on which the grid pointstig indicates that the point
lies inside object 1+-1 indicates that the point lies outside object 1. (b) “True” border point. All points whic
do not have a neighbour in the opposite phase are set to 0. These are not border points. (c) Overall picture
object after true border cells have been identified. The gray scale scheme is indicated below the figure. (d)
picture after the phase identification process is complete.

length commensurate with the number of interfacial markers. One further aspect of
phase assignment procedure is that it carries over in a straightforward extension to 3D
only significant difference would be that the intersection of the normal from the adjoin
grid points will now be with the surface defining the object, not the curve.

Ill. Solution of the Field Equations in the Presence of Internal Boundaries

Discretization in the bulk of the domainWe have now obtained information on the
boundary curves and on their location and effect on the control pzirasid y; in the
computational domain, in terms of the material properties to be assigned. Also, we
have information on where the boundary is located with respect to the grid. This is obta
from the border cell arrays as detailed in the previous section. The governing equatiot

d¢

9 Ve — k2
o TU Ve =kVZ (13)



546 UDAYKUMAR, MITTAL, AND SHYY

is discretized as

n+1 n

P =" = -9 (V2¢”+1+V2¢) <3 V" — Ul g 1) (14)
where theO(5t?) Crank—Nicolson discretization is adopted for the diffusion term an.
the O(5t?) explicit Adams—Bashforth method is adopted for the convection term. If
O(h?) central difference scheme is used to evaluate the spatial derivatives, we sh
have a nominally second-order accurate scheme in the bulk of the domain. The disc
approximation to the derivatives gives a five-point stencil in 2D and the final discrete for
at a grid point{;, j) and time leveh + 1, can be written as

n+1 n+1 n+1 n+1 n+1
ai @y i@ oL byt oigad o jadi T = Zij. (19)

Here they; j, etc., are the coefficients in the discretization corresponding to the member:
the five-point stencil, antl is a source term containing the explicit terms as well as boundal
conditions. The truncation error, due to the discrete operators mentioned above, is expe
to be O(h?) and O(§t?) in space and time in the bulk of the domain. Usually boundar
points will be unable to yield (h?) local accuracy. Such points are few in number and i
O(h) accuracy can be ensured at such points the deterioration in global accuracy be
O(h?) should be minimal. This requirement is along the lines of the immersed interfa
method of LeVeque and Li (1994).

Discretization at the immersed boundaryAn O(h) accurate discretization needs to be
obtained at an internal boundary in the grid. lllustrating with a 1D case, the situation w
an internal boundary on the grid is as shown in Fig. 6. In the figure, the ppligs in the
solid phase, whilg;1 lies in the liquid phase. The two are separateyl dty the boundary.

If we are interested in discretizing the diffusion termyats, i.e., in the liquid phase, such
that the truncation error i®(h), then we proceed as follows (similar considerations will

+
‘

Yj+1
[ s

.

FIG. 6. Immersed boundary in the domain along thdirection. Grid pointj lies in the solid phase, while
j + 1 lies in the liquid phase.
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apply aty;),
<82¢> _ &= (&)s (16)
ay? j+1 Yn—VYs
where
(3_¢> _ biv2—din (17)
Y/ Yi+2 = Yj+1
(8_4’) _ ¢]+1 - ¢o¢ (18)
3y s Yi+1 = Yo '

whereg, is the value of the variable at the interface location, and

_ Yi+2 T ¥Yji+1  Yj+1t Ve
2 2 ’

<32<IZ> __ 2 <¢j+2—¢j+1_¢j+1—¢a>_ (20)
0Y° /i1 Viez = Yo \Yi+2 = Yi+1  Yj+1 — Y
It can be shown that the truncation error for the above expressioghs

For the convection term, again taking the 1D situation, the discretization is performe

Yn—Y¥s (29)

Therefore

8¢> <¢n - ¢s)
Vi — =V, , 21
J+l(8y » v Ty (21)
where
on = % (22)
¢s — w (23)

andy, — ys is given by Eqg. (19). It can again be shown that such a discretization yie
O(h) accuracy for the convection term at point 1. Therefore in the 1D situation dis-
cretization of the governing equation using the above differencing @u@3 accuracy in
cells adjoining the interface.

In the 2D case, the discretization near the interface entails the following procedt
which can be explained with reference to Fig. 7. Suppose an interface runs through the
as shown. The poini (j) is in the solid phase, whildé,(j +1), (,j +2),( -1, j), and
(i —2, j) are in the liquid phase. The points like {) and {, j + 1) which are adjacent
to the interface, i.e., have an immediate neighbour in the opposite phase, have previ
been identified as border cells. Therefore in assembling the discretization stencils for p
in the domain, one first obtains the coefficieatand X in the discrete representation in
Eq. (15) without regard to the presence of the interface. Then one visits each of the b
cells identified previously and modifies the stencils of each point belonging to the oppc
phase. The modification of the stencil is achieved by reassigning the appropriate valu
« andX such that the differencing in Egs. (20) and (21) is applied in the border cells. |
example, in Fig. 7, when considering point ) which is a border point, the stencils for
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FIG.7. Computingthe gradients atthe interface. The points where the interface in the cell cuts¢bestant
andy = constant lines corresponding to the control poiqt §;) are shown.

points {, j + 1) and { — 1, j) are modified as given by Egs. (20) and (21) for the diffusior
and convection terms, respectively. In 2D this type of operation needs to be accomplis
in thex or y directions, depending on whether the neighbour ini thiej direction is in the
opposite phase. If there is a cell in the opposite phase in bothahd j directions, then
modifications of adjacent cells in both directions need to be performed.

Consider the pointi( j) in Fig. 7. Since the pointi( j + 1) lies in the opposite phase,
the values ofy, and¢, need to be incorporated into the discrete form (f&)?r¢/3y2)j+l
andV;;1(3¢/3y)j+1 as given in Egs. (20) and (21). To obtain the valug.pfor the cell
(i, j) one computes locally the intersection of the boundary segment in that cell with 1
X = constant line that passes through the grid point, shown as the dashed vertical lin
the Fig. 7. This intersection is easily carried out using the information acquired previou
regarding the interfacial point that is closest to the pdinj). Let this interfacial point be
indexedk. Then (X, Yi) is the coordinate of this closest interfacial point. Now we have
already obtained the functions(s) andY(s) on the interface for each point. Thus, the
arclength value, along the interface where the curve intersects theXiaex; is obtained
by solving

@0kSE + B + Gk = X (24)
for the value of,. Onces, is obtainedy, can be calculated from
Yo = (@)kSE + (By)kSy + (Cyk. (25)

One also needs to obtafp, i.e., the boundary condition to be applied at the location wher
the interface cuts th& = constant line. The values on the interface are available at tt
locations of the markers. These are again obtained in the @fsh = a,s + bys + C;.
Thus, the value o$, can be obtained from

b0 = (B )kS? + (Ds)kSy + (Cp)k- (26)

These values can now be incorporated in the discrete forim pt{1). Similar considera-
tions apply for the celli(— 1, j) which also lies in the opposite phase to cellj{. It was
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FIG. 8. Change of phase of cells due to moving boundary. (a) Location of the interface at tima.l@Vel
hatched region is solid. Grid point] lies in the solid phase. (b) Location of the interface at time lavell. The

interface has moved across the grid point § which now lies in the liquid phase. The cells that have change
phase are indicated by open circles.
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pointed out by one of the reviewers that the discretization described above is similar, it
1D case, to that described in Crank (1984, pp. 163—-168) for one-dimensional fronts.

IV(A). Moving Boundary and the Issue of Change of Material

When a boundary immersed in the flow domain moves across the fixed Cartesian
points, some characteristic computational issues can arise. One problem encounterec
Eulerian grid point is the discontinuous change of material following boundary moti
This is illustrated in Fig. 8. As shown there, at the left is the initial position (at time le\
n) of the boundary at which the cell,(j) lies in the solid phase. Once the boundary move
(at time leveln 4 1) to the position shown in Fig. 8b, there are a few cells which emer
from the solid into the liquid. For the solution of the field equation at the time levlX),
using the discrete form in Eq. (15), one requires information regartliag each grid point.
However, for the cells that have just emerged from the solid, the grid points at which
computations are being performed have no prior history in the liquid phase; i.e., there
been a change of material at the pointj). Therefore there is no information a@h ; at
time leveln that is physically meaningful with respect to the phase or material into whicl
has emerged. Such newly emerged points have to be treated in a special manner. No
purely Eulerian methods do not face this problem since in such methods the interface i
tracked as a discontinuity, but is smeared onto the grid. In the immersed boundary techn
although the interface itself is tracked explicitly, its interaction with the underlying grid
simulated by smearing the material discontinuity across the interface using a Heav
function. However, if one wishes to avoid the smearing of the interface one has to con
with the issue of change of phase of a grid point.

A solution to this problem is obtained by analogy with boundary-fitted moving gr
methods. Consider a planar interface that is being tracked using a boundary-fitted gr
shownin Fig. 9. Let the position of the interface at time leveeé as in Fig. 9a. The interface
is then moved to the position shown in Fig. 9b at time level 1. The location of the grid
point close to the interface at time lewels shown in Fig. 9b and denoted AsIf one were
to regrid in the cell that has been stretched by adding one more grid point in that cell,
would have to estimate the value of the functipat the freshly created grid point shown in
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FIG. 9. Boundary-fitted grid replenishment procedure when the moving boundary stretches the grid bey
a certain desirable limit. (a) Grid at time lewvel (b) Grid at time leveh + 1 after the boundary has moved. The
shaded region shows the new area created in the liquid region by boundary motion. (c) Regridding is perfor
to replenish grid points in the stretched grid region. The open circle shows the newly created grid point.

Fig. 9c. But this point was previously (i.e., at time lemgin the solid phase and hence has
no history in the liquid. In such a case, in order to obtsin' one would simply interpolate
to find this value using

8yt + Syppitt
8o +3yg

Here¢newcel is the value at the newly emerged point shown in Fig.¢8cand¢, are the
values at the pointg anda shown in Fig. 9b, andy, anddys are as shown in Fig. 9b.
Thus, at the end of time leveH- 1 we have the information at the newly created point base
on the computed value @§5)"** and the known value at the interfagg,)"**. A similar
strategy is adopted in the case of the present fixed grid calculations for obtaining the valt
afreshly cleared cell, as shown in Fig. 10. Attime lavel 1 the cell {, j) has just emerged

(Cbnewcell)rH—1 = (27)

e

N \\
L | AN

AN
.@k

FIG. 10. Finding the value at the newly cleared cell. A linear interpolant is constructed using points numbe
1 to 4 such that the boundary value at the interface is correctly enforced.
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into the liquid phase. Therefore the valug(¢f ;)"** is obtained by constructing a bilinear
interpolant between the surrounding points and points on the interface. This interpolz
is performed by using the points 1 to 4 illustrated in the figure and requiring that the ve
of ¢ at the interface as computed in cell 4 (which corresponds to the newly emerged
achieve the prescribed interface vailbie This expression takes the form

11 + a2z + a3z + asps = @, (28)

where thex's are the geometric coefficients in the bilinear interpolant. Therefore the va
at the newly emerged cell is obtained from

1 1 1
Po — 01T — 0o — ozl ”

oy

()" =

(29)

Note that if two adjacent cells emerge into the liquid at the same time the above formula
holds and the final values at the adjacent points are established in the course of iter:
Thus, for newly emerged cells, Eq. (15) is not employed to comiate"** for one time
step. At the next time step, i.e., time level- 2, the cell {, j) is no longer a newly emerged
cell and the computation at that point can then proceed using Eq. (15) since the pre
time step value (corresponding to time leme} 1) is now available. However, at time level
n + 2, for the convection term, the Adams—Bashforth formula still cannot be used since
value of¢ exists only for one previous time level. In such a case eithed@t) accurate
scheme will have to be tolerated for an additional time step or some other two-time-s
O(8t?) accurate method such as the Runge—Kutta method will have to be used.

IV(B). Moving Boundary: Computing the Velocity of the Interface

Depending on the physical problem, the velocity with which the solid—liquid interfa
moves can be determined in several ways. For example, if a fluid—structure interax
is being simulated, then the hydrodynamic forces acting on the object, integrated
the surface of the object, will determine the resulting motion. In solidification probler
the interface velocity is driven by the temperature field as given by the Stefan condit
Eq. (5). Taking the particular example of solidification, it is necessary to obtain the gradi
of the temperature, i.eg—ﬁ, in each phase t®(h?) accuracy in order to obtain the velocity
of the interface. This can be done in different ways. First, since

(an). =) (&), 0

one can obtain gradien([§‘£)a and(g—i)a to second-order accuracy and thereby evaluate t
normal gradientfrom Eg. (30) to second order. However, in practice thisis found to be ted
to implement and the results were found to be poor. We instead follow along the lines of
previous work where the gradient was evaluated by using a normal probe. This is dor
extending a normal probe into each phase from the interfacial marker location as illustr
in Fig. 11. In previous work (Udaykumar and Shyy, 1995b), we used a single node or
normal probe located a distanberom the interface and described the temperature fie
at the node point using a biquadratic functigiix, y) = ax?> + by’ + cxy+dx+ey+ f,

where the six coefficients were solved by locating six grid points around the node in
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FIG. 11. Obtaining the normal gradient at the interface marker location to find the velocity of the interface
the solidification problem. Values at the normal probe nodes are obtained by bilinear interpolation.

phase in which the gradient was desired. Here we instead use two nodes on the no
probe and obtain the temperature values at each node by bilinear interpolation from
neighbouring grid points. The two nodes on the normal probe are located at distance
h and 2 from the interface. The points that are involved in the calculation are shov
using shaded circles in Fig. 11. As can be seen in the figure, for the node proximal to
interface, one of the surrounding grid points may lie in the opposite phase. Then the valu
the temperaturg; and coordinatesy;, Y;) atthe interfacial point shown by the closed circle
is chosen for the bilinear interpolation. Then based on the two points on the normal pr
and the known boundary value on the interface(sh?) estimate of the normal gradient
can be found in each phase across the interface as follows:

(%) :4¢n1_¢n2_3¢a. (31)
on/, 2h

These normal gradients are then used to determine interface velocity using Eq. (5).
show later that the three-point bilinear estimate yields results that are more accurate
the two-point biguadratic estimate used in previous work for the normal probe values.

IV(C). Implicit Update for Curvature-Driven Growth

In solidification phenomena, when a solid advances into an undercooled melt the inter
becomes unstable and complex front shapes are produced (Ketsalet 988). It has been
shown in an interesting paper by Hetial. (1994) that for problems involving curvature-
driven growth, the presence of capillarity terms on the interface evolution equation can |
to a severe numerical stability constraint if the interface is updated explicitly.gtial
(1994) show that the criterion takes the form

St < £5%5, (32)

where¢ is a problem-dependent quantity. This constraint is obviously extremely limitir
for computations that seek to resolve finer structures on the interface with highly refir
grids. An alternative formulation based on the parametrization of the interface evolut
in terms of the variableg (the angle made by the tangent to the interface withxthagis)

andL (the interface length) alleviates the diffusional stability condition arising from th
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capillarity effects. However, the implementation of thel formulation in the general case
(for instance, in the event of topological changes or nonperiodic interfaces or in 3D)
become difficult. We find that maintaining tha, (y) formulation for defining interface
marker positions but coupling the interface motion with the solution of the temperat
field gives a stable interface update. The stability criterion is vastly improved so that t
steps given by a convective criterion can be applied. This criterion amounts to requi
that the interface traverse no more than one grid cell per time step. Therefore the interf
motion will be computed with the time step controlled by

h
8t =g ——, (33)
max
whereh is the grid spacingy; is a user-specified value (which we set to 0.1), ¥pg is
the maximum velocity of points on the interface. The fully implicit solution procedure
as follows:

0. Start time stem + 1. lteration numbek = 0. Initial guess fo"+1.0 is given asp".
Initial guess for velocityy "0 = v,

1. Start iteration loop. Iteration numblee=k + 1.

2. Solve temperature field (using the line solver) for a few iterations k§dyDo not
converge temperature field fully.

3. Calculate the interface velocity/ {) from Eq. (5). Underrelax interface velocity. In
other words,

VIR = g, V* 4 (1.0 — o) VK, (34)
4. Update interface position:
Xn+l,k+l — xn + 3tvn+l,k+l. (35)

5. Check convergence of temperature and interface velocity. If convergence is achi
go to next time step. If not go to 1 and iterate.

In the present calculations the inner iteration numieiis given to be 5. The number
of outer iterations required per time step is typically around 10 when the interface h
not reached a steadily propagating condition but decreases to about 5 thereafter. Fi
dendritic growth calculation large regions of the interface reach constant velocities suc
the groove and tip regions. Some variation in the number of iterations is noticed when
features are formed such as during sidebranch formation. A typical vadyetbie velocity
underrelaxation, is specified to be 0.1.

3. TEST CASES FOR SCALAR TRANSPORT

The accuracy of the current differencing scheme is demonstrated by solving the ge
transport equation, Eq. (1). First, we compare the solution obtained for an inviscid f
around a circular cylinder. The cylinder of radius 1 is immersed in the flow domain of s
6 x 6 units. The arrangement is shown in Fig. 12a. The equation to be solved is the Lag
equation forp, wheregp now represents the velocity potential function. Therefore, for th
caseu=0andf =0. The diffusion equation is then time-stepped to steady state. The e
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FIG.12. Solution of the inviscid flow around a circular cylinder. (a) The potential function contours. (b) Errol
in the solutions by imposing Dirichlet conditions on the cylinder. The error norms are plotted against grid si
(- - -) The L, norm in the solution errors in the domail (---) the L, norm; (—) theL, norm of the errors in
satisfying the Neumann boundary condition at the interf&e(€) Errors in the solutions by imposing Neumann
conditions on the cylinder. (- - -) Thie, norm in the solution errors in the domady (—) the L, norm of the
errors in satisfying the Dirichlet boundary condition at the interfade (

solution for this problem, for the stream function, is given by

o(r,0) = (r + rl) cog0), (36)

where

1 (y=9

— _ 2 _ 2 — -
r=vVx—-32+(y—-232  6=tan T

(37)
This exact solution is imposed at the boundaries of the domain and Dirichlet conditic
corresponding to the exact value above are imposed on the surface of the cylinder.
computed solution in Fig. 12a shows the contourg othe potential function. The grid
refinement study was performed by computing the solution for grids with21, 41x 41,
81x 81, and 12k 121 points. Thé, norm of the error was computed for the solution ovel
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the whole domain from the computed and exact solutions LTh@orm was also obtained.
These norms are defined as

\/<Zi,j ((bi,j - ¢exacl)2)
L2 =

N2 (38a)

Lo = ma)4¢i,j — Pexact» (38b)

where N is the number of grid points along each coordinate direction. These two el
norms are shown on a logarithmic scale in Fig. 12b. As can be seen in comparison wit|
reference second-order line, the accuracy of the calculations is indeed second drder
the grid spacing. In Fig. 12b we also show the error in satisfying the Neumann condi
for the potential at the immersed boundary. Again, the boundary condition is satisfie
second-order accuracy with respect to grid size. The same problem can also be s
by specifying the Neumann boundary condition on the cylinder due to the no-penetre
condition. Therefore the grid refinement study was done by applying the Neumann cond
% =0 on the immersed boundary. In Fig. 12c, we plot the log(error) vshlofg the
grids 21x 21, 41x 41, and 81x 81. Second-order accuracy is also obtained in this ca:
Also shown in Fig. 12c is the error in satisfying the Dirichlet condition on the interfa
when the Neumann condition is imposed. In other words, with particular reference to
inviscid flow problem, this represents the accuracy in computing the potential funct
value at the cylindrical boundary when the no-penetration condition is imposed via
Neumann condition. It can be seen that imposing the Neumann condition does attai
Dirichlet boundary value to second-order accuracy. Thus, second-order global accurac
be achieved when the discretization on the boundafy(is) for the case of the diffusion
equation for both Dirichlet and Neumann conditions.

To study the effect of discretizing the convection term on the order of accuracy of
computed solution, we now solve the convection—diffusion equation, Eq. (14). The velo
field is assumed to be uniform, so thet 1i + 1j, and the Peclet number Rgu|d/k is 20,
whered is the diameter of the cylinder aikds the diffusion coefficient. The boundaries of
the domain are maintained at a valuefof 1 , while a Dirichlet condition is imposed on
the surface of the cylinder whege= 0. Figure 13a shows the isotherm contours and tt
clustering of the isotherms in the boundary layer close to the cylinder surface and at thi
right corner of the domain due to the convection and boundary conditions imposed. Ir
absence of the exact solution, the solution on the finest grid level, namely tle?22grid,
is taken to represent the exact solution and the errors for the other grids, namelg121
61x 61,101x 101, 141x 141, and 18k 181, are computed with reference to the solutio
on the 221x 221 grid. Thel, norm obtained is plotted in Fig. 13b. The maximum error i
the domain is also obtained and plotted. As can be seen from the figure the discretiz
procedure leads to al(h?) accurate solution.

We next solve a moving boundary problem using the methods developed for the s
ification problem discussed in Section 2. One problem in phase change that has an
solution is the melting of a flat interface. This so-called Neumann problem has been |
in previous work with the cut-cell method (Shgyal., 1996; Udaykumaet al., 1996). The
diffusion equation is solved in each phase, solid and liquid, across the melting front,

T

= V.qVT, i=L,S (39)
at
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FIG. 13. Solution of the convection—diffusion equation with an immersed circular boundary. The Reynol
number is 20. (a) The isotherm contours showing the clustering near the front surface of the cylinder where |
gradients occur. (b) The errors in the solution plotted against grid size. The finest grid solution is taken as
reference in obtaining the solution. (- - -) The, norm of the error; (—) thé., norm of the error; (-) reference
second-order line.

wheree; is the diffusion coefficient given bl /o0 Cpi, wherek is the conductivityp is
the density, andC,, is the specific heat at constant pressure and the subgdrigicates
the phase L (liquid) or S (solid). The boundary condition on the front is imposed as 1
melting temperaturd,,. The interface then is moved using the Stefan condition, Eq. (5
The temperature, length, and time are nondimensionalised as

T-T Y t
S L . (40)
T —Tn Yo Olref/ Y|_

¢
whereY_ is the extent of the domaifi, is the temperature in the liquid at the boundary of the
domain,ayes is a reference diffusion coefficient, and the asterisk indicates nondimensio
values. The diffusion equation takes the form

0
5 = V-ave, (41)

whereg; is the diffusion coefficient of phaseThe interface is then at a temperatgre- O
and the front velocity is given by

. ks [ 0¢ ¢
Vi = St<E(%)s— (%)). (42)

St is a nondimensional parameter called the Stefan number givenbZ{(T. — Trn)/

oLLs and denotes the ratio of sensible to latent heat effects. A schematic of the comp
tional setup for the problem is shown in Fig. 14a, where the nondimensional domain s
and boundary conditions are indicated. Melting proceeds from the top wall and the fr
progresses in the downward direction. The exact solution to this problem takes the follow
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FIG. 14. Solution of the melting of a flat interface. Melting is initiated at the top of the domain. The fro
moves downward. (a) Schematic of the problem geometry and boundary conditions. (b) Comparison of inte
locations obtained using different grid sizes. (c) Errors in interface location from the calculations using the
velocity estimates against the time elapsed. (- - -) Error due to the two-point estimate of interface velo
(- --) error due to the three-point estimate of interface velocity.

form (Crank, 1984): The temperature in the liquid is given by

oy, )y =1— erf(yz_\/fl)/erfx. (43)

The temperature in the solid¢s= 0. The interface location is given by

S(t) = 1 — 2044, (44)
wherea is given by the root of the equation,

t
reerfa = St (45)

T
and St is the Stefan number as defined above. The initial conditions are specified in «
puting the solution based on the exact solution. The initial temperature field is there
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specified as
¢ (X o) =1 erf y erfa (46)
Y, 2\/15

and the interface is initially placed at

S(to) = 214/ (to), (47)

wherety is the initial time at which the computation is started.

The computations were performed for a Stefan number of 2.85 for which the value o
is 0.9. In Fig. 14b, the interface locations from the computations are compared for differ
grid sizes (41x 41, 61 x 61, and 81x 81) with the exact interface location (solid line). The
exact and computed solutions are indistinguishable in the scale of the plot. In Fig.
the errors in interface location from two interface velocity estimations are compared.
the first case (dashed line) the velocity estimate is obtained by a two-point estimate for
normal gradient of the temperature which appears in the expression for the interface velo
Eq. (42). This two-point estimate was used in previous work (Udayketredr, 1996). The
procedure involves inserting a normal probe of lertgtthe grid spacing, into each phase
from the interface. The temperature is obtained at the end of the normal probe by descri
a biquadratic function for the temperature field around the end of the normal probe in e
phase. Then the normal gradient is obtained from a two-point estimate based on the v
obtained at the end of the normal probe and the known value at the interface. A sec
procedure has been used in Fig. 14c based on a three-point estimate of the normal grac
described in Section 2. In Fig. 14c the two-point estimate for interface velocity results
the interface location curve that deviates from the exact solution and the error is showr
the dashed line. The three-point estimate (represented by a dash-dot line) gives inte
locations that are indistinguishable from the exact solution on the scale of the plot. T
temporal variation of the errors incurred in the interface location using these two estime
are shown in Fig. 14c. As the interface evolves the accumulation of error in time appe
to be minimal. However, it is noted that the three-point estimate of interface velocity giv
an order-of-magnitude lower error than the two-point estimate.

While the three-point estimate clearly gives better accuracy in tracking the interfa
Fig. 15 indicates that it does not yield the expected second-order accuracy that was indic
from the truncation error estimates obtained in Section 2. In Fig. 15a we plabtherm
of the temperature field errors against the grid spakiaptwo time instants (after 100 time
steps (=0.1) and 200 time steps £0.2)). A reference second-order line is also showr
for comparison (dashed line). In Fig. 15b we show the errors in computed interface loca
plotted against the grid spacing for the above two time instants. It is noted that while
temperature field in the domain itself shows second-order behaviour, the interface loca
error shows behaviour closer to first order. This indicates that the advection of the interf:
i.e., the interface velocity, is only first-order accurate in space. At longer times, i.e., a
200 time steps, when the interface has traversed a large part of the domain, the situ
regarding the errors remains the same, as shown in Fig. 15b. Two interesting observa
can be made from the figure. First, although the three-point estimate for the normal grac
is nominally second-order accurate, the plot of log(error) vgHpdpor interface location
indicates only first-order accuracy. Second, the field equation is itself solved to secc
order accuracy iih, despite the boundary location being only first-order accurate. The fil
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FIG. 15. Errors in the solutions obtained for the melting of the flat interface. The log(error) vs)log(ves
are shown at two different time instants, after 100 time stepg)(1) and after 200 time steps£ 0.2). (a)L, horm
of errors in computed temerature field at the two time instants plotted against grid size. The reference seconc
line is also shown. (bl., norm of errors in the computed interface location. The reference first-order line is a
shown.

effect can be explained based on the fact that the three-point estimate of the gradie
temperature is second-order accurate only if the temperature field is exactly specified. !
the computed temperature field itself is second-order accurate, and not exact, the gre
information that can be extracted from this computed temperature field can be at best
order accurate. That the temperature field as computed from the discretization in Egs.
and (20) and the interface velocity as computed from Egs. (31) and (48) @& can be

seen as follows. When the interface is advected by specifying the exact value of the vel
at each time step the error in the computed temperature field is see®idhbeas shown

in Fig. 16a. Thel, norm of the temperature field error is plotted against grid size in tf

a b
Temperature field error Interface location error
Exact interface position specified Exact temperature field specified

107 .

10
/,"/’ 20d_order, ‘,/Z"aiorder
- — -
5 :

5 oo o .
[0 10

h h

FIG.16. Errorsobtained by decoupling the temperature field and interface position in the 1D melting probl
(a) log—log plot of temperature field errors. The interface position is specified exactly and the temperature
is computed. (b) log—log plot of interface position errors. The temperature field is specified exactly, the intel
velocity is computed from the given temperature field, and the interface is advected with this velocity.
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figure. Now, when the exact temperature field is specified in the domain and the interf
is advected by computing the velocity according to Eq. (42) Ltheorm of the interface
position error is obtained and shown in the log—log plot against grid size in Fig. 16b. Clea
these two calculations are second-order accurate. The fully coupled calculation show
Fig. 15 yields second-order accuracy in the temperature field but first-order accuracy in
interface position.

We show that the above accuracy estimates carry over into the 2D case. Here the s
freezing of a circular interface is computed. An initial circular seed is placed in the cen
of a square of dimensionx 1 units. The circle is grown by extracting heat by a heat sinl
located at (0.5, 0.5). An exact solution to this Stefan problem exists (Carslaw and Jae
1959; Juric and Tryggvason, 1996), where the temperature field in the solid is given by

Q. (-1 o
T(,t) = 471{5(4t> — Ei(—x )}, (48)

whereQ is the heat sink strength,is the radial coordinate, is a constant, and Ei is the
exponential integral given by

X

Ei(x) = / e;Udv. (49)
In the liquid phase,
B Ei(—pr2/4t)

whereg is the ratio of thermal diffusivitieas/«. The radius of the freezing circle is given
by

R(t) = 221, (51)
wherex is the root of the equation
A2 ke PV
Y -al (RS — 2
Q=dre’ (St ksEi"“z) 2

In line with the work of JT96 we specify the value of temperature at the grid points at t
center of the domain in the solid phase. This is to circumvent the singular behaviour at
heat sink location.

The results for the steady growth of the initially circular crystal are shown in Fig. 17 f
a Stefan number of 1.0. The material properties in the solid and liquid are taken to be ec
The exact radius of the circle was compared with the computed value and the errors
tained for three grids 64 61, 81 x 81, and 10k 101. ThelL, norm of the temperature field
error is shown on a log—log plot in Fig. 17a. The second-order accuracy of the tempera
field is maintained in the 2D case. Similar to the situation in 1D, the interface position
obtained with first-order accuracy as shown in Fig. 17b. The computed and exact inter!
locations for 2D stable freezing for a lower Stefan number of 0.1 are shown in Fig. 1.
The order of accuracy of the temperature field calculation as well as that of the interf;
position follows the same trend as that for the higher Stefan number case as seen
Figs. 18b and 18c. When the Stefan number is low the latent heat released at the interfe
high compared to the sensible heat flux at the interface. From Eq. (42), there is therefc
significant discontinuity in the gradients of the temperature field at the interface. When
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FIG. 17. 2D stable freezing (Stefan) problem. Stefan numbér0. (a) log—log plot of the temperature field
errors vs grid size. (b) log—log plot of the interface position errors vs grid size.
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FIG. 18. 2D stable freezing (Stefan) problem. Lower Stefan numbet,G1. (a) Interface position; compar-
ison of exact and computed radius of the freezing circle computed using the grids indicated. (b) log—log pl
the temperature field errors vs grid size. (c) log—log plot of the interface position errors vs grid size.
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Eulerian, i.e., fixed grid, method is used to compute the low Stefan number situation, 1
discontinuity is smeared over a few grid points, leading to a deterioration in accuracy. T
behaviour for the low Stefan nhumber case is mentioned by JT96. In the present case ¢
the interface is maintained as a discontinuity and one-sided differences are used in cell;
jacentto the interface, no difference should exist between calculations at the different St
numbers. This can be seen from comparing Figs. 17 and 18. The error in predicted inter
position in both casesis around 0.01%. Thus, although the interface errors appearto cons
with first order with respect to the grid size, the calculated interface positions are highly
curate irrespective of the strength of the discontinuity in the interface temperature gradie
We now demonstrate that the treatment of the property jumps by the present sharp intel
model is accurate and that the presence of such jumps does not alter the accuracy fin
reported above. The stable solidification problem above is computed for a Stefan nun
of 1.0 with a jump in the conductivities, i.dg,/ ks = 0.2. Note that this jump is treated as a
sharp discontinuity and one-sided differencing is involved at grid points near the interfa
Therefore, unlike in purely Eulerian methods the jump in material property is not distribut
over aregion of the grid. The computed and exact interface positions are shown in Fig. :

a
( — ) exact solution
~ 04 ( - - —) 41x41
> (-.-.-) 61x61
N’
g 0ast (....) 101x101
g 0.3r
8
< 0.25¢F
g
A= 02
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time
b | Temperature field | c { Interface location
t=0.05 t=0
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— 2nd-order
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o 1< 1st-order
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4 10”
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FIG.19. 2D stable freezing (Stefan) problem with discontinuous material propetky.= 0.2. Stefan number
St=1.0. (a) Interface position; comparison of exact and computed radius of the freezing circle computed u
the grids indicated. (b) log—log plot of the temperature field errors vs grid size. (c) log-log plot of the interfe
position errors vs grid size.
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The interface position converges to the exact value with grid refinement. It is show
Fig. 19b that the temperature field computed is second-order accurate, while the inte
position, as shown in Fig. 19c, is first-order accurate. Note that this result correspc
with the previous cases of equal material properties across the interface. Therefor
expected, the jump in property across the interface does not affect the order of accura
the numerical method used here.

We nextlook at computations of unstable phase boundaries that may arise in many sy:
(Pelce, 1988; Kesslest al., 1988). Such instabilities contribute to phenomena such
viscous fingering in porous media, modeled by Hele—Shaw flow (DeGregoria and Schw
1986; Houet al, 1994), and the formation of cellular and dendritic microstructures
solidification from the melt (Wheel@t al., 1992; Juric and Tryggvason, 1996). The physic
underlying such pattern forming instabilities has been reviewed by Langer (1980)
Kessleret al. (1988). As mentioned in Section 1, the numerical computation of curvatu
driven growth of fronts, such as in dendritic growth and Hele—Shaw flows, places ti
step restrictions that are extremely severe unless measures are taken to remove nun
stiffness. As discussed before, in our computations the update of the interface is cot
with the evolution of the temperature field and this implicitness allows the choice of ti
step to be restricted to a convective stability limit. In each of the calculations below we pl
a seed crystal in a domain with insulated boundaries. The initial condition is a unifort
undercooled melt with the conditions

T(x,0) = St in the liquid

: : (53)
Tx,00=0 in the solid

Note that the initial condition applied here corresponds to a nucleus of solid placed inst:
neously in an undercooled melt. The boundary condition at the interface for the temper:
includes the effect of capillarity and attachment kinetics and is given, in hondimensic
form (Juric and Tryggvason, 1996), by a generalized Gibbs—Thomson condition:

T + (c% - 1)1]2 +0 @)k + p@O)V; =0. (54)

For the surface tension parameteand attachment kinetic parameterwe take the forms
given by Almgren (1993):

o(®) = o (1+ As(Zsirt(Im@ — b)) — 1)) (55)
n®) = u(1+ Ac(3sin’(3m© - 6o)) — 1)). (56)

The integem decides the anisotropy of the interfacial parametessd. In the following
we usem =4 (fourfold symmetry) andn = 6 (sixfold symmetry).

In order to verify that capillarity effects are adequately captured in the application of
Gibbs—Thomson effect, Eq. (54), we first determine that the nucleation radius is corre
produced by the algorithm. To effect this we undercool the melt, i.e., set the tempere
in the liquid to the valud (x, y, 0) = —St = —0.5. The nucleation radius is then given by
R* =0 /St, wheres is the nondimensional surface tensiefil(in our case). We then place
circular crystals of radius.09R*, R*, and 11R* at the center of the domain of sizex44
and track the evolution of the interface. Note that the implicit interface update allows a t
step of O(102) to be used in time stepping the interface. When an explicit update v



564 UDAYKUMAR, MITTAL, AND SHYY

a b
11 65
1.08
1.06 8
Rinitiat = 1.01 _ _.{
g 1.04 mmakb‘__ 1.
2 T 55
g 1.02 P
P 5
[S) _
B T Rinitial = 1 Y
S o8t T Tt--s -
R .
'% Tre—al 45
o 096t -
Rinitial = 0.99
o004}
4
0.02f
09 35
0 0.2 0.4 06 0.8 1 35 4 15 5 55 6 65
time X

FIG. 20. \Verification of the nucleation radius. Stefan numbd.5. (a) Radius of circles with initial radii
equal to, greater than, and less than the nucleation radius. (b) The shapes of the circular crystals after the
elapsed in (a). (—Ruitiar; (- - =) Rt = 1 a@ftert =1; (--) Ruia = 1.01; aftert =1; (- - ) Riiiar = 0.99 aftert = 1.

employed the method became unstable and the interface was destroyed in a few time <
We found that the time step at which an explicit update was stable agreed very well with
criterion identified by Howet al. (1994) and given in Eq. (32). As shown in Fig. 20a, for the
duration of time computed, the crystal with< R* shrinks, while that witlR > R* expands
andR = R* changes only slightly due to numerical errors in computing the curvature. T
shapes of the three interfaces after the time duration elapsed are shown in Fig. 20b.
circle with R= R* is shown to have changed only very slightly from its initial shape.

We next perform a grid refinement study to demonstrate convergence of the inte
cial evolution with grid refinement. For this case we choose the system adopted by JT
The computations are performed in a square domain of dimensiof énits. The initial
interface is a fourfold symmetric structure placed at the center of the domain with a rac

R = 0.1+ 0.02 cog44). (57)

This represents a circle with a small fourfold symmetric perturbation on its surface. The n
is undercooled and the Stefan number chosen£s®5. The surface tensian=0.002 and
the kinetic parameter = 0.002. The interfacial parameters are isotropic. The results a
shown in Fig. 21. We perform computations on 20101, 201 x 201, and 40X 401 grid
sizes. For the 40% 401 mesh, as shown in Fig. 21b, we also explore the effect of an initi
orientation of the nucleus away from the grid directions. In the case shown the initial st
was oriented at 37from the horizontal. In Fig. 21a, the interface shapes for the three gri
are compared at time intervals 0.2 apart. It can be clearly seen that as the grid is refine
interface shapes converge rapidly and the solution on thex4@l grid can be considered
to be grid independent. The tip-splitting behaviour is shown by our solution in agreem
with established physics. The interface shape obtained finally is seen to differ somev
from that of JT96. However, even for the 181101 grid, our solutions seem to indicate
close resemblance of the result to the finer grid cases, while JT96 appear to show"
different interface behaviour for the 161101 calculation. In our simulations the coarse
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FIG. 21. Grid effects study for the case of unstable solidification with isotropic surface tension. Ste
number St 0.5, surface tension parametet= 0.002, and interface kinetics parametet 0.002 (no anisotropy
As, A = 0). The interface is shown at nondimensional time instants 0.2 apart. (a) Grid refinement and converg
of the interface shape with decreasing grid spacing. (b) Orientation effect explored by orienting the initial se
37 from the horizontal.

grid calculations appear to show greater effects of dissipation and hence the interf
features are coarser. This tendency is also indicated in the calculations of Hele—Shaw
by Houet al. (1997). In contrast, the calculations of JT96 for this case appear to show fi
scales of the interface for the smaller grid density (i.e., £AD1 grid). While there appear
to be multiple tip-splitting events leading to a highly corrugated structure for the 1@1

grid, there are two tip-splitting events for the 20201 case and one event for the fine
grids. In our case there is only one tip-splitting event for all grids. Both our method &
that of JT96 explicitly track the interface. However, while the present method calculates
interface evolution in the sharp interface limit and does not distribute the latent heat «
a finite region of the grid, the method of JT96 does. The initial conditions applied by
are somewhat different from those of JT96. However, the initial conditions result only
a short-time transient behaviour and application of the same initial conditions as theirs
not appear to significantly alter the long-time behaviour. In the context of benchmarking
results for this particular case we point out that Cheal. (1997) have simulated this same
case using the level-set method. In their case the coarse grid solution behaves simila
ours in that the interface instability only shows coarse features and the features sharg
the grid is refined. However, in their work, it appears that the interface is less unstable
ours. Forinstance, on a 483400 grid, a tip-splitting instability is only just beginning at the
final instant of their calculation. Thus, it appears that even the converged results for this
using the immersed boundary technique (JT96), the current sharp interface method, ar
level-set method of Cheet al. (1997) do not agree on the rate or nature of the instabili
in the highly nonlinear stages. Karma and Rappel (1996) have used the phase-field mi
to test the theory for unstable solidification (Kesseal (1988)) and indicate the need to
benchmark calculations in order to ascertain whether the theory is indeed applicable
wide range of operation of dendrites. Itis clear that since the methodologies for perforn
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these types of calculations are beginning to evolve to fairly well-developed algorithn
benchmarking of the computations is rapidly becoming necessary. With respect to the eff
of grid orientation, we show in Fig. 21b that the principal evolutionary characteristics of tf
isotropic case are free of grid anisotropy effects. Only in the final stage of the growth wt
the interface approaches the outer boundary do we detect differences in the results fror
two orientations. This is because even for the relatively high Stefan number computed (
St=0.5) the square domain begins to influence the interface at the later times. The ther
boundary layer ahead of the interface interacts with the square domain and begins to a
as to flatten the interface along the sides of the domain. This effect is clearly seen in
last time instant picture of the interface in Fig. 21b. In both Figs. 21a and 21b therefore «
would ascribe the flattening of the interface at the final instants to the square shape of
domain and the application of an adiabatic boundary condition there. The flattening ef
is due to the global thermal transport interacting with the square domain and not du
grid anisotropy effects. This is supported by the observation that the lobes of the tip-s
interface that are closer to the outer boundary (due to the orientation of the initial seed \
respect to the square domain) such as bave flattened out more than the lobes such a
b that are farther away from the sides. In this case the surface tension is isotropic, yet
anisotropy has no influence on the interface shape.

We look at the effects of discontinuous properties across the interface and assess the
of such discontinuities on the stability of the interface. Four cases are shown in Fig. 22. Tt
correspond to (a8 / ks = 0.2, (b)k/ ks = 0.5, (c)ki/ ks = 2, and (dk;/ ks = 100. Contrary
to the discussion provided by JT96, the interface in the case of large solid conductiy
appears to be stabilized. JT96 argue that the only role of the conductivity is to accelerate
instability development and the conductivity jump at the interface should have no impact
the stability of the interface itself. This is not supported by our calculation in Fig. 22a. V
show that for large enough solid phase conductivity, the instability can indeed be stabili
(for the given values of surface tension and kinetic parameters). Although from Eq. (:
the ratio of solid to liquid phase conductivities plays the role of increasing or decreas
the interface velocity, for equal specific heatsandc;, the ratiok;/ ks = o /s, the ratio
of thermal diffusivities. Therefore, when the thermal conductivity in the solid is large, he
diffuses in the solid faster than in the liquid. This leads to a tendency of the deform
initial nucleus to revert to a circular shape and the initial perturbations of the interface
smoothed out by the stabilizing diffusion field in the solid. As the diffusivity in the soli
decreases, as in Fig. 22b, whé&reks = o) /as = 0.5, this stabilizing mechanism weakens,
and in this case the instability of the interface ensues but at a slower rate than in the
shown in Fig. 21. Note that even in Fig. 22b diffusion of heat in the solid phase appear
lead to lower curvature values at the interface, resulting in a coarser structure. When the:
of conductivitiesk / ks > 1, the instability of the interface is enhanced. As seen in Fig. 22
a narrower groove is formed in the development of the structure and the instability occ
more rapidly than in Fig. 21. The final shape shown in Fig. 22c 1s=a0.3, which can be
contrasted with the final shape in Fig. 21, which i$ &t1.0. However, in agreement with
JT96, it can be noticed that increasing the liquid phase conductivity leads to an accelere
of the instability without significantly altering the nature of the instability itself. In Fig. 22d
we show the case where the ratio of conductivities is very largekii/d&s = 100. It is clear
from this figure that the increased conductivity in the liquid accelerates the developm
of the instability. Here the interface is already approaching a second tip-splitting event
contrast to the single tip-splitting event observed in the previous cases. If the interfa
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FIG. 22. Effect of property jumps across the interface for the case of unstable solidification with isotro
surface tension. Stefan number=89.5, surface tension parameter=0.002, and interface kinetics parameter
u=0.002 (no anisotropyAs, Ax =0). (a)k =0.2, ks=1.0, time from O to 1.0; (bk = 0.5, ks= 1.0, time from
0to0 1.0; (c)ky =2, ks=1, time from 0 to 0.3; (dk = 1.0, ks=0.01, time from 0 to 0.25. All computations on a
400 x 400 grid.

shown in Fig. 21 as well as in Figs. 22b and 22c¢ were allowed to grow in a larger dorm
this second tip-splitting event would occur at a later time.

The effect of surface tension on evolving interfaces is now demonstrated for unst
solidifying interfaces. The initial interface is as shown in Fig. 23. The initially flat interfac
is perturbed by imposing a four-wave sinusoidal perturbation of amplitude 0.1. The me
initially undercooled to St 0.8. The boundaries of the domain of dimensions3units are
insulated. Two cases are computed. For the case in Figo23#.001 andu = 0, and for
thatin Fig. 23bg = 0.0002 andu = 0. The role of the surface tension in setting the lengt
scale of the instabilities is well demonstrated by the results. In the higher surface ten
case, although the initial interface perturbation consisted of four wavelengths the |
structure appears to tend toward the two outer fingers which grow at the expense of the
central fingers whose development has been suppressed by the latent heat released
larger fingers. In contrast, by decreasing the surface tension by a factor of 5 in Fig. 23k
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All adiabatic
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FIG. 23. Unstable solidification and finger formation (isotropic surface tension). Stefan numb@s.
(a) Higher surface tensiom=1 x 1073, Interface shapes at equal intervals from 0 to 7. (b) Lower surface
tensiono = 2 x 107*. Interface shapes at equal intervals from0 to 32.

initial four-wave perturbation is immediately converted into a finer scale instability. Th
selected fine spacing is maintained as the interface propagates by spacing readjustn
These readjustments result from the suppression of growth of some fingers and by repe
tip-splitting events which maintain the scale of the structure.

Next we examine the effects of anisotropy on the growth of interfaces. In Fig. 24 \
compute the growth of an initially fourfold symmetric seed crystal in an undercooled m

o] 0.5 1 1.5 2 25 3 3.5 4 [¢] 0.5 1 1.5 2 25 3 35 4

FIG. 24. Sixfold symmetric anisotropy in surface tension. Simulations using ax58@0 grid. S&0.8.
(a) Higher surface tension case. Surface tension paramet€002, kinetic parametegr = 0.002, surface tension
anisotropyAs = 0.4, and kinetic anisotropgy = 0.0.t from 0t0 0.9. (b) Lower surface tension case. Surface tensior
parameter = 0.001, kinetic parameter = 0.001, surface tension anisotrogy = 0.4, and kinetic anisotropy
A=0.0.t from0to 0.6.
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FIG. 25. Fourfold symmetric anisotropy in surface tension=%t8. (a) Higher surface tension case. Sur-
face tension parameter=0.002, kinetic parameter = 0.0, surface tension anisotropds = 0.4, and kinetic
anisotropyA, =0.0. m=4. t from 0 to 0.05. 500« 500 grid. (b) Lower surface tension case. Surface tensic
parameters = 0.001, kinetic parameter = 0.0, surface tension anisotrop§ =0.4, and kinetic anisotropy
A,=0.0. m=4. t from 0 to 0.03. Simulations on an 8680800 grid. (c) Lower surface tension case with ki-
netic anisotropy. Surface tension parameter 0.001, kinetic parametex = 0.001, surface tension anisotropy
As=0.0, and kinetic anisotropp, = 0.4. m=4. t from 0 to 0.05. 500« 500 grid.

with a sixfold symmetric surface tension. The parameters used for the case in Fig.
areo =0.002, © =0.002, A;=0.4, and A, =0.0. For case in Fig. 24b a lower surface
tension and kinetic parameter was used; &re5 0.001 andu = 0.001. The undercooling

was specified to be St 0.8. Both calculations were performed on a 50800 grid. The time

step size was controlled based on the criterion in Eq. (33). The effect of the sixfold anisot
is to promote growth in the preferred directions to yield a sixfold symmetric structure.
finer scales displayed by the more unstable lower surface tension case is consisten
the expected physics. Here again our results appear to differ in the details from thos
JT96. Consistent with the observations made in connection with the test problem in Fig
the present method appears to be less susceptible to small scale instabilities on the s
than that of JT96. The overall growth rate and pattern appear to agree with JT96 bu
branching activity is less profuse in our case. A fourfold symmetric case is also compt
as shown in Fig. 25, by imposing fourfold symmetry in the surface tension. The parame
for the case in Fig. 25a are=0.002, . = 0.0, A;= 0.4, A, = 0.0, andm =4 and for that
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in Fig. 25b,0 =0.001, x =0.0, Ac=0.4, A =0.0, andm=4. For both cases $t0.8.
While the fourfold symmetry is reflected in the final shape for the higher surface tensi
case in Fig. 25a with four stably growing tips, the lower surface tension case seem
succumb to an early time tip split despite the imposed anisotropy. In the initial stage wi
the thermal boundary layer is still being formed the interface velocity is very high. It appe:
that for this case, in the initial stage the anisotropy is unable to completely stabilize
tip. In order to ensure that this behaviour is not grid-dependent we computed this cas
a finer grid of 800x 800 points. Note that after this initial tip split which leads to the
formation of a groove in the tip of the dendrite in Fig. 25b, the tip propagates stably in t
preferred growth directions. In Fig. 25¢c we impose the anisotropy in the kinetic anisotrc
instead of the surface tension. This appears to stabilize the interface and prevent the
time split. This is perhaps because in the initial stage of rapid growth the kinetic anisotrc
is perhaps more effective in providing tip stabilization than the surface tension anisotrc
As a final demonstration, in Fig. 26 we show the formation of a dendrite from an initi
fourfold symmetric seed placed eccentrically in an insulated box. The dimension of
box is 4x 8 units. A 500x 1000 uniform grid system was used for the computations
The initial seed is shown in the figure. The radius was given to be that in Eq. (57). T
interface parameters chosen were-0.002, 4 = 0.0, A;=0.4, A, =0.0, andm=4. The
undercooling was given to be St0.8. The interface shape is plotted at equal interval:
of time fromt =0 to 0.07. The initial seed grows without hindrance from the insulate
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FIG. 26. Fourfold symmetric anisotropy in surface tension=%t8. Simulations using a 5001000 grid.
Surface tension parametee= 0.002, kinetic parametgr = 0.0, surface tension anisotropgy = 0.4, and kinetic
anisotropyA, = 0.0. m=4.t from 0 to 0.07.
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boundaries for a short duration in a fourfold symmetric fashion. Three of the primary al
then feel the effects of the boundary and growth is inhibited. Thereafter, branches gro
these arms in thgdirection where the melt undercooling persists. The primary armis sho
to grow stably with a parabolic tip and a uniform velocity. Intense sidebranching acti
follows behind the stably growing tip. Asymmetry and branch competition are noticed in
development of the sidebranches on the main stem. Further coarsening effects can a
seen on the sidebranches on the horizontal primary branches where a final coarse str
in the secondary sidebranches seems to have emerged at the end of the calculation.

4. CONCLUDING REMARKS

In this report we have described a Cartesian grid solver for PDEs in the presenc
embedded moving boundaries. We first presented an account of the development of a 1
difference field equation solver for scalar transport. The application of Dirichlet as wel
Neumann boundary conditions is shown to be accurate to second order. The metho
been applied to treating the computation of solid—liquid phase fronts with a sharp inter
representation of the interface. This work therefore differs from the majority of Cartes
grid methods for the solution of moving boundary problems where the effects of the in
face are distributed over aregion proportional to the grid size. The region of spread is us
assigned to be proportional to the strength of the discontinuity at the interface. In the pre
work we show how localized sources at the interface as well as jumps in properties acr
can be treated in a simple finite-difference framework without the necessity of smearing -
discontinuities over the grid. At each stage of the present effort the accuracy of the me
has been ascertained and itis shown that the field variable is computed to second-order
racy. The boundary position, which in the case of the solidification problem depends or
gradient of the temperature field, is obtained to first-order accuracy. The method is stabl
to the fully coupled way in which the interface and field variable are updated. The numel
stability criterion for time stepping then takes the form of a convective criterion for interfe
advance. It is shown that complex interface morphologies can be tracked using the me
presented in this work. However, in the unstable growth of the front there is a disparity in
results from the present method, the immersed boundary method of Juric and Tryggv
(1996), and Cheet al. (1997). The errors incurred in the discretization in these methc
are different and itis possible that the differences in solutions in the noise-sensitive uns
case are induced by such numerical errors. Our attempt to benchmark the calculatior
unstable growth shows that further efforts to apply algorithms to well-defined benchn
problems are necessary. Based on the framework developed here for the diffusion anc
vection diffusion equation the Navier—Stokes equations can also be solved. With partic
regard to solid—liquid interface instabilities, the inclusion of solute transport to simul
interface propagation in alloys is straightforward. Work in these directions is in progre:
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