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A finite-difference formulation is applied to track solid–liquid boundaries on a
fixed underlying grid. The interface is not of finite thickness but is treated as a dis-
continuity and is explicitly tracked. The imposition of boundary conditions exactly
on asharp interfacethat passes through the Cartesian grid is performed using simple
stencil readjustments in the vicinity of the interface. Attention is paid to formu-
lating difference schemes that are globally second-order accurate inx andt . Error
analysis and grid refinement studies are performed for test problems involving the
diffusion and convection–diffusion equations, and for stable solidification problems.
Issues concerned with stability and change of phase of grid points in the evolution of
solid–liquid phase fronts are also addressed. It is demonstrated that the field calcu-
lation is second-order accurate while the position of the phase front is calculated to
first-order accuracy. Furthermore, the accuracy estimates hold for the cases where
there is a property jump across the interface. Unstable solidification phenomena
are simulated and an attempt is made to compare results with previously published
work. The results indicate the need to begin an effort to benchmark computations of
instability phenomena. c© 1999 Academic Press

1. INTRODUCTION

1.1. Motivation

Consider several objects embedded in a domainÄ as shown in Fig. 1. Each of the objects
is separated from the surrounding fluid, designated phase 0, by a boundary0i 0. We shall use
the term “immersed boundary” for this type of internal boundary in the flow field. Such a
boundary may arise in several types of flow problems. For example, this may be a boundary
that represents a solid geometry through which fluid flows. The solid boundary, as in many
fluid–structure interaction problems, may execute motions under the influence of the flow
around it. In other situations this boundary may represent a phase discontinuity at which
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FIG. 1. Illustration of immersed boundaries in a flow field. The immersed boundaries can be stationary or
moving. They can enclose solid, liquid, or gaseous phases. Furthermore, the boundary can move or deform by
interaction with the flow around it.

a phase transition occurs, such as in the solidification of material from the melt, or in the
vaporization of fluid. The boundary may also separate two fluids as in the case of bubbles
or drops immersed in an ambient fluid. For the purposes of the discussion presented here
we consider the solution of a transport equation for the variableφ in the domainÄ in which
the boundaries0i j are embedded,

∂φ

∂t
+ u · ∇φ = ∇ · k∇φ + f, (1)

whereu is the convective speed which may be a function ofφ and f is a body–force term.
On the phase boundaries different types of boundary conditions may apply and may be
written in the general form

F

(
φ,
∂φ

∂n

)
= α0i j . (2)

In some cases the boundary may be a discontinuity in the variableφ, in which case jump
conditions may be prescribed on0i j such as

[φ]0i j = β or

[
k
∂φ

∂n

]
0i j

= γ. (3)

Whether such boundaries in the flow domain are stationary or moving, computing so-
lutions for the flow equations requires applying boundary conditions of the Dirichlet,
Neumann, or mixed type on the surface. If the boundary moves, one would like to track the
boundary in time. If the properties are discontinuous across the boundary, the discontinuity
would be required to be maintained. While the deformation of the boundary may be induced
by the transport processes around it, the boundary in turn can transmit its influence to the
surrounding in the form of stresses or energy supplied at the infinitesimally thin surface. An
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example of the former is the force applied by a stretched membrane due to internal forces
developed within it and an example in the latter category is the release of latent heat or heat
of combustion at the boundary. Such interactions of the boundary and the flow field will
need to be calculated accurately.

In this paper we compute the motion of solid–liquid phase fronts by explicitly tracking
the interface over a fixed Cartesian grid. Ideally one would like to simulate the effect of
the boundary0i j by treating it explicitly, without smearing the information at the interface,
i.e., with minimum numerical diffusion. There are many ways of doing this; for a fixed
boundary, when the shape is truly complex, one can resort to block-structured domain
decomposition (Shyy, 1994), overset meshes (Steger, 1991; Johnson and Belk, 1995), or
unstructured boundary-conforming curvilinear grids (Venkatakrishnan, 1996) to discretize
the domain. For moving boundaries which may undergo large deformations, or are subject
to topology changes in the course of their evolution, fixed grid techniques are advantageous.
Generating boundary-fitted grids to conform to such complex boundaries becomes difficult.
To circumvent this difficulty a variety of methods have been developed and applied to track
fronts on fixed meshes. The popular methods for tracking moving boundaries in an Eulerian
framework are the volume-of-fluid method and its refinements (Hirt and Nichols, 1981;
Brackbill et al., 1992; Kothe and Mjolsness, 1992; Scardovelli and Zaleski, 1999), the
level-set method (Osher and Sethian, 1988), and the phase-field method (Caginalp, 1984;
Langer, 1986; Kobayashi, 1993; Wheeleret al., 1992). These methods perform very well
in problems involving free surfaces. For the particular problems of interest here, namely,
tracking of solid–liquid phase fronts, the level-set method (Chenet al., 1997; Sethian
and Strain, 1992; Zhanget al., 1998), the phase-field method (Kobayashi, 1993; Wheeler
et al., 1992), and enthalpy type methods (Voller and Prakash, 1987) have been employed. In
these purely Eulerian methods, the interface is not tracked explicitly but is deduced based on
a field variable such as the distance function, order parameter, or local enthalpy. The interface
is of finite thickness and may occupy a few grid points in a direction normal to it. Although
these methods converge to the sharp interface models as the grid size decreases, numerical
difficulties restrict operation of these methods to interface thicknesses proportional to the
grid size.

In mixed Eulerian–Lagrangian methods, the interface is tracked explicitly, while the
computations are performed on fixed grids. Examples of this approach are the immersed
boundary technique (Peskin, 1977; Unverdi and Tryggvason, 1992; Juric and Tryggvason,
1996; Udaykumaret al., 1997), cut-cell type approaches (Shyyet al., 1996; Udaykumar
and Shyy, 1995b; Udaykumaret al., 1996; Pemberet al., 1995; Quirk, 1992), the im-
mersed interface method (LeVeque and Li, 1994), and the fictitious domain methods
(Glowinskiet al., 1994). In essence, these methods differ from the purely Eulerian method
in that the boundaries are tracked explicitly as a set of curves.

Among mixed methods there are widely different ways of handling the interaction of the
interface with the flow field. The most widely used mixed technique is the immersed bound-
ary technique which was originated by Peskin (1977) and used extensively by Tryggvason
and co-workers (Unverdi and Tryggvason, 1992; Juric and Tryggvason, 1996) and by
the present group (Udaykumaret al., 1997; Kanet al., 1998). While explicitly track-
ing the interface, the method transmits the information regarding the discontinuity across
the interface to the grid in much the same way as purely Eulerian methods. As demon-
strated by Beyer and LeVeque (1992) this results in a method that is globallyO(h) accu-
rate, whereh is the grid spacing. On the other hand, the cut-cell treatment (Udaykumar
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and Shyy, 1995b; Udaykumaret al., 1996) proceeds to reconstruct the domain on either
side of the interface with considerable detail in regard to the piecing together of the frac-
tional cells that arise due to the passage of the boundary through the grid. Thus, smearing
of the interface is totally avoided in this method, with a conservative control volume treat-
ment that demands great care in assembling flux information in cells adjoining the inter-
face. However, such methods can become tedious, particularly when 3D computations are
considered.

As far as solidification simulations are concerned the outstanding work with Eulerian–
Lagrangian methods has been that of Juric and Tryggvason (1996). They showed that in-
terface tracking can be used effectively in 2D to solve the problem of complex evolving
solidification morphologies. Also, in their work, the physical parameters are directly re-
lated to the physically identifiable quantities, such as surface tension and anisotropy, unlike
in the phase-field methods (Wheeleret al., 1992), where the computational parameters
are only indirectly related to the actual physical quantities. Although phase-field methods
have been used to obtain impressive results of the dynamics of phase fronts, the presence
of a free parameter in such methods, namely the interface thickness parameter, renders
the method less suited to direct comparison/benchmarking. Therefore, the work of Juric
and Tryggvason (1996) (hereinafter abbreviated as JT96) is important as a starting point
for benchmarking calculations of unstable solidification front calculations. However, even
though the interface is explicitly tracked in JT96, the discontinuities at the interface are still
spread over a few grid cells. In solid–liquid phase front evolution these discontinuities can
arise from property jumps, sources of latent heat and solute, or capillary terms that act at
the infinitesimally thin interface. Truly sharp interface methods have been few. Previous
work in this regard has been performed by Udaykumar and Shyy (1995b) using the cut-cell
method, by Almgren (1993) using a variational formulation, and by Saitoet al. (1988)
using the boundary integral approach. Recently LeVeque and co-workers (LeVeque and
Li, 1994) have introduced the immersed interface method for tracking interfaces explicitly,
while maintaining sharp discontinuities, and this method has shown promise for problems
involving elliptic PDEs. The method has also been combined with the level-set approach to
alleviate problems involved in tracking interfaces explicitly and has been applied to track
interfaces in Hele–Shaw flow (Houet al., 1997). In the context of finite-element meth-
ods, Schmidt (1996) has applied a variational formulation to compute dendritic growth in
2D as well as 3D. In this paper, we seek to present a simple finite-difference method for
tracking sharp interfaces on a fixed Cartesian mesh. In contrast to a previous finite-volume
approach presented in Udaykumaret al. (1996), the present finite-difference formulation is
easier to implement. Traditional finite differencing is involved in the bulk of the domain.
In cells containing the interface, modification of the stencil based on explicit knowledge
of the interface is performed and the resulting discrete equations are solved over the whole
domain. The simplicity of the treatment facilitates error estimation for the finite differ-
encing. The computations performed support the expected error estimates. We make a
concerted effort to benchmark our results by directly comparing with the work of JT96.
In contrast to JT96, where the immersed boundary method was used and the interface
spread over a few grid cells, here property jumps and interface boundary conditions as
well as source terms at the interface are treated as discontinuities and included as such
in the discretization procedure. In contrast to the immersed interface method (LeVeque
and Li, 1994), the discretization procedure is simple and performed in the Cartesian direc-
tions and not in a rotated frame of reference. Therefore, it is elementary to extend from a
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simple finite-difference scheme implemented on a Cartesian grid without immersed bound-
aries. Extension to higher dimensions and to Navier–Stokes equations should follow along
the lines laid out in this paper. Work in this direction is in progress and will be reported
elsewhere.

1.2. Remarks on Explicit Interface Tracking

When interfaces are tracked explicitly, periodic reorganization of the interface informa-
tion becomes necessary. This can result from dilation or compression of the interface or can
be due to topological changes of the boundary. In 2D, mergers and breakups of boundaries
can be handled quite effectively, as demonstrated in Udaykumar and Shyy (1995a) and Juric
and Tryggvasson (1996). In 3D the operations to be performed can be more complicated
(Jayaramanet al., 1997; Snyder and Woodbury, 1993). Therefore, in 3D situations, explicit
tracking of interfaces will be work-intensive in the context of mergers and breakups, in
comparison to purely Eulerian methods. In the presence of surface tension, the growth of
parasitic modes on the surface can result when an explicit interface update is carried out
using reasonable time step sizes (Tu and Peskin, 1992). Thus, an implicit scheme for inter-
face motion needs to be devised. If the flow solver is also implicit, as in Udaykumaret al.
(1997), this presents no constraints since the interface and flow field evolution can be fully
coupled through the iterations and taken simultaneously to desired levels of convergence.
A related problem, that of stiffness due to surface tension, has been addressed by Houet al.
(1994) and an alternative formulation for the interface motion has been derived in terms of
the variablesθ (the angle made by the tangent to the interface with the horizontal) andL (the
interfacial perimeter). It has been shown that this formulation alleviates the stiffness from
interface tracking schemes in the presence of surface tension. The violation of the entropy
condition, i.e., the inability of an explicit curve-evolution scheme to detect and circumvent
crossover of the curve or the formation of cusps and fishtails, was pointed out by Osher
and Sethian (1988). This situation can be encountered in problems such as curvature-driven
growth, where the tendency to form cusps on the interface exists. When cusps are expected
or encountered, special measures can be taken to surgically remove such points from the
interfacial string (Glimmet al., 1988; Chorin, 1990).

While one has to be cognizant of the above issues in adopting an explicit tracking strategy,
there are situations in which explicit interface information in fact becomes desirable. One
instance is when a solid–liquid boundary is being tracked and where the no-slip condition is
to be applied. This can be done for fixed grid flow solvers by applying the no-slip condition
at the exact location of the interface as in the cut-cell or immersed interface approaches.
Next, in the dynamics of membranes such as in problems of cell dynamics (Donget al.,
1988; Kanet al., 1998) and adhesion (Joneset al., 1995) in biofluids or the stretch of
pliable aerodynamic surfaces (Smith and Shyy, 1996; Fauci and Peskin, 1988), the forces
generated within the membranes depend on the stretching and bending of the membranes.
This requires information on the tangential dilatation of the interface. Further, for the case
in which a boundary is anchored to a surface, such as the adhesion of the membrane
of a cell to a substrate, the forces transmitted to the membrane need to be calculated
(Demboet al., 1988), and explicit tracking is ideally suited to providing this information.
The ability of mixed Eulerian–Lagrangian methods to incorporate both solid–liquid no-slip
boundaries as well as fluid–fluid interfaces has been demonstrated in our previous work
(Shyyet al., 1996; Udaykumaret al., 1997).
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2. THE NUMERICAL METHOD

2.1. Main Features

There are pros and cons to each of the various methods for solving moving boundary
problems and the choice of a method is dictated by the physics and desired numerical
accuracy. The main advantage of explicitly tracking solid–liquid boundaries is that no
smearing of the boundary is involved. This renders explicit tracking methods suitable for
solving flows around solid objects embedded on fixed Cartesian meshes (Goirier and Powell,
1996; Quirk, 1992; Younget al., 1992; Meltonet al., 1993; Pemberet al., 1995; Goldstein
et al., 1993, 1995; Glowinskiet al., 1994; Shyyet al., 1996; Udaykumaret al., 1996, 1997).

In this work we choose to track the solid–liquid front explicitly. Our effort is directed
toward developing an accurate yet simple way of solving equations of the type in Eq. (1)
on a uniform Cartesian mesh in the presence of embedded boundaries. We demonstrate that
the present method achieves the following objectives:

1. The interface is tracked as a discontinuity and boundary conditions of the Dirichlet/
Neumann type are applied on the tracked fronts.

2. The inclusion of embedded boundaries into the discretization scheme involves simple
measures in the vicinity of the interface. Such points are few compared to the overall grid
size.

3. Based on truncation error analysis, a discretization scheme can be developed so that
global second-order accuracy in the field variable can be maintained. We show that this
holds true in going from one to two dimensions and in the presence of moving boundaries.

4. For the solidification problem the interface velocity is computed directly from the
Stefan condition and the normal gradients of the temperature are evaluated to second-order
accuracy. The curvature-dependent boundary conditions are imposed at the exact interface
location. This is in contrast to the approach of JT96, who adopted a Newton iteration
technique to obtain the value of interface velocity so that the interface boundary condition
was satisfied. Since we treat the interface as a sharp discontinuity, such measures are not
required in our case. This facilitates unambiguous characterization of discretization errors.

5. The stiffness of the interface evolution in curvature-driven growth is alleviated by using
an implicit formulation to couple the interface evolution with temperature field evolution.
Therefore the time step restriction in our case is a convective criterion.

6. The issue of change of phase of a grid point when the boundary crosses over it is
dealt with by a simple analogy with purely Lagrangian methods. This involves redefining
the stencils in the points adjoining the interface to account for the grid points that have
changed phase. The approach taken is shown to have no negative impact on the accuracy
of the computations.

We now describe the main components of the technique.

2.2. A Finite-Difference Algorithm for Solid–Liquid Moving Boundaries

In the following we will follow the basic ideas of the immersed interface method and
the cut-cell approach by applying one-sided differencing to obtain the discretization of
the governing equations at control points that lie next to the boundary. Our objective is to
solve a PDE of the form given in Eq. (1) in such a way that anO(h2) accurate spatial and
O(δt2) accurate temporal discretization can be maintained. To illustrate the methods and
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FIG. 2. Configuration for the solidification problem. The normal points from the solid to the liquid phase.

issues involved we choose as an example the solution of Eq. (1) for a typical moving bound-
ary problem, such as solidification/melting of pure material from the melt. The problem, as
illustrated in Fig. 2, may be formulated as follows:

Let the transported variableφ be the temperature in each phase. Then on the boundary of
the solid the temperature is specified and is given by the Gibbs–Thomson condition (Kessler
et al., 1988),

φ0 = φm

(
1− σκ

L f

)
, (4)

whereσ is the surface tension,L f is the latent heat of fusion,κ is the curvature, andφm is the
melting temperature. At macroscopic scales, the effects of surface tension are negligible and
the above boundary condition reduces to the statement that at the interface the temperature
is equal to the melting temperature. The interface moves in accordance with the interfacial
heat balance condition (Stefan condition):

Vn = 1

ρsL f

[
ks

(
∂φ

∂n

)
s

− kl

(
∂φ

∂n

)
l

]
. (5)

We wish to solve Eq. (1) in the regions occupied by the solid and liquid, as shown in Fig. 1
above, to desired levels of accuracy. We also wish to impose the boundary condition,
Eq. (4), on the temperature fields in the two regions. Then the boundary between the phases
is advanced using Eq. (5).

We will now describe the various components of the solution algorithm which meets the
accuracy goals but also maintains a simple discretization scheme that can easily be extended
to 3D. These can be listed as follows: interface tracking; communication between interface
and flow solver; discretization of field equations and application of boundary conditions;
and interface update.



542 UDAYKUMAR, MITTAL, AND SHYY

FIG. 3. Convention for definition of interface normal. The arclength parametrization allows identification of
the phase on each side of the interface. The solid lies to the right as the interface is traversed in the direction ofs,
the arclength. Open circles denote interfacial markers.

We will now detail our approach in each of the above components and provide the relevant
accuracy estimates.

I. Tracking the Interface

The interface is described by interfacial markers defined by the coordinatesX(s). The
spacing between the markers is maintained at some fraction of the grid spacing, 0.5h<
ds< 1.5h. The convention adopted is that as one traverses the interface along the arclength,
the solid lies to the right. This is illustrated in Fig. 3. The functionsx(s) = axs2+bxs+ cx

and y(s) = ays2 + bys + cy are generated. The coefficientsax/y, bx/y, andcx/y at any
interfacial pointi are obtained by fitting polynomials through the coordinates (xi−1, yi−1),
(xi , yi ), and (xi+1, yi+1). The coefficientsax/y, bx/y, andcx/y are stored for each marker
point. The normal to the interface then points from the solid to the liquid and is given by

nx = −ys(
x2

s + y2
s

)1/2 , ny = xs(
x2

s + y2
s

)1/2 . (6)

The curvature is then obtained, for the 2D planar case, from

κ = ∇ · n̂ = ysxss− yssxs(
y2

s + x2
s

)3/2 . (7)

The derivativesxs, xss, ys, andyss are evaluated using central differencing along the arc-
length coordinates. Cubic splines were also tried without observable differences in the
results for previous test problems. Therefore, central differencing was adopted since it is
easily applicable to different end conditions for the boundaries.

II. Relationship between Interface and Grid

Once the interface has been defined, the information on its relationship with the grid
has to be established. There may be several interfaces (henceforth called objects) im-
mersed in the domain. Each of the objects may enclose material with different transport
properties. Therefore, with respect to phase 0, which is the surrounding fluid, there may
be a discontinuity in transport properties, such as viscosity and conductivity across the
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FIG. 4. Procedures leading to phase and border cell identification. (a) The box represents points in the vicinity
of an interfacial markerα. (b) Interfacial marker placement in relation to the box identified. (c) Illustration of
normal drawn from the grid point (i, j ) to the interface. The open ellipse represents the intersection point of the
normal with the interface which is defined by the curvesx(s), y(s).

boundary separating phase 1, which is enclosed within object 1 and phase 0. One needs
to identify the phase inside object 1 as phase 1. This is accomplished in the following
way.

On a Cartesian grid, it is a trivial matter to identify the cell in which a given interfacial
point lies. Figure 4a shows a 4× 4 block of cells surrounding an interfacial pointα which
is denoted by an open circle. One obtains, for each of the grid points (xi , yj ) shown in
Fig. 4b, lying in the block, the normal from the point to the interface. The location
xn(i, j ), yn(i, j ) where this normal intersects the interface is also obtained. This is easily
done by employing the parametrization of the curve and the resulting polynomials:

x(s) = axs2+ bxs+ cx, y(s) = ays2+ bys+ cy. (8)

Now let the normal be described by the liney=ax+ b. Since the normal passes through
xi , yj , andxn, yn it is a simple matter to deduce that

a = yn− yi

xn− xi
= − 1

(dy/dx)n
= −2axsn + bx

2aysn + by
. (9)

Solving for sn, the arclength value where the normal contacts the interface, as shown in
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Fig. 4c, we get

sn = −bx(xn− xi )− by(yn− yj )

2ay(yn− yj )+ 2ax(xn− xi )
. (10)

Substituting forxn andyn as functions ofsn by using the expressions in Eq. (8) above, one
gets an equation forsn in the form(

2a2
y + 2a2

x

)
s3

n + (3axbx + 3ayby)s
2
n +

(
2aycy + 2axcx + b2

x + b2
y − 2ayyj − 2axxi

)
sn

+ (cxbx + bycy − xi bx − yj yi ) = 0. (11)

The solution forsn is obtained by the Newton–Raphson method, by providing the initial
guesss0

n = sα. sα is the arclength value at the interfacial point to which the box shown
in Fig. 4a belongs. Oncesn is known,xn and yn are obtained from Eq. (9).The normal
at xn, yn is then calculated using Eq. (6), the derivativesxs, xss, ys, andyss being readily
calculated using Eqs. (8) and the value ofsn. Now for the points (xi , yj ) lying in the block
in Fig. 4a, to determine on which side of the interface the point lies, one obtains the vector

λ̂ = (xn− xi )i + (yn− yj )j√
(xn− xi )2+ (yn− yj )2

. (12)

By taking the scalar productδ = n̂ · λ̂, if δ > 0, the pointxi , yj lies outside object 1, i.e.,
in phase 0, since the normal to the interface, by the convention adopted previously, points
from phase 1 to phase 0. Ifδ < 0, the point lies inside the interface. When the pointxi , yj

in the box lies outside object 1, the point is assigned a value of−1 and when it lies inside
it is assigned a value of+1. This leads to the picture shown in Fig. 5a. Then, the “true”
border cells are obtained such that at least one neighbour (along thex or y direction) of a
point (xi , yj ) has a point with a flag of opposite sign. The flags of the cells that are not true
border cells are reset to 0. This leads to the picture in Fig. 5b. For a closed object, in which
we wish to assign the phase of the control points, the overall picture at this stage will be
as shown in Fig. 5c, where the flags corresponding to each point have been illustrated by
means of gray levels.

In order to identify all the points inside the object with the phase=1 value, we proceed
as follows. All the true border cells are stored in a 1D array running from 1 to the total
number of border cells (designatednb). The indices of these border cells, i.e.,i and j
values corresponding toxi and yj , are also stored asib(1→ nb), and jb(1→ nb). Now,
one successively arrives at each border cell that lies within the object, i.e., a cell with a value
of +1. The immediate neighbours (ib± 1) and (jb± 1) are checked for the negative value
of the flag. If, say, the left cell has a flag value of−1 then one proceeds to the right and sets
the value in each cell as one marches along to the value of+1. This procedure is stopped
when the next negative flag is hit. If a particular border cell has more than one neighbour
with a negative flag, then the above procedure is conducted in both directions. The result,
after setting the negative cells back to zero, is as shown in Fig. 5d, where the interior of the
object has been assigned the phase 1 and the exterior the phase 0.

The above procedures occur only in the vicinity of the interface every time the interface
is moved. The operations involved in obtaining the information above are therefore accom-
plished economically. All the necessary information to be stored is placed in 1D arrays of
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FIG. 5. (a) Identification of the side of the interface on which the grid points lie.±1 indicates that the point
lies inside object 1;−1 indicates that the point lies outside object 1. (b) “True” border point. All points which
do not have a neighbour in the opposite phase are set to 0. These are not border points. (c) Overall picture of the
object after true border cells have been identified. The gray scale scheme is indicated below the figure. (d) Final
picture after the phase identification process is complete.

length commensurate with the number of interfacial markers. One further aspect of this
phase assignment procedure is that it carries over in a straightforward extension to 3D. The
only significant difference would be that the intersection of the normal from the adjoining
grid points will now be with the surface defining the object, not the curve.

III. Solution of the Field Equations in the Presence of Internal Boundaries

Discretization in the bulk of the domain.We have now obtained information on the
boundary curves and on their location and effect on the control pointsxi and yj in the
computational domain, in terms of the material properties to be assigned. Also, we now
have information on where the boundary is located with respect to the grid. This is obtained
from the border cell arrays as detailed in the previous section. The governing equation

∂φ

∂t
+ u · ∇φ = k∇2φ (13)
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is discretized as

φn+1− φn

δt
= k

2
(∇2φn+1+∇2φn)−

(
3

2
un · ∇φn − 1

2
un−1 · ∇φn−1

)
, (14)

where theO(δt2) Crank–Nicolson discretization is adopted for the diffusion term and
the O(δt2) explicit Adams–Bashforth method is adopted for the convection term. If an
O(h2) central difference scheme is used to evaluate the spatial derivatives, we should
have a nominally second-order accurate scheme in the bulk of the domain. The discrete
approximation to the derivatives gives a five-point stencil in 2D and the final discrete form,
at a grid point (i, j ) and time leveln+ 1, can be written as

αi, jφ
n+1
i, j + αi+1, jφ

n+1
i+1, j + αi−1, jφ

n+1
i−1, j + αi, j+1φ

n+1
i, j+1+αi, j−1φ

n+1
i, j−1 = 6i, j . (15)

Here theαi, j , etc., are the coefficients in the discretization corresponding to the members of
the five-point stencil, and6 is a source term containing the explicit terms as well as boundary
conditions. The truncation error, due to the discrete operators mentioned above, is expected
to be O(h2) and O(δt2) in space and time in the bulk of the domain. Usually boundary
points will be unable to yieldO(h2) local accuracy. Such points are few in number and if
O(h) accuracy can be ensured at such points the deterioration in global accuracy below
O(h2) should be minimal. This requirement is along the lines of the immersed interface
method of LeVeque and Li (1994).

Discretization at the immersed boundary.An O(h) accurate discretization needs to be
obtained at an internal boundary in the grid. Illustrating with a 1D case, the situation with
an internal boundary on the grid is as shown in Fig. 6. In the figure, the pointyj lies in the
solid phase, whileyj+1 lies in the liquid phase. The two are separated atyα by the boundary.
If we are interested in discretizing the diffusion term atyj+1, i.e., in the liquid phase, such
that the truncation error isO(h), then we proceed as follows (similar considerations will

FIG. 6. Immersed boundary in the domain along they direction. Grid pointj lies in the solid phase, while
j + 1 lies in the liquid phase.
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apply atyj ), (
∂2φ

∂y2

)
j+1

=
(
∂φ

∂y

)
n −

(
∂φ

∂y

)
s

yn − ys
, (16)

where (
∂φ

∂y

)
n

= φ j+2− φ j+1

yj+2− yj+1
(17)(

∂φ

∂y

)
s

= φ j+1− φα
yj+1− yα

, (18)

whereφα is the value of the variable at the interface location, and

yn − ys = yj+2+ yj+1

2
− yj+1+ yα

2
. (19)

Therefore (
∂2φ

∂y2

)
j+1

= 2

yj+2− yα

(
φ j+2− φ j+1

yj+2− yj+1
− φ j+1− φα

yj+1− yα

)
. (20)

It can be shown that the truncation error for the above expression isO(h).
For the convection term, again taking the 1D situation, the discretization is performed as

Vj+1

(
∂φ

∂y

)
j+1

= Vj+1

(
φn − φs

yn − ys

)
, (21)

where

φn = φ j+2+ φ j+1

2
(22)

φs = φ j+1+ φα
2

(23)

and yn− ys is given by Eq. (19). It can again be shown that such a discretization yields
O(h) accuracy for the convection term at pointj + 1. Therefore in the 1D situation dis-
cretization of the governing equation using the above differencing givesO(h) accuracy in
cells adjoining the interface.

In the 2D case, the discretization near the interface entails the following procedures,
which can be explained with reference to Fig. 7. Suppose an interface runs through the grid
as shown. The point (i, j ) is in the solid phase, while (i, j + 1), (i, j + 2), (i − 1, j ), and
(i − 2, j ) are in the liquid phase. The points like (i, j ) and (i, j + 1) which are adjacent
to the interface, i.e., have an immediate neighbour in the opposite phase, have previously
been identified as border cells. Therefore in assembling the discretization stencils for points
in the domain, one first obtains the coefficientsα and6 in the discrete representation in
Eq. (15) without regard to the presence of the interface. Then one visits each of the border
cells identified previously and modifies the stencils of each point belonging to the opposite
phase. The modification of the stencil is achieved by reassigning the appropriate values of
α and6 such that the differencing in Eqs. (20) and (21) is applied in the border cells. For
example, in Fig. 7, when considering point (i, j ) which is a border point, the stencils for



548 UDAYKUMAR, MITTAL, AND SHYY

FIG. 7. Computing the gradients at the interface. The points where the interface in the cell cuts thex= constant
andy= constant lines corresponding to the control point (xi , yj ) are shown.

points (i, j + 1) and (i − 1, j ) are modified as given by Eqs. (20) and (21) for the diffusion
and convection terms, respectively. In 2D this type of operation needs to be accomplished
in thex or y directions, depending on whether the neighbour in thei or j direction is in the
opposite phase. If there is a cell in the opposite phase in both thei and j directions, then
modifications of adjacent cells in both directions need to be performed.

Consider the point (i, j ) in Fig. 7. Since the point (i, j + 1) lies in the opposite phase,
the values ofyα andφα need to be incorporated into the discrete form for(∂2φ/∂y2) j+1

andVj+1(∂φ/∂y) j+1 as given in Eqs. (20) and (21). To obtain the value ofyα for the cell
(i, j ) one computes locally the intersection of the boundary segment in that cell with the
x= constant line that passes through the grid point, shown as the dashed vertical line in
the Fig. 7. This intersection is easily carried out using the information acquired previously
regarding the interfacial point that is closest to the point (i, j ). Let this interfacial point be
indexedk. Then (Xk,Yk) is the coordinate of this closest interfacial point. Now we have
already obtained the functionsX(s) andY(s) on the interface for each point. Thus, the
arclength valuesα along the interface where the curve intersects the linex = xi is obtained
by solving

(ax)ks2
α + (bx)ksα + (cx)k = xi (24)

for the value ofsα. Oncesα is obtained,yα can be calculated from

yα = (ay)ks2
α + (by)ksα + (cy)k. (25)

One also needs to obtainφα, i.e., the boundary condition to be applied at the location where
the interface cuts thex= constant line. The values on the interface are available at the
locations of the markers. These are again obtained in the form8(s) = aφs2 + bφs+ cφ .
Thus, the value ofφα can be obtained from

φα = (aφ)ks2
α + (bφ)ksα + (cφ)k. (26)

These values can now be incorporated in the discrete form at (i, j + 1). Similar considera-
tions apply for the cell (i − 1, j ) which also lies in the opposite phase to cell (i, j ). It was
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FIG. 8. Change of phase of cells due to moving boundary. (a) Location of the interface at time leveln. The
hatched region is solid. Grid pointi, j lies in the solid phase. (b) Location of the interface at time leveln+ 1. The
interface has moved across the grid point (i, j ) which now lies in the liquid phase. The cells that have changed
phase are indicated by open circles.

pointed out by one of the reviewers that the discretization described above is similar, in the
1D case, to that described in Crank (1984, pp. 163–168) for one-dimensional fronts.

IV(A) . Moving Boundary and the Issue of Change of Material

When a boundary immersed in the flow domain moves across the fixed Cartesian grid
points, some characteristic computational issues can arise. One problem encountered at an
Eulerian grid point is the discontinuous change of material following boundary motion.
This is illustrated in Fig. 8. As shown there, at the left is the initial position (at time level
n) of the boundary at which the cell (i, j ) lies in the solid phase. Once the boundary moves
(at time leveln+ 1) to the position shown in Fig. 8b, there are a few cells which emerge
from the solid into the liquid. For the solution of the field equation at the time level (n+ 1),
using the discrete form in Eq. (15), one requires information regardingφn at each grid point.
However, for the cells that have just emerged from the solid, the grid points at which the
computations are being performed have no prior history in the liquid phase; i.e., there has
been a change of material at the point (i, j ). Therefore there is no information onφi, j at
time leveln that is physically meaningful with respect to the phase or material into which it
has emerged. Such newly emerged points have to be treated in a special manner. Note that
purely Eulerian methods do not face this problem since in such methods the interface is not
tracked as a discontinuity, but is smeared onto the grid. In the immersed boundary technique,
although the interface itself is tracked explicitly, its interaction with the underlying grid is
simulated by smearing the material discontinuity across the interface using a Heaviside
function. However, if one wishes to avoid the smearing of the interface one has to contend
with the issue of change of phase of a grid point.

A solution to this problem is obtained by analogy with boundary-fitted moving grid
methods. Consider a planar interface that is being tracked using a boundary-fitted grid as
shown in Fig. 9. Let the position of the interface at time leveln be as in Fig. 9a. The interface
is then moved to the position shown in Fig. 9b at time leveln+ 1. The location of the grid
point close to the interface at time leveln is shown in Fig. 9b and denoted asβ. If one were
to regrid in the cell that has been stretched by adding one more grid point in that cell, one
would have to estimate the value of the functionφ at the freshly created grid point shown in
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FIG. 9. Boundary-fitted grid replenishment procedure when the moving boundary stretches the grid beyond
a certain desirable limit. (a) Grid at time leveln. (b) Grid at time leveln+ 1 after the boundary has moved. The
shaded region shows the new area created in the liquid region by boundary motion. (c) Regridding is performed
to replenish grid points in the stretched grid region. The open circle shows the newly created grid point.

Fig. 9c. But this point was previously (i.e., at time leveln) in the solid phase and hence has
no history in the liquid. In such a case, in order to obtainφn+1 one would simply interpolate
to find this value using

(φnewcell)
n+1 = δyαφ

n+1
β + δyβφn+1

α

δyα + δyβ . (27)

Hereφnewcell is the value at the newly emerged point shown in Fig. 9c,φβ andφα are the
values at the pointsβ andα shown in Fig. 9b, andδyα andδyβ are as shown in Fig. 9b.
Thus, at the end of time leveln+ 1 we have the information at the newly created point based
on the computed value of(φβ)n+1 and the known value at the interface(φα)n+1. A similar
strategy is adopted in the case of the present fixed grid calculations for obtaining the value at
a freshly cleared cell, as shown in Fig. 10. At time leveln+ 1 the cell (i, j ) has just emerged

FIG. 10. Finding the value at the newly cleared cell. A linear interpolant is constructed using points numbered
1 to 4 such that the boundary value at the interface is correctly enforced.
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into the liquid phase. Therefore the value of(φi, j )
n+1 is obtained by constructing a bilinear

interpolant between the surrounding points and points on the interface. This interpolation
is performed by using the points 1 to 4 illustrated in the figure and requiring that the value
of φ at the interface as computed in cell 4 (which corresponds to the newly emerged cell)
achieve the prescribed interface valueφα. This expression takes the form

α1φ1+ α2φ2+ α3φ3+ α4φ4 = φα, (28)

where theα’s are the geometric coefficients in the bilinear interpolant. Therefore the value
at the newly emerged cell is obtained from

(φ4)
n+1 = φα − α1φ

n+1
1 − α2φ

n+1
2 − α3φ

n+1
3

α4
. (29)

Note that if two adjacent cells emerge into the liquid at the same time the above formula still
holds and the final values at the adjacent points are established in the course of iteration.
Thus, for newly emerged cells, Eq. (15) is not employed to compute(φi, j )

n+1 for one time
step. At the next time step, i.e., time leveln+2, the cell (i, j ) is no longer a newly emerged
cell and the computation at that point can then proceed using Eq. (15) since the previous
time step value (corresponding to time leveln+ 1) is now available. However, at time level
n+ 2, for the convection term, the Adams–Bashforth formula still cannot be used since the
value ofφ exists only for one previous time level. In such a case either anO(δt) accurate
scheme will have to be tolerated for an additional time step or some other two-time-level
O(δt2) accurate method such as the Runge–Kutta method will have to be used.

IV(B) . Moving Boundary: Computing the Velocity of the Interface

Depending on the physical problem, the velocity with which the solid–liquid interface
moves can be determined in several ways. For example, if a fluid–structure interaction
is being simulated, then the hydrodynamic forces acting on the object, integrated over
the surface of the object, will determine the resulting motion. In solidification problems,
the interface velocity is driven by the temperature field as given by the Stefan condition,
Eq. (5). Taking the particular example of solidification, it is necessary to obtain the gradients
of the temperature, i.e.,∂φ

∂n , in each phase toO(h2) accuracy in order to obtain the velocity
of the interface. This can be done in different ways. First, since(

∂φ

∂n

)
α

= nx

(
∂φ

∂x

)
α

+ ny

(
∂φ

∂y

)
α

(30)

one can obtain gradients( ∂φ
∂x )α and( ∂φ

∂y )α to second-order accuracy and thereby evaluate the
normal gradient from Eq. (30) to second order. However, in practice this is found to be tedious
to implement and the results were found to be poor. We instead follow along the lines of our
previous work where the gradient was evaluated by using a normal probe. This is done by
extending a normal probe into each phase from the interfacial marker location as illustrated
in Fig. 11. In previous work (Udaykumar and Shyy, 1995b), we used a single node on the
normal probe located a distanceh from the interface and described the temperature field
at the node point using a biquadratic function,φ(x, y) = ax2+ by2+ cxy+ dx+ ey+ f ,
where the six coefficients were solved by locating six grid points around the node in the
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FIG. 11. Obtaining the normal gradient at the interface marker location to find the velocity of the interface in
the solidification problem. Values at the normal probe nodes are obtained by bilinear interpolation.

phase in which the gradient was desired. Here we instead use two nodes on the normal
probe and obtain the temperature values at each node by bilinear interpolation from the
neighbouring grid points. The two nodes on the normal probe are located at distances of
h and 2h from the interface. The points that are involved in the calculation are shown
using shaded circles in Fig. 11. As can be seen in the figure, for the node proximal to the
interface, one of the surrounding grid points may lie in the opposite phase. Then the value of
the temperatureφi and coordinates (Xi ,Yi ) at the interfacial point shown by the closed circle
is chosen for the bilinear interpolation. Then based on the two points on the normal probe
and the known boundary value on the interface, anO(h2) estimate of the normal gradient
can be found in each phase across the interface as follows:(

∂φ

∂n

)
α

= 4φn1− φn2− 3φα
2h

. (31)

These normal gradients are then used to determine interface velocity using Eq. (5). We
show later that the three-point bilinear estimate yields results that are more accurate than
the two-point biquadratic estimate used in previous work for the normal probe values.

IV(C). Implicit Update for Curvature-Driven Growth

In solidification phenomena, when a solid advances into an undercooled melt the interface
becomes unstable and complex front shapes are produced (Kessleret al., 1988). It has been
shown in an interesting paper by Houet al. (1994) that for problems involving curvature-
driven growth, the presence of capillarity terms on the interface evolution equation can lead
to a severe numerical stability constraint if the interface is updated explicitly. Houet al.
(1994) show that the criterion takes the form

δt ≤ ξδx3, (32)

whereξ is a problem-dependent quantity. This constraint is obviously extremely limiting
for computations that seek to resolve finer structures on the interface with highly refined
grids. An alternative formulation based on the parametrization of the interface evolution
in terms of the variablesθ (the angle made by the tangent to the interface with thex axis)
and L (the interface length) alleviates the diffusional stability condition arising from the
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capillarity effects. However, the implementation of theθ–L formulation in the general case
(for instance, in the event of topological changes or nonperiodic interfaces or in 3D) can
become difficult. We find that maintaining the (x, y) formulation for defining interface
marker positions but coupling the interface motion with the solution of the temperature
field gives a stable interface update. The stability criterion is vastly improved so that time
steps given by a convective criterion can be applied. This criterion amounts to requiring
that the interface traverse no more than one grid cell per time step. Therefore the interfacial
motion will be computed with the time step controlled by

δt = αt
h

Vmax
, (33)

whereh is the grid spacing,αt is a user-specified value (which we set to 0.1), andVmax is
the maximum velocity of points on the interface. The fully implicit solution procedure is
as follows:

0. Start time stepn+ 1. Iteration numberk= 0. Initial guess forφn+1,0 is given asφn.
Initial guess for velocityVn+1,0 = Vn.

1. Start iteration loop. Iteration numberk= k+ 1.
2. Solve temperature field (using the line solver) for a few iterations (sayN1). Do not

converge temperature field fully.
3. Calculate the interface velocity (V∗) from Eq. (5). Underrelax interface velocity. In

other words,

Vn+1,k+1 = αvV∗ + (1.0− αv)V
n+1,k. (34)

4. Update interface position:

Xn+1,k+1 = Xn + δtVn+1,k+1. (35)

5. Check convergence of temperature and interface velocity. If convergence is achieved
go to next time step. If not go to 1 and iterate.

In the present calculations the inner iteration numberN1 is given to be 5. The number
of outer iterationsn required per time step is typically around 10 when the interface has
not reached a steadily propagating condition but decreases to about 5 thereafter. For the
dendritic growth calculation large regions of the interface reach constant velocities such as
the groove and tip regions. Some variation in the number of iterations is noticed when new
features are formed such as during sidebranch formation. A typical value ofαv, the velocity
underrelaxation, is specified to be 0.1.

3. TEST CASES FOR SCALAR TRANSPORT

The accuracy of the current differencing scheme is demonstrated by solving the general
transport equation, Eq. (1). First, we compare the solution obtained for an inviscid flow
around a circular cylinder. The cylinder of radius 1 is immersed in the flow domain of size
6×6 units. The arrangement is shown in Fig. 12a. The equation to be solved is the Laplace
equation forφ, whereφ now represents the velocity potential function. Therefore, for this
case,u= 0 and f = 0. The diffusion equation is then time-stepped to steady state. The exact
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FIG. 12. Solution of the inviscid flow around a circular cylinder. (a) The potential function contours. (b) Errors
in the solutions by imposing Dirichlet conditions on the cylinder. The error norms are plotted against grid size.
(- - -) The L2 norm in the solution errors in the domainÄ; (-·-) the L∞ norm; (—) theL2 norm of the errors in
satisfying the Neumann boundary condition at the interface (0). (c) Errors in the solutions by imposing Neumann
conditions on the cylinder. (- - -) TheL2 norm in the solution errors in the domainÄ; (—) the L2 norm of the
errors in satisfying the Dirichlet boundary condition at the interface (0).

solution for this problem, for the stream function, is given by

φ(r, θ) =
(

r + 1

r

)
cos(θ), (36)

where

r =
√
(x − 3)2+ (y− 3)2, θ = tan−1 (y− 3)

(x − 3)
. (37)

This exact solution is imposed at the boundaries of the domain and Dirichlet conditions
corresponding to the exact value above are imposed on the surface of the cylinder. The
computed solution in Fig. 12a shows the contours ofφ, the potential function. The grid
refinement study was performed by computing the solution for grids with 21×21, 41×41,
81×81, and 121×121 points. TheL2 norm of the error was computed for the solution over
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the whole domain from the computed and exact solutions. TheL∞ norm was also obtained.
These norms are defined as

L2 =
√(∑

i, j (φi, j − φexact)2
)

N2
(38a)

L∞ = max|φi, j − φexact|, (38b)

where N is the number of grid points along each coordinate direction. These two error
norms are shown on a logarithmic scale in Fig. 12b. As can be seen in comparison with the
reference second-order line, the accuracy of the calculations is indeed second order inh,
the grid spacing. In Fig. 12b we also show the error in satisfying the Neumann condition
for the potential at the immersed boundary. Again, the boundary condition is satisfied to
second-order accuracy with respect to grid size. The same problem can also be solved
by specifying the Neumann boundary condition on the cylinder due to the no-penetration
condition. Therefore the grid refinement study was done by applying the Neumann condition
∂φ

∂n = 0 on the immersed boundary. In Fig. 12c, we plot the log(error) vs log(h) for the
grids 21× 21, 41× 41, and 81× 81. Second-order accuracy is also obtained in this case.
Also shown in Fig. 12c is the error in satisfying the Dirichlet condition on the interface
when the Neumann condition is imposed. In other words, with particular reference to the
inviscid flow problem, this represents the accuracy in computing the potential function
value at the cylindrical boundary when the no-penetration condition is imposed via the
Neumann condition. It can be seen that imposing the Neumann condition does attain the
Dirichlet boundary value to second-order accuracy. Thus, second-order global accuracy can
be achieved when the discretization on the boundary isO(h) for the case of the diffusion
equation for both Dirichlet and Neumann conditions.

To study the effect of discretizing the convection term on the order of accuracy of the
computed solution, we now solve the convection–diffusion equation, Eq. (14). The velocity
field is assumed to be uniform, so thatu= 1i+1j , and the Peclet number Pe= |u|d/k is 20,
whered is the diameter of the cylinder andk is the diffusion coefficient. The boundaries of
the domain are maintained at a value ofφ= 1 , while a Dirichlet condition is imposed on
the surface of the cylinder whereφ = 0. Figure 13a shows the isotherm contours and the
clustering of the isotherms in the boundary layer close to the cylinder surface and at the top
right corner of the domain due to the convection and boundary conditions imposed. In the
absence of the exact solution, the solution on the finest grid level, namely the 221×221 grid,
is taken to represent the exact solution and the errors for the other grids, namely 21× 21,
61×61, 101×101, 141×141, and 181×181, are computed with reference to the solution
on the 221× 221 grid. TheL2 norm obtained is plotted in Fig. 13b. The maximum error in
the domain is also obtained and plotted. As can be seen from the figure the discretization
procedure leads to anO(h2) accurate solution.

We next solve a moving boundary problem using the methods developed for the solid-
ification problem discussed in Section 2. One problem in phase change that has an exact
solution is the melting of a flat interface. This so-called Neumann problem has been used
in previous work with the cut-cell method (Shyyet al., 1996; Udaykumaret al., 1996). The
diffusion equation is solved in each phase, solid and liquid, across the melting front,

∂T

∂t
= ∇ · αi∇T, i = L,S, (39)
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FIG. 13. Solution of the convection–diffusion equation with an immersed circular boundary. The Reynolds
number is 20. (a) The isotherm contours showing the clustering near the front surface of the cylinder where large
gradients occur. (b) The errors in the solution plotted against grid size. The finest grid solution is taken as the
reference in obtaining the solution. (- - -) TheL∞ norm of the error; (—) theL2 norm of the error; (-·-) reference
second-order line.

whereαi is the diffusion coefficient given byki /%i Cpi , wherek is the conductivity,% is
the density, andCp is the specific heat at constant pressure and the subscripti indicates
the phase L (liquid) or S (solid). The boundary condition on the front is imposed as the
melting temperatureTm. The interface then is moved using the Stefan condition, Eq. (5).
The temperature, length, and time are nondimensionalised as

φ = T − Tm

TL − Tm
, Y∗ = Y

YL
, t∗ = t

αref/Y2
L

, (40)

whereYL is the extent of the domain,TL is the temperature in the liquid at the boundary of the
domain,αref is a reference diffusion coefficient, and the asterisk indicates nondimensional
values. The diffusion equation takes the form

∂φ

∂t
= ∇ · αi∇φ, (41)

whereαi is the diffusion coefficient of phasei . The interface is then at a temperatureφ = 0
and the front velocity is given by

V∗n = St

(
ks

kL

(
∂φ

∂n

)
s

−
(
∂φ

∂n

)
l

)
. (42)

St is a nondimensional parameter called the Stefan number given by St=CpL(TL − Tm)/

ρL L f and denotes the ratio of sensible to latent heat effects. A schematic of the computa-
tional setup for the problem is shown in Fig. 14a, where the nondimensional domain size
and boundary conditions are indicated. Melting proceeds from the top wall and the front
progresses in the downward direction. The exact solution to this problem takes the following
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FIG. 14. Solution of the melting of a flat interface. Melting is initiated at the top of the domain. The front
moves downward. (a) Schematic of the problem geometry and boundary conditions. (b) Comparison of interface
locations obtained using different grid sizes. (c) Errors in interface location from the calculations using the two
velocity estimates against the time elapsed. (- - -) Error due to the two-point estimate of interface velocity;
(- · -) error due to the three-point estimate of interface velocity.

form (Crank, 1984): The temperature in the liquid is given by

φ(y, t) = 1− erf

(
y− 1

2
√

t

)/
erfλ. (43)

The temperature in the solid isφ = 0. The interface location is given by

S(t) = 1− 2λ
√

t, (44)

whereλ is given by the root of the equation,

λeλ
2
erfλ = St√

π
, (45)

and St is the Stefan number as defined above. The initial conditions are specified in com-
puting the solution based on the exact solution. The initial temperature field is therefore
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specified as

φ(x, y, t0) = 1− erf

(
y− 1

2
√

t0

)/
erfλ (46)

and the interface is initially placed at

S(t0) = 2λ
√
(t0), (47)

wheret0 is the initial time at which the computation is started.
The computations were performed for a Stefan number of 2.85 for which the value ofλ

is 0.9. In Fig. 14b, the interface locations from the computations are compared for different
grid sizes (41× 41, 61× 61, and 81× 81) with the exact interface location (solid line). The
exact and computed solutions are indistinguishable in the scale of the plot. In Fig. 14c
the errors in interface location from two interface velocity estimations are compared. In
the first case (dashed line) the velocity estimate is obtained by a two-point estimate for the
normal gradient of the temperature which appears in the expression for the interface velocity,
Eq. (42). This two-point estimate was used in previous work (Udaykumaret al., 1996). The
procedure involves inserting a normal probe of lengthh, the grid spacing, into each phase
from the interface. The temperature is obtained at the end of the normal probe by describing
a biquadratic function for the temperature field around the end of the normal probe in each
phase. Then the normal gradient is obtained from a two-point estimate based on the value
obtained at the end of the normal probe and the known value at the interface. A second
procedure has been used in Fig. 14c based on a three-point estimate of the normal gradients
described in Section 2. In Fig. 14c the two-point estimate for interface velocity results in
the interface location curve that deviates from the exact solution and the error is shown by
the dashed line. The three-point estimate (represented by a dash-dot line) gives interface
locations that are indistinguishable from the exact solution on the scale of the plot. The
temporal variation of the errors incurred in the interface location using these two estimates
are shown in Fig. 14c. As the interface evolves the accumulation of error in time appears
to be minimal. However, it is noted that the three-point estimate of interface velocity gives
an order-of-magnitude lower error than the two-point estimate.

While the three-point estimate clearly gives better accuracy in tracking the interface,
Fig. 15 indicates that it does not yield the expected second-order accuracy that was indicated
from the truncation error estimates obtained in Section 2. In Fig. 15a we plot theL2 norm
of the temperature field errors against the grid spacingh at two time instants (after 100 time
steps (t = 0.1) and 200 time steps (t = 0.2)). A reference second-order line is also shown
for comparison (dashed line). In Fig. 15b we show the errors in computed interface location
plotted against the grid spacing for the above two time instants. It is noted that while the
temperature field in the domain itself shows second-order behaviour, the interface location
error shows behaviour closer to first order. This indicates that the advection of the interface,
i.e., the interface velocity, is only first-order accurate in space. At longer times, i.e., after
200 time steps, when the interface has traversed a large part of the domain, the situation
regarding the errors remains the same, as shown in Fig. 15b. Two interesting observations
can be made from the figure. First, although the three-point estimate for the normal gradient
is nominally second-order accurate, the plot of log(error) vs log(h) for interface location
indicates only first-order accuracy. Second, the field equation is itself solved to second-
order accuracy inh, despite the boundary location being only first-order accurate. The first
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FIG. 15. Errors in the solutions obtained for the melting of the flat interface. The log(error) vs log(h) curves
are shown at two different time instants, after 100 time steps (t = 0.1) and after 200 time steps (t = 0.2). (a)L2 norm
of errors in computed temerature field at the two time instants plotted against grid size. The reference second-order
line is also shown. (b)L2 norm of errors in the computed interface location. The reference first-order line is also
shown.

effect can be explained based on the fact that the three-point estimate of the gradient of
temperature is second-order accurate only if the temperature field is exactly specified. Since
the computed temperature field itself is second-order accurate, and not exact, the gradient
information that can be extracted from this computed temperature field can be at best first-
order accurate. That the temperature field as computed from the discretization in Eqs. (15)
and (20) and the interface velocity as computed from Eqs. (31) and (42) areO(h2) can be
seen as follows. When the interface is advected by specifying the exact value of the velocity
at each time step the error in the computed temperature field is seen to beO(h2) as shown
in Fig. 16a. TheL2 norm of the temperature field error is plotted against grid size in that

FIG. 16. Errors obtained by decoupling the temperature field and interface position in the 1D melting problem.
(a) log–log plot of temperature field errors. The interface position is specified exactly and the temperature field
is computed. (b) log–log plot of interface position errors. The temperature field is specified exactly, the interface
velocity is computed from the given temperature field, and the interface is advected with this velocity.



560 UDAYKUMAR, MITTAL, AND SHYY

figure. Now, when the exact temperature field is specified in the domain and the interface
is advected by computing the velocity according to Eq. (42), theL2 norm of the interface
position error is obtained and shown in the log–log plot against grid size in Fig. 16b. Clearly,
these two calculations are second-order accurate. The fully coupled calculation shown in
Fig. 15 yields second-order accuracy in the temperature field but first-order accuracy in the
interface position.

We show that the above accuracy estimates carry over into the 2D case. Here the stable
freezing of a circular interface is computed. An initial circular seed is placed in the center
of a square of dimension 1× 1 units. The circle is grown by extracting heat by a heat sink
located at (0.5, 0.5). An exact solution to this Stefan problem exists (Carslaw and Jaeger,
1959; Juric and Tryggvason, 1996), where the temperature field in the solid is given by

T(r, t) = Q

4π

{
Ei

(−r 2

4t

)
− Ei(−λ2)

}
, (48)

whereQ is the heat sink strength,r is the radial coordinate,λ is a constant, and Ei is the
exponential integral given by

Ei(x) =
x∫

−∞

ev

v
dv. (49)

In the liquid phase,

T(r, t) = 1− Ei(−βr 2/4t)

Ei(−βλ2)
, (50)

whereβ is the ratio of thermal diffusivitiesαs/αl . The radius of the freezing circle is given
by

R(t) = 2λ
√

t, (51)

whereλ is the root of the equation

Q = 4πeλ
2

(
λ2

St
− kle−βλ

2

ksEi−βλ2

)
. (52)

In line with the work of JT96 we specify the value of temperature at the grid points at the
center of the domain in the solid phase. This is to circumvent the singular behaviour at the
heat sink location.

The results for the steady growth of the initially circular crystal are shown in Fig. 17 for
a Stefan number of 1.0. The material properties in the solid and liquid are taken to be equal.
The exact radius of the circle was compared with the computed value and the errors ob-
tained for three grids 61×61, 81×81, and 101×101. TheL2 norm of the temperature field
error is shown on a log–log plot in Fig. 17a. The second-order accuracy of the temperature
field is maintained in the 2D case. Similar to the situation in 1D, the interface position is
obtained with first-order accuracy as shown in Fig. 17b. The computed and exact interface
locations for 2D stable freezing for a lower Stefan number of 0.1 are shown in Fig. 18a.
The order of accuracy of the temperature field calculation as well as that of the interface
position follows the same trend as that for the higher Stefan number case as seen from
Figs. 18b and 18c. When the Stefan number is low the latent heat released at the interface is
high compared to the sensible heat flux at the interface. From Eq. (42), there is therefore a
significant discontinuity in the gradients of the temperature field at the interface. When an
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FIG. 17. 2D stable freezing (Stefan) problem. Stefan number= 1.0. (a) log–log plot of the temperature field
errors vs grid size. (b) log–log plot of the interface position errors vs grid size.

FIG. 18. 2D stable freezing (Stefan) problem. Lower Stefan number, St= 0.1. (a) Interface position; compar-
ison of exact and computed radius of the freezing circle computed using the grids indicated. (b) log–log plot of
the temperature field errors vs grid size. (c) log–log plot of the interface position errors vs grid size.
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Eulerian, i.e., fixed grid, method is used to compute the low Stefan number situation, this
discontinuity is smeared over a few grid points, leading to a deterioration in accuracy. This
behaviour for the low Stefan number case is mentioned by JT96. In the present case since
the interface is maintained as a discontinuity and one-sided differences are used in cells ad-
jacent to the interface, no difference should exist between calculations at the different Stefan
numbers. This can be seen from comparing Figs. 17 and 18. The error in predicted interface
position in both cases is around 0.01%. Thus, although the interface errors appear to converge
with first order with respect to the grid size, the calculated interface positions are highly ac-
curate irrespective of the strength of the discontinuity in the interface temperature gradients.

We now demonstrate that the treatment of the property jumps by the present sharp interface
model is accurate and that the presence of such jumps does not alter the accuracy findings
reported above. The stable solidification problem above is computed for a Stefan number
of 1.0 with a jump in the conductivities, i.e.,kl/ks = 0.2. Note that this jump is treated as a
sharp discontinuity and one-sided differencing is involved at grid points near the interface.
Therefore, unlike in purely Eulerian methods the jump in material property is not distributed
over a region of the grid. The computed and exact interface positions are shown in Fig. 19a.

FIG. 19. 2D stable freezing (Stefan) problem with discontinuous material property.kl/ks= 0.2. Stefan number
St= 1.0. (a) Interface position; comparison of exact and computed radius of the freezing circle computed using
the grids indicated. (b) log–log plot of the temperature field errors vs grid size. (c) log–log plot of the interface
position errors vs grid size.
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The interface position converges to the exact value with grid refinement. It is shown in
Fig. 19b that the temperature field computed is second-order accurate, while the interface
position, as shown in Fig. 19c, is first-order accurate. Note that this result corresponds
with the previous cases of equal material properties across the interface. Therefore, as
expected, the jump in property across the interface does not affect the order of accuracy of
the numerical method used here.

We next look at computations of unstable phase boundaries that may arise in many systems
(Pelce, 1988; Kessleret al., 1988). Such instabilities contribute to phenomena such as
viscous fingering in porous media, modeled by Hele–Shaw flow (DeGregoria and Schwartz,
1986; Houet al., 1994), and the formation of cellular and dendritic microstructures in
solidification from the melt (Wheeleret al., 1992; Juric and Tryggvason, 1996). The physics
underlying such pattern forming instabilities has been reviewed by Langer (1980) and
Kessleret al. (1988). As mentioned in Section 1, the numerical computation of curvature-
driven growth of fronts, such as in dendritic growth and Hele–Shaw flows, places time
step restrictions that are extremely severe unless measures are taken to remove numerical
stiffness. As discussed before, in our computations the update of the interface is coupled
with the evolution of the temperature field and this implicitness allows the choice of time
step to be restricted to a convective stability limit. In each of the calculations below we place
a seed crystal in a domain with insulated boundaries. The initial condition is a uniformly
undercooled melt with the conditions

T(x, 0) = St in the liquid

T(x, 0) = 0 in the solid.
(53)

Note that the initial condition applied here corresponds to a nucleus of solid placed instanta-
neously in an undercooled melt. The boundary condition at the interface for the temperature
includes the effect of capillarity and attachment kinetics and is given, in nondimensional
form (Juric and Tryggvason, 1996), by a generalized Gibbs–Thomson condition:

Ti +
(

cl

cs
− 1

)
T2

i + σ(θ)κ + µ(θ)Vi = 0. (54)

For the surface tension parameterσ and attachment kinetic parameterµ, we take the forms
given by Almgren (1993):

σ(θ) = σ(1+ As
(

8
3 sin4

(
1
2m(θ − θ0)

)− 1
))

(55)

µ(θ) = µ(1+ Ak
(

8
3 sin4

(
1
2m(θ − θ0)

)− 1
))
. (56)

The integerm decides the anisotropy of the interfacial parametersσ andµ. In the following
we usem= 4 (fourfold symmetry) andm= 6 (sixfold symmetry).

In order to verify that capillarity effects are adequately captured in the application of the
Gibbs–Thomson effect, Eq. (54), we first determine that the nucleation radius is correctly
produced by the algorithm. To effect this we undercool the melt, i.e., set the temperature
in the liquid to the valueT(x, y, 0)=−St =−0.5. The nucleation radius is then given by
R∗ = σ/St, whereσ is the nondimensional surface tension (=1 in our case). We then place
circular crystals of radius 0.99R∗, R∗, and 1.1R∗ at the center of the domain of size 4× 4
and track the evolution of the interface. Note that the implicit interface update allows a time
step ofO(10−2) to be used in time stepping the interface. When an explicit update was
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FIG. 20. Verification of the nucleation radius. Stefan number= 0.5. (a) Radius of circles with initial radii
equal to, greater than, and less than the nucleation radius. (b) The shapes of the circular crystals after the time
elapsed in (a). (—)Rinitial ; (- - -) Rinitial = 1 aftert = 1; (-·-) Rinitial = 1.01; aftert = 1; (· · ·) Rinitial = 0.99 aftert = 1.

employed the method became unstable and the interface was destroyed in a few time steps.
We found that the time step at which an explicit update was stable agreed very well with the
criterion identified by Houet al. (1994) and given in Eq. (32). As shown in Fig. 20a, for the
duration of time computed, the crystal withR< R∗ shrinks, while that withR> R∗ expands
andR= R∗ changes only slightly due to numerical errors in computing the curvature. The
shapes of the three interfaces after the time duration elapsed are shown in Fig. 20b. The
circle with R= R∗ is shown to have changed only very slightly from its initial shape.

We next perform a grid refinement study to demonstrate convergence of the interfa-
cial evolution with grid refinement. For this case we choose the system adopted by JT96.
The computations are performed in a square domain of dimension 4× 4 units. The initial
interface is a fourfold symmetric structure placed at the center of the domain with a radius

R= 0.1+ 0.02 cos(4θ). (57)

This represents a circle with a small fourfold symmetric perturbation on its surface. The melt
is undercooled and the Stefan number chosen is St= 0.5. The surface tensionσ = 0.002 and
the kinetic parameterµ= 0.002. The interfacial parameters are isotropic. The results are
shown in Fig. 21. We perform computations on 101× 101, 201× 201, and 401× 401 grid
sizes. For the 401× 401 mesh, as shown in Fig. 21b, we also explore the effect of an initial
orientation of the nucleus away from the grid directions. In the case shown the initial seed
was oriented at 37◦ from the horizontal. In Fig. 21a, the interface shapes for the three grids
are compared at time intervals 0.2 apart. It can be clearly seen that as the grid is refined the
interface shapes converge rapidly and the solution on the 401× 401 grid can be considered
to be grid independent. The tip-splitting behaviour is shown by our solution in agreement
with established physics. The interface shape obtained finally is seen to differ somewhat
from that of JT96. However, even for the 101× 101 grid, our solutions seem to indicate
close resemblance of the result to the finer grid cases, while JT96 appear to show very
different interface behaviour for the 101× 101 calculation. In our simulations the coarse
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FIG. 21. Grid effects study for the case of unstable solidification with isotropic surface tension. Stefan
number St= 0.5, surface tension parameterσ = 0.002, and interface kinetics parameterµ= 0.002 (no anisotropy
As, Ak = 0). The interface is shown at nondimensional time instants 0.2 apart. (a) Grid refinement and convergence
of the interface shape with decreasing grid spacing. (b) Orientation effect explored by orienting the initial seed at
37◦ from the horizontal.

grid calculations appear to show greater effects of dissipation and hence the interfacial
features are coarser. This tendency is also indicated in the calculations of Hele–Shaw flows
by Houet al. (1997). In contrast, the calculations of JT96 for this case appear to show finer
scales of the interface for the smaller grid density (i.e., 101× 101 grid). While there appear
to be multiple tip-splitting events leading to a highly corrugated structure for the 101× 101
grid, there are two tip-splitting events for the 201× 201 case and one event for the finer
grids. In our case there is only one tip-splitting event for all grids. Both our method and
that of JT96 explicitly track the interface. However, while the present method calculates the
interface evolution in the sharp interface limit and does not distribute the latent heat over
a finite region of the grid, the method of JT96 does. The initial conditions applied by us
are somewhat different from those of JT96. However, the initial conditions result only in
a short-time transient behaviour and application of the same initial conditions as theirs did
not appear to significantly alter the long-time behaviour. In the context of benchmarking the
results for this particular case we point out that Chenet al. (1997) have simulated this same
case using the level-set method. In their case the coarse grid solution behaves similarly to
ours in that the interface instability only shows coarse features and the features sharpen as
the grid is refined. However, in their work, it appears that the interface is less unstable than
ours. For instance, on a 400×400 grid, a tip-splitting instability is only just beginning at the
final instant of their calculation. Thus, it appears that even the converged results for this case
using the immersed boundary technique (JT96), the current sharp interface method, and the
level-set method of Chenet al. (1997) do not agree on the rate or nature of the instability
in the highly nonlinear stages. Karma and Rappel (1996) have used the phase-field method
to test the theory for unstable solidification (Kessleret al. (1988)) and indicate the need to
benchmark calculations in order to ascertain whether the theory is indeed applicable for a
wide range of operation of dendrites. It is clear that since the methodologies for performing
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these types of calculations are beginning to evolve to fairly well-developed algorithms,
benchmarking of the computations is rapidly becoming necessary. With respect to the effects
of grid orientation, we show in Fig. 21b that the principal evolutionary characteristics of this
isotropic case are free of grid anisotropy effects. Only in the final stage of the growth when
the interface approaches the outer boundary do we detect differences in the results from the
two orientations. This is because even for the relatively high Stefan number computed (i.e.,
St= 0.5) the square domain begins to influence the interface at the later times. The thermal
boundary layer ahead of the interface interacts with the square domain and begins to act so
as to flatten the interface along the sides of the domain. This effect is clearly seen in the
last time instant picture of the interface in Fig. 21b. In both Figs. 21a and 21b therefore one
would ascribe the flattening of the interface at the final instants to the square shape of the
domain and the application of an adiabatic boundary condition there. The flattening effect
is due to the global thermal transport interacting with the square domain and not due to
grid anisotropy effects. This is supported by the observation that the lobes of the tip-split
interface that are closer to the outer boundary (due to the orientation of the initial seed with
respect to the square domain) such as lobea have flattened out more than the lobes such as
b that are farther away from the sides. In this case the surface tension is isotropic, yet grid
anisotropy has no influence on the interface shape.

We look at the effects of discontinuous properties across the interface and assess the effect
of such discontinuities on the stability of the interface. Four cases are shown in Fig. 22. These
correspond to (a)kl/ks = 0.2, (b)kl/ks = 0.5, (c)kl/ks = 2, and (d)kl/ks = 100. Contrary
to the discussion provided by JT96, the interface in the case of large solid conductivity
appears to be stabilized. JT96 argue that the only role of the conductivity is to accelerate the
instability development and the conductivity jump at the interface should have no impact on
the stability of the interface itself. This is not supported by our calculation in Fig. 22a. We
show that for large enough solid phase conductivity, the instability can indeed be stabilized
(for the given values of surface tension and kinetic parameters). Although from Eq. (42)
the ratio of solid to liquid phase conductivities plays the role of increasing or decreasing
the interface velocity, for equal specific heats,cs andcl , the ratiokl/ks = αl/αs, the ratio
of thermal diffusivities. Therefore, when the thermal conductivity in the solid is large, heat
diffuses in the solid faster than in the liquid. This leads to a tendency of the deformed
initial nucleus to revert to a circular shape and the initial perturbations of the interface are
smoothed out by the stabilizing diffusion field in the solid. As the diffusivity in the solid
decreases, as in Fig. 22b, wherekl/ks = αl/αs = 0.5, this stabilizing mechanism weakens,
and in this case the instability of the interface ensues but at a slower rate than in the case
shown in Fig. 21. Note that even in Fig. 22b diffusion of heat in the solid phase appears to
lead to lower curvature values at the interface, resulting in a coarser structure. When the ratio
of conductivitieskl/ks > 1, the instability of the interface is enhanced. As seen in Fig. 22c,
a narrower groove is formed in the development of the structure and the instability occurs
more rapidly than in Fig. 21. The final shape shown in Fig. 22c is att = 0.3, which can be
contrasted with the final shape in Fig. 21, which is att = 1.0. However, in agreement with
JT96, it can be noticed that increasing the liquid phase conductivity leads to an acceleration
of the instability without significantly altering the nature of the instability itself. In Fig. 22d,
we show the case where the ratio of conductivities is very large, i.e.,kl/ks = 100. It is clear
from this figure that the increased conductivity in the liquid accelerates the development
of the instability. Here the interface is already approaching a second tip-splitting event, in
contrast to the single tip-splitting event observed in the previous cases. If the interfaces
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FIG. 22. Effect of property jumps across the interface for the case of unstable solidification with isotropic
surface tension. Stefan number St= 0.5, surface tension parameterσ = 0.002, and interface kinetics parameter
µ= 0.002 (no anisotropyAs, Ak= 0). (a)kl = 0.2, ks= 1.0, time from 0 to 1.0; (b)kl = 0.5, ks= 1.0, time from
0 to 1.0; (c)kl = 2, ks= 1, time from 0 to 0.3; (d)kl = 1.0, ks= 0.01, time from 0 to 0.25. All computations on a
400× 400 grid.

shown in Fig. 21 as well as in Figs. 22b and 22c were allowed to grow in a larger domain
this second tip-splitting event would occur at a later time.

The effect of surface tension on evolving interfaces is now demonstrated for unstable
solidifying interfaces. The initial interface is as shown in Fig. 23. The initially flat interface
is perturbed by imposing a four-wave sinusoidal perturbation of amplitude 0.1. The melt is
initially undercooled to St= 0.8. The boundaries of the domain of dimensions 4×8 units are
insulated. Two cases are computed. For the case in Fig. 23a,σ = 0.001 andµ= 0, and for
that in Fig. 23b,σ = 0.0002 andµ= 0. The role of the surface tension in setting the length
scale of the instabilities is well demonstrated by the results. In the higher surface tension
case, although the initial interface perturbation consisted of four wavelengths the final
structure appears to tend toward the two outer fingers which grow at the expense of the two
central fingers whose development has been suppressed by the latent heat released by the
larger fingers. In contrast, by decreasing the surface tension by a factor of 5 in Fig. 23b, the



568 UDAYKUMAR, MITTAL, AND SHYY

FIG. 23. Unstable solidification and finger formation (isotropic surface tension). Stefan number=−0.5.
(a) Higher surface tensionσ = 1× 10−3. Interface shapes at equal intervals fromt = 0 to 7. (b) Lower surface
tensionσ = 2× 10−4. Interface shapes at equal intervals fromt = 0 to 3.2.

initial four-wave perturbation is immediately converted into a finer scale instability. This
selected fine spacing is maintained as the interface propagates by spacing readjustments.
These readjustments result from the suppression of growth of some fingers and by repeated
tip-splitting events which maintain the scale of the structure.

Next we examine the effects of anisotropy on the growth of interfaces. In Fig. 24 we
compute the growth of an initially fourfold symmetric seed crystal in an undercooled melt

FIG. 24. Sixfold symmetric anisotropy in surface tension. Simulations using a 500× 500 grid. St= 0.8.
(a) Higher surface tension case. Surface tension parameterσ = 0.002, kinetic parameterµ= 0.002, surface tension
anisotropyAs= 0.4, and kinetic anisotropyAk= 0.0. t from 0 to 0.9. (b) Lower surface tension case. Surface tension
parameterσ = 0.001, kinetic parameterµ= 0.001, surface tension anisotropyAs= 0.4, and kinetic anisotropy
Ak= 0.0. t from 0 to 0.6.



SOLID–LIQUID PHASE FRONT COMPUTATIONS 569

FIG. 25. Fourfold symmetric anisotropy in surface tension. St= 0.8. (a) Higher surface tension case. Sur-
face tension parameterσ = 0.002, kinetic parameterµ= 0.0, surface tension anisotropyAs= 0.4, and kinetic
anisotropyAk= 0.0. m= 4. t from 0 to 0.05. 500× 500 grid. (b) Lower surface tension case. Surface tension
parameterσ = 0.001, kinetic parameterµ= 0.0, surface tension anisotropyAs= 0.4, and kinetic anisotropy
Ak= 0.0. m= 4. t from 0 to 0.03. Simulations on an 800× 800 grid. (c) Lower surface tension case with ki-
netic anisotropy. Surface tension parameterσ = 0.001, kinetic parameterµ= 0.001, surface tension anisotropy
As= 0.0, and kinetic anisotropyAk= 0.4. m= 4. t from 0 to 0.05. 500× 500 grid.

with a sixfold symmetric surface tension. The parameters used for the case in Fig. 24a
areσ = 0.002,µ= 0.002, As= 0.4, and Ak= 0.0. For case in Fig. 24b a lower surface
tension and kinetic parameter was used; i.e.,σ = 0.001 andµ= 0.001. The undercooling
was specified to be St= 0.8. Both calculations were performed on a 500× 500 grid. The time
step size was controlled based on the criterion in Eq. (33). The effect of the sixfold anisotropy
is to promote growth in the preferred directions to yield a sixfold symmetric structure. The
finer scales displayed by the more unstable lower surface tension case is consistent with
the expected physics. Here again our results appear to differ in the details from those of
JT96. Consistent with the observations made in connection with the test problem in Fig. 21,
the present method appears to be less susceptible to small scale instabilities on the surface
than that of JT96. The overall growth rate and pattern appear to agree with JT96 but the
branching activity is less profuse in our case. A fourfold symmetric case is also computed,
as shown in Fig. 25, by imposing fourfold symmetry in the surface tension. The parameters
for the case in Fig. 25a areσ = 0.002,µ= 0.0, As= 0.4, Ak= 0.0, andm= 4 and for that
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in Fig. 25b,σ = 0.001,µ= 0.0, As= 0.4, Ak= 0.0, andm= 4. For both cases St= 0.8.
While the fourfold symmetry is reflected in the final shape for the higher surface tension
case in Fig. 25a with four stably growing tips, the lower surface tension case seems to
succumb to an early time tip split despite the imposed anisotropy. In the initial stage when
the thermal boundary layer is still being formed the interface velocity is very high. It appears
that for this case, in the initial stage the anisotropy is unable to completely stabilize the
tip. In order to ensure that this behaviour is not grid-dependent we computed this case on
a finer grid of 800× 800 points. Note that after this initial tip split which leads to the
formation of a groove in the tip of the dendrite in Fig. 25b, the tip propagates stably in the
preferred growth directions. In Fig. 25c we impose the anisotropy in the kinetic anisotropy
instead of the surface tension. This appears to stabilize the interface and prevent the early
time split. This is perhaps because in the initial stage of rapid growth the kinetic anisotropy
is perhaps more effective in providing tip stabilization than the surface tension anisotropy.

As a final demonstration, in Fig. 26 we show the formation of a dendrite from an initial
fourfold symmetric seed placed eccentrically in an insulated box. The dimension of the
box is 4× 8 units. A 500× 1000 uniform grid system was used for the computations.
The initial seed is shown in the figure. The radius was given to be that in Eq. (57). The
interface parameters chosen wereσ = 0.002,µ= 0.0, As= 0.4, Ak= 0.0, andm= 4. The
undercooling was given to be St= 0.8. The interface shape is plotted at equal intervals
of time from t = 0 to 0.07. The initial seed grows without hindrance from the insulated

FIG. 26. Fourfold symmetric anisotropy in surface tension. St= 0.8. Simulations using a 500× 1000 grid.
Surface tension parameterσ = 0.002, kinetic parameterµ = 0.0, surface tension anisotropyAs= 0.4, and kinetic
anisotropyAk= 0.0. m= 4. t from 0 to 0.07.
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boundaries for a short duration in a fourfold symmetric fashion. Three of the primary arms
then feel the effects of the boundary and growth is inhibited. Thereafter, branches grow on
these arms in they direction where the melt undercooling persists. The primary arm is shown
to grow stably with a parabolic tip and a uniform velocity. Intense sidebranching activity
follows behind the stably growing tip. Asymmetry and branch competition are noticed in the
development of the sidebranches on the main stem. Further coarsening effects can also be
seen on the sidebranches on the horizontal primary branches where a final coarse structure
in the secondary sidebranches seems to have emerged at the end of the calculation.

4. CONCLUDING REMARKS

In this report we have described a Cartesian grid solver for PDEs in the presence of
embedded moving boundaries. We first presented an account of the development of a finite-
difference field equation solver for scalar transport. The application of Dirichlet as well as
Neumann boundary conditions is shown to be accurate to second order. The method has
been applied to treating the computation of solid–liquid phase fronts with a sharp interface
representation of the interface. This work therefore differs from the majority of Cartesian
grid methods for the solution of moving boundary problems where the effects of the inter-
face are distributed over a region proportional to the grid size. The region of spread is usually
assigned to be proportional to the strength of the discontinuity at the interface. In the present
work we show how localized sources at the interface as well as jumps in properties across it
can be treated in a simple finite-difference framework without the necessity of smearing such
discontinuities over the grid. At each stage of the present effort the accuracy of the method
has been ascertained and it is shown that the field variable is computed to second-order accu-
racy. The boundary position, which in the case of the solidification problem depends on the
gradient of the temperature field, is obtained to first-order accuracy. The method is stable due
to the fully coupled way in which the interface and field variable are updated. The numerical
stability criterion for time stepping then takes the form of a convective criterion for interface
advance. It is shown that complex interface morphologies can be tracked using the method
presented in this work. However, in the unstable growth of the front there is a disparity in the
results from the present method, the immersed boundary method of Juric and Tryggvason
(1996), and Chenet al. (1997). The errors incurred in the discretization in these methods
are different and it is possible that the differences in solutions in the noise-sensitive unstable
case are induced by such numerical errors. Our attempt to benchmark the calculations for
unstable growth shows that further efforts to apply algorithms to well-defined benchmark
problems are necessary. Based on the framework developed here for the diffusion and con-
vection diffusion equation the Navier–Stokes equations can also be solved. With particular
regard to solid–liquid interface instabilities, the inclusion of solute transport to simulate
interface propagation in alloys is straightforward. Work in these directions is in progress.
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