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ABSTRACT 

This paper describes the application of a new and 
unconventional numerical method for computational 
modeling of fluidic micro-handling processes. The key 
requirement for modeling such processes is the ability to 
simulate flows with large number of complex shaped 
moving objects. Conventional body-conformal 
computational fluid dynamic (CFD) methods are not well 
suited for simulating such flows and  here we have 
employed a new Cartesian Grid Method (CGM) which has 
the unique ability of simulating these complex flow on 
stationary Cartesian grids. The method has been used to 
simulate a generic fluidic assembly process and is shown to 
predict some interesting features of this process. 
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1 INTRODUCTION 

One key feature that characterizes the assembly of 
microsystems is the need to “handle” a large number of 
microcomponents. Handling may for instance include 
transport of a microcomponent from one location to 
another, orientation control and sorting. Furthermore, the 
process employed in the assembly should be highly scalable 
in order to be able to mass produce the microsystem in a 
cost-effective manner. Conventional ‘pick-and-place’ 
technologies are unsuitable for many microsystems due the 
difficulty in handling small size components and in scaling 
up these techniques for mass production. Unlike top-down 
approaches to conventional manufacturing that are 
amenable to pick-and-place techniques, the bottoms-up 
approach needed in the assembly of microsystems requires 
a fundamentally different point-of-view 

Fluidic transport provides a powerful means for 
handling of component in many microsystems and is 
increasingly being employed in a number of such 
applications. One of the first commercialization of such a 
process is the so called Fluidic Self-Assembly (FSA™ 
Alien Technology Corp.) process which is being employed 
for the assembly of flat panel displays. In this process, 
specifically shaped semiconductor devices (see fig. 1) 
ranging in size from 10 microns to several hundred microns 

are suspended in liquid and flowed over a surface which 
has correspondingly shaped receptor sites on it into which 
the devices settle. The shapes of the devices and the 
receptor sites are designed so that the devices fall easily 
into place and are self-aligning. One key feature here is that 
the components that are transported are of a variety of 
shapes and the shape of these components strongly affects 
how they are transported in a fluid. Thus factors such as 
speed of transport and orientation of the transported 
components which are all important in this process, are 
highly dependent on the shape of the components. Thus 
techniques employed in computational modeling of 
conventional particulate flows where particles are almost 
always modeled to be spherical in shape, would be of 
limited use for a process such as FSA™. Other examples of 
the use of fluid transport in micro-handling include air 
based micro-conveyance systems [1] and fluidic assembly 
of cells in biomedical applications.              

 

 
             (a)                                            (b)  
Figure 1. (a) Geometry and typical size of 

NanoBlocks™ (b) Schematic showing NanoBlocks™ on 
substrate. Figures provided courtesy of Alien Technology 
Corporation. 

 
In addition to this, there are other applications where 

fluid transport is not the primary handling agent but the 
transport is nevertheless affected by fluid flow. An example 
of this is the assembly process of RF-ID tags being 
developed at the Auto-ID Center at MIT 
(http://www.autoidcenter.org/main.asp). In this vibratory 
based transport system, the last phase involves the 
microcomponent falling through air onto a receptor site on 
a moving conveyor belt. The motion of the conveyor belt 
induces a flow which in turn can affect the motion of the 
microcomponent as it falls through the air. Thus precise 
placement of the component into the receptor site would be 

5th International Conference on 
Modeling and Simulation of 
Microsystems, Puerto Rico 2002 



significantly assisted if the fluid flow effects on the 
component can be understood. Finally, in the future we can 
envision other systems based upon powered fluidic devices 
such as synthetic jets for more precise handling of micro-
components which would require detailed understanding of 
the fluid flow aspects. 

Thus computational modeling of fluidic micro-handling 
processes requires numerical techniques that have the 
ability to simulate the transport of a large number of 
distinct bodies where the shape and orientation of the each 
body is reasonably well represented. Conventional body-
conformal structured or unstructured grid methods would 
require enormous resources and would also entail 
significant complexity due to the need to fit a new grid 
around hundreds of complex moving shaped bodies at each 
time step of the simulation. For such simulations, methods 
that simulate the flow on simple, fixed Cartesian meshes [2] 
offer a much more viable alternative. The advantage of 
these methods is that the complexity and cost of generating 
a body-conformal mesh at each time-step is eliminated, 
thereby easing the resources required to perform such 
simulations. These methods are not well suited for high 
Reynolds number flows due to their inability to provide 
resolution in localized regions such as boundary layers. 
However, in fluidic micro-handling processes, the Reynolds 
numbers based on the component sizes are quite small and 
thus the Cartesian grid methods are not at any disadvantage 
in such applications. 

In the current paper, we present the applications of a 
Cartesian grid method to a modeled problem associated 
with the FSA™ process. The results are intended to display 
the potential of this method for such applications. 

2 NUMERICAL METHOD 

The framework of the method developed in these 
papers is Eulerian-Lagrangian, i.e. the immersed boundaries 
are explicitly tracked as curves in Lagrangian fashion, 
while the flow computations are performed on a fixed 
Eulerian mesh. This affords the advantage of pure 
Lagrangian methods such as explicit interface information 
without ambiguities associated with a-posteriori 
reconstruction of the interface from an advected scalar 
(such as Volume-of-Fluid, Level Set or phase field). 
However, we dispense with mesh movement and thereby 
circumvent some of the problems associated with mesh 
management. In contrast with purely Eulerian interface 
capturing approaches (diffuse interface methods) the 
current method treats the immersed boundaries as sharp 
interfaces. The distinguishing feature of the present method 
is that the governing equations are discretized on a 
Cartesian grid which does not conform to the immersed 
boundaries. This greatly simplifies grid generation and also 
retains the relative simplicity of the governing equations in 
Cartesian coordinates. Therefore, this method has distinct 
advantages over the conventional body-fitted approach in 

simulating flows with moving boundaries, complicated 
shapes or topological changes.  

2.1 Interface Tracking  

The interface is tracked using markers connected by 
piecewise quadratic curves parametrized with respect to the 
arclength. Details regarding interface representation, 
evaluation of derivatives along the interface to obtain 
normals, curvatures etc. have been presented in previous 
papers [2,3] and are not repeated here. Also described in 
earlier papers are details regarding the interaction of the 
interfaces with the underlying fixed Cartesian mesh. These 
include obtaining locations where the interface cuts the 
mesh, identifying phases in which the cell centers lie, and 
procedures for obtaining a consistent mosaic of control 
volumes in the cells. This results in the formation of 
control-volumes which are trapezoidal in shape as 
described in [3]. 

2.2 Flow Solver 

The fractional step scheme[3] is used for advancing the 
solution in time. The Navier-Stokes equations are 
discretized on a Cartesian mesh using a cell-centered 
colocated (non-staggered) arrangement of the primitive 
variables (u,p). The integral form of the non-
dimensionalized governing equations are used as the 
starting point:  
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where ur is non-dimensional velocity vector, p is pressure, 
St is the Strouhal number, a non-dimensional frequency 
parameter given by oULSt ω=  and ν/Re LUo=  is the 
Reynolds number. ω is the imposed frequency, L the length 
scale, Uo the velocity scale and ν the kinematic viscosity. In 
the above equations subscript v denotes integration over the 
control-volume and n is a unit vector normal the face of the 
control volume. The above equations are to be solved 
with ),(),( txutxu

rrrr
∂=  on the boundary of the flow domain 
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rr

∂  is the prescribed boundary velocity, 
including that at the immersed boundary. A second-order 
accurate, two-step fractional step method solution is 
advanced from time level n to n+1 through an intermediate 
advection-diffusion step where the momentum equations 
without the pressure gradient terms are first advanced in 
time. A second-order Adams-Bashforth scheme is 
employed for the convective terms and the diffusion terms 
are discretized using an implicit Crank-Nicolson scheme. 
This eliminates the viscous stability constraint which can be 
quite severe in simulation of viscous flows. 



2.3 Moving Immersed Boundaries 

In the present work the immersed boundaries have 
prescribed motions. Therefore, the boundary conditions to 
be imposed on the solid-fluid boundaries are the no-slip and 
no-penetration conditions. The immersed boundary forms 
one side of the reconfigured boundary cells. Therefore, at 
that cell face the boundary conditions are specified. 
Depending on the location and local orientation of the 
immersed boundary, cells through which the interface 
passes typically assume trapezoidal shapes [3]. The key 
issue in the finite volume formulation is to evaluate 
convective and diffusive fluxes and pressure gradients on 
the cell-faces of these trapezoidal cells such that global 
second-order accuracy of the solver will be preserved. 
Since the procedures for constructing a consistent mosaic of 
control volumes in the vicinity of the interface yield 
arbitrary-shaped volumes, flux conservation needs to be 
enforced at contiguous cell faces of such cells. 
Furthermore, the current Cartesian grid method has been 
developed for unsteady viscous flows at moderately high 
Reynolds numbers. In such flows we expect that relatively 
thin boundary layers will be generated in the vicinity of the 
immersed boundary. These boundary layers are not only 
regions of high gradients but are often the most important 
features of the flow field. Thus, accurate discretization of 
the equations is especially important in the boundary layers. 
Since all the interfacial cells lie within the boundary layer, 
this is another reason why adequate local accuracy is 
desirable for these cells. In Ye et al.[3] we adopted a 
compact two-dimensional polynomial interpolating 
function which allows us to obtain a second-order accurate 
approximation of the fluxes and gradients on the faces of 
the trapezoidal boundary cells from available neighboring 
cell-center values. This interpolation scheme coupled with 
the finite-volume formulation guarantees that the accuracy 
and conservation property of the underlying algorithm is 
retained even in the presence of arbitrary-shaped immersed 
boundaries. This has been demonstrated in Ye et al.[3] for 
stationary immersed boundaries. 

3 SIMULATION RESULTS 

The test case chosen here to demonstrate the potential of 
this methodology for simulating fluidic micro-handling 
processes involves the settling of trapezoidal shaped blocks 
in a fluid under the influence of gravity. A closeup view of 
the block and substrate is shown in Figure 2. This 
configuration is intended to mimic the general process of 
fluidic assembly [4] wherein the substrate with the receptor 
sites would be situated on the bottom wall and the 
expectation is that in each pass, the blocks would settle 
down in the fluid and fill up the receptor sites. However, in 
order for a trapezoidal block to fill a receptor site it has to 
have the correct orientation.  

 
 

The orientation of blocks settling in a fluid is governed 
by the stability of the body to moments generated by the 
pressure and shear stresses on the body. Thus the 
orientation of the block will depend on the block shape as 
well as flow parameters such as fluid density and viscosity. 
Thus, a-priori, it is difficult to know if a given combination 
of block shape and fluid will result in the desirable 
orientation. This is precisely where computational modeling 
of such processes can be useful since it provides a means of 
predicting the detailed features of the transport process.   

 
 

Figure 2. Schematic of block and substrate. 
 

 
 

Figure 3. Shape of block and grid employed in the 
simulations. 

In the current simulation, the motion of five blocks is 
simulated simultaneously in order to clearly demonstrate 
the ability of the method to handle multiple moving blocks. 
Figure 3 shows the geometry of one of the blocks and the 
underlying Cartesian grid. The primary objective here is to 
use the simulation to predict the preferred orientation of the 
blocks as they settle in the fluid. In order to accomplish 
this, a different initial orientation is chosen for each block 
and the initial orientation is shown in Figure 4a. The 
simulation is then initiated and the blocks allowed to settle 
under the influence of gravity. The simulations are carried 
out on DEC Alpha workstation and employ a uniform 
550×500 Cartesian grid.  

Figure 4b shows the orientation of the blocks at an 
intermediate time where the blocks have floated down to 
the  middle of the domain and figure 3c shows the final 

Desirable  
orientation

Undesirable 
orientation 

substrate



situation where once of the blocks touches the bottom 
surface at which time the simulation is terminated. 
Interesting the simulation shows that despite the different 
initial orientation most of the blocks orient themselves in 
the desirable orientation as they settle in the fluid. Analysis 
of simulation results show that the trapezoidal shape of the 
blocks tends to set up a surface pressure distribution that 
always rotates the body into the desired orientation. 
Clearly, a different shape of the block might produce an 
entirely different outcome. Thus, the results clearly 
demonstrate the utility of the current method for simulating 
fluidic micro-handling processes and future work will 
involve further application of this methodology to problems 
in this arena. 
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Figure 4. Results of simulations showing the settling of 

five blocks in fluid (a) Initial stage (b) intermediate stage 
(c) final stage 


