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ABSTRACT
The technique of large–eddy simulation (LES) has been used

to simulate and analyze the flow through a low–pressure turbine
(LPT) cascade. The objective of this study is to demonstrate the
capability of LES to predict flow separation and the associated
losses, and to analyze the spatio-temporal dynamics of the
unsteady separation process. Simulations have been performed
at Reynolds numbers (based on inlet velocity and axial chord) of
10000 and 25000. The focus of the current paper is to firstly
describe the computational aspects of this study and secondly, to
discuss the observed dynamics of the unsteady separation
process at these relatively low Reynolds numbers.

1. INTRODUCTION
The current trend in the civil aviation industry is towards

building increasingly compact and efficient engines. One
component where increased blade loading and efficiency is
being sought is the low–pressure turbine. The Reynolds numbers
in the LPT at cruise can be lower by more than a factor of two
at cruise as compared to takeoff. The lower Reynolds number
makes the suction side boundary layer on the turbine blade more
susceptible to separation and can lead to higher losses, lower
stage efficiency and higher specific fuel consumption. In fact it
has been found that efficiencies at cruise can be as much as two
points lower than those at takeoff (Simon & Ashpis 1996). The
separation process is highly unsteady and is significantly
affected by factors such as Reynolds number, upstream rotor
wakes and inlet turbulence (Qiu & Simon 1997, Schulte &
Hodson 1998, Dorney & Ashpis 1999). Thus, the ability to
accurately predict the separation induced losses and their
dependence on these factors is of crucial importance in the
design of an LPT blade.  Investigation of this flow using ground
test facilities is hampered to some extent by the inability to
model cruise conditions. Thus, numerical modeling provides the

most promising and cost effective means of analyzing this flow
configuration.

In the past, Reynolds-Averaged Navier-Stokes (RANS)
modeling approaches have been used in order to analyze and
predict the onset of separation in a LPT (Dorney et al. 1999,
Chernobrovkin and Lakshminarayana 1999, Suzen et al. 2001).
However, the boundary layer is transitional in nature and the
transition location is not known a-priori. Furthermore, the
separation process is highly unsteady with a wide variation in the
separation location. Both these factors tend to limit the
predictive capability of the RANS approach for this flow.
Furthermore, conventional RANS simulations provide
information only about the mean flow field and only limited
insight regarding the dynamics of the unsteady separation
process can be gained from these simulations.

In this context, the LES approach is better suited for this flow
configuration.  The LES methodology falls somewhere between
the direct numerical simulation (DNS) and RANS (Moin 1991)
approaches both in terms of the fidelity and computational
expense. In LES, the large energy containing scales are resolved
and only the effect of the small unresolved (subgrid) scales is
modeled. Since these small motions are generally more
homogeneous and universal, it is expected that a relatively
simple SGS model will suffice. The Smagorinsky model
(Smagorinsky 1963) is the simplest and most popular SGS model
and has been used successfully in a variety of simple flows like
isotropic turbulence, channel flows, etc. (Schumann 1975,
Deardoff 1970). However, straightforward application of this
model suffers from some of the deficiencies of the RANS
approach namely, ad-hoc specification of model constants, need
for a wall-model and inability to differentiate between laminar
and turbulent regions of the flow. The development of the
dynamic SGS model (Germano et al. 1991) has removed these
constraints to a large extent. In this approach, a procedure for
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dynamically calculating the model constant is added on to the
SGS model (Germano et al. 1991, Moin 1991). As the calculation
proceeds, the dynamic procedure utilizes information from the
smallest resolved scales to predict the energy transfer to the
subgrid scales. The model constant is then computed from the
estimated rate of energy transfer. The dynamic model is ideally
suited for complex flows since it automatically detects laminar
subregions and turns itself off. Furthermore, it also provides the
correct behavior near the wall thus obviating ad-hoc wall models
(Moin et al. 1991). This modelling technique has been used
successfully for simulating flows ranging from simple flows like
flow in a channel to more complicated external and internal
flows like bluff body wakes (Beaudan & Moin 1994, Mittal &
Moin 1997) and flow in an asymmetric diffuser (Kaltenbach et
al. 1999). Furthermore, this methodology has also been
successfully used in predicting transition (Germano et al. 1991).
More applications of this technique can be found in a recent
review article by Piomelli (1999).

Thus, LES with the dynamic model has the potential of
providing a robust predictive capability for the LPT flow.
Furthermore, LES provides detailed time-dependent
information about the important large scale features of the flow
field without the immense cost of a DNS which would resolve all
the scales down to the dissipation range. This is precisely the type
of information that is required for understanding the detailed
dynamics of the unsteady separating flow over a LPT blade. The
objective of the current paper is to describe the application of an
LES solver for this flow configuration at Reynolds numbers
(based on the inlet velocity and axial chord) of upto 25000. The
focus in the current paper is on describing the computational
aspects of the simulations and the dynamics of the separation
process at these relatively low Reynolds numbers.

2. NUMERICAL METHODOLOGY
Flow configuration. The flow configuration consists of a

low–pressure turbine blade which has been the subject of a
number of previous investigations (Murawski & Vafai 1999, Qiu
& Simon 1999, Chernobrovkin & Lakshminarayana 1999). The
interest here is in using LES to study the flow separation in the
mid–span section of the blade where the flow is assumed to be
homogeneous in the spanwise direction. Reynolds numbers
(defined asUinCa�� where Uin, Ca and � are the inlet velocity,
axial chord and kinematic viscosity respectively) of interest vary
in the 104–105 range and inlet turbulence level ranges from about
0.3% to 10%. Furthermore, since it is also of interest to analyze
the effect of upstream rotor wakes on the separation and
transition process, these rotor wakes also have to be included in
the numerical simulations. The current paper will however focus
on describing the solver and results pertaining to cases with zero
inlet turbulence level and no upstream rotor wakes. These
simulations form the baseline for future simulations that would
include these additional factors. Furthermore, inlet and exit
Mach numbers in a typical LPT are limited to about 0.4 and 0.9
respectively. Thus, compressibility effects are present but it is
expected that they do not have a significant effect on the
separation process. The current simulations employ an

incompressible flow solver and therefore, compressibility effect
are not included.

Governing Equation and SGS Model. In LES, the velocity
and pressure fields are considered to be decomposed as
u i � ui � ui� and p � p� p� respectively, where the bar
denotes large scales that can be resolved on a given mesh and the
prime quantities are the subgrid scales, ie. scales that are smaller
than the mesh size and therefore cannot be resolved. The above
decomposition can be applied to the incompressible
Navier-Stokes equations and the following “filtered” equations
obtained for the resolved scales:
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where � ij is the subgrid scale tensor given by � ij � uiu j� u iu j.
The subgrid scale tensor cannot be calculated directly in a
simulation since it requires knowledge of ui and therefore of ui�
which is not known. Therefore, in order to close the above system
of equations, a model needs to be used for the subgrid scale
tensor. The most widely used subgrid scale stress model is an
eddy-viscosity type model where � ij� (� ij�3)�kk �� 2�TS ij. In
this model, �T is the eddy-viscosity and S ij is the resolved
strain-rate tensor. The Smagorinsky model (Smagorinsky 1963)
is used to model the eddy viscosity where �T � (Cs �)2

|S|. In this
model, Cs is the Smagorinsky constant which remains to be
determined and� is a measure of the local grid spacing. The key
to closing the above system of equations then is to obtain an
appropriate value of the Smagorinsky constant Cs. Here we have
used the spanwise averaged version of the dynamic model
(Germano et al. 1991, Lilly 1992) for the parameterization of the
subgrid scale stresses. In the dynamic model (Germano et al.
1991) a procedure is used which allows for the estimation of the
Smagorinsky constant from the instantaneous resolved flow.
Further details of this model are available in the references cited
earlier. However, it is important to note that this model has a
number of features that make it attractive for complex
transitional and turbulent flow such as the one encountered in
LPT. These include (a) no ad-hoc specification of model
constants (b) no requirement for a wall model (c) automatic
detection of laminar and turbulent regions and (d) capability to
predict transition to turbulence. The last two are especially
attractive for the flow in an LPT since the flow is transitional in
nature with large variation in the transition location. Therefore,
the ability to predict the onset of turbulence obviates the need for
any ad-hoc assumptions regarding the transition process.

Spatial and Temporal Discretization. The 3-D governing
equations (1) and (2) are cast in a generalized curvilinear
coordinate system in the (x1–x2) plane whereas the x3 direction
is retained as a planar direction. A fully staggered arrangement
of the primitive variables is used in the (x1–x2) plane and the
equations are written in terms of the velocity fluxes on the cell
faces. The spatial discretization scheme is a mixed
finite-difference–spectral  scheme where a second-order central
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difference scheme is used in the (x1–x2) plane and a Fourier
spectral method is used in the spanwise (x3) direction. It is worth
pointing out that the spatial discretization scheme used here is
completely non-dissipative. Most Navier–Stokes codes employ
some sort of numerical damping (by addition of explicit artificial
viscosity or upwinding) in order to control aliasing errors and the
associated non-linear instability. However, it has been shown
(Mittal & Moin 1997) that numerical damping is highly
undesirable in LES since this can overwhelm the contribution
from the SGS eddy viscosity. Non-dissipative methods are
therefore preferable for LES. However for non–dissipative
schemes, aliasing error control has to be provided by means other
than numerical damping. In the current spatial discretization the
Fourier scheme is dealiased directly through a phase–shifting
operation (Canuto et al. 1987). In the (x1–x2) plane, aliasing error
is controlled by enforcing kinetic energy conservation
(Kravchenko & Moin 1997). One disadvantage of using this
scheme is the dominance of dispersive error which makes the
simulation highly sensitive to aspects such as grid stretching and
skewness. This issue will be discussed further in the following
section.

A fractional-step scheme is used for advancing the solution
in time. In this scheme the equations are advanced first to an
intermediate  step where only the convection and diffusion
effects are taken into account. This is followed by the pressure
correction step which requires the solution of the Poisson
equation for pressure. Subsequently the pressure correction is
added to the intermediate velocity field thereby resulting in a
divergence free final velocity. A mixed implicit-explicit scheme
is used for the advection-diffusion equation wherein a 3rd-order
Runge-Kutta scheme is used for the non-linear convection and
cross-terms and a Crank-Nicolson scheme is used for the
diagonal viscous terms. This discretization scheme avoids the
viscous stability constraints which can be quite restrictive for
these types of computations. Further details regarding the
numerical methodology can be found in Mittal & Moin (1997)
and Kaltenbach et al (1999).

At the inlet, a uniform freestream velocity is prescribed at an
angle of 55o from the vertical whereas a non–reflective boundary
condition is used at the exit that allows vortex structures to
convect out of the computational domain with minimal
reflections.  At the top and bottom boundaries a periodic
boundary condition is imposed in order to model a blade cascade.
The blade pitch is taken equal to 0.886Ca.

3. COMPUTATIONAL ASPECTS
The Re=10000 simulation has been carried out on a

209� 191� 32 (x1� x2� x3) mesh which is shown in Figure
1.  The spanwise domain size in this simulation is equal to 0.2Ca.
The mesh has been generated using the elliptic grid generator
available in GRIDGEN�. It is desirable to choose the spanwise
domain size as small as possible so as to reduce the cost of the
simulation. At the same time, care should be taken to ensure that
the domain size is large enough so as to not affect the results of
the simulation. In order to demonstrate the adequacy of the
chosen spanwise domain size, another simulation has been

performed at the same Reynolds numbers and mesh but with the
spanwise domain size increased to 0.4Ca. For the Re=25000
simulation two separate meshes with 257� 255� 48 and
257� 287� 48 points have been used. The spanwise domain
size for these simulations is maintained at 0.2Ca.

It is unlikely that the operating Reynolds number in a LPT
would drop to the relatively low values chosen in the current
study. However, these low Reynolds number simulations are
invaluable in that they allow us to analyze the numerical issues
encountered in the LES of this flow configuration on relatively
coarse meshes. The knowledge gained from these simulations
can then be used at higher Reynolds numbers which are of direct
practical relevance. It should be pointed out that in a number of
past investigations (Qiu and Simon 1997), the Reynolds number
is defined based on the length of the suction surface and mean
exit velocity. With such a non–dimensionalization, the Reynolds
numbers of our simulations would correspond to roughly 24000
and 60000.

Figure 1 shows a 2–D view of the grid used for the Re=10000
simulation. This grid topology does not seem to be the most
appropriate for this particular flow since the grid upstream and
downstream of the blade is not aligned with the flow direction.
This is particularly disadvantageous in the wake region since it
is difficult to control the streamwise grid distribution. A better
suited grid topology would be one in which the grid is aligned
with the inlet and exit flow direction. However, use of such a grid
with the current solver leads to some unexpected problems. The
highly curved shape of the blade coupled with the need to have
a periodic mesh in the crossflow direction, results in a mesh that
is significantly skewed over the blade surface. In a mesh where
the inlet and exit sections would be aligned with the nominal
flow direction, the mesh skewness extends over the entire grid
including the grid in the wake region. In contrast, for the type of
mesh used in the current study the skewness is significant only
over the blade surface and the upstream and downstream regions
of the grid have relatively negligible skewness. It can be shown
by analysis of the truncation error (as in Thompson et al. 1985)
that for non–dissipative scheme such as the current
second–order, central-difference scheme, a combination of grid
skewness, streamwise grid stretching and large crossflow
velocity component can lead to  large dispersive errors and
possibly even instability. For both types of grid, flow over the
blade surface is not subject to large dispersive errors since
despite significant grid skewness and stretching in the grid in this
region, the crossflow velocity component is small due to the
close proximity to the  blade surface.  However, for the grid
which is aligned with the flow in the wake region, vortex
structures convecting into this region produce a large crossflow
velocity component. This leads to large dispersive errors which
causes these vortex structures to distort and result in rapid growth
in enstrophy. Thus, unless special techniques are devised to
control this enstrophy growth, the grid topology used in the
current study is most appropriate for LES of highly curved blades
with non–dissipative schemes.

The solver has been ported to the Origin–2000 platform and
parallelized  using OpenMP. Figure 2 shows the scaleup achieved
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on a 256 � 256 � 64 grid on upto 16 processors. Final
simulations have been carried out on 8 processors where a
scaleup factor of roughly 6.9 is achieved. For a short
time-interval  at the beginning of each simulation, a small
spanwise perturbation is provided at the inlet to initiate the
growth of spanwise instabilities in the boundary layer. The flow
is then allowed to develop naturally with no external
perturbations.  Eventually the flow reaches a stationary state and
the simulation is continued further beyond this stage for at least
5Ca�Uin time units and statistics compiled over this time
interval. One complete simulation for the Re=25000 case
requires over 8000 (1–node) CPU hours.

4. DISCUSSION OF RESULTS
In Figure 3 are plotted mean velocity profiles on the suction

surface at various chordwise locations for the two Re=10000
simulations that have been carried out. The plot indicates that the
domain size has a limited effect on the flow near the trailing
edge. It is expected that this effect will become more pronounced
further downstream in the wake region with the growth in the size
of the vortex structures. However, since the interest in the current
study is on the analyzing the flow over the turbine blade, a
spanwise domain size of 0.2Ca is sufficient. Furthermore, since
at higher Reynolds numbers, the separation bubble is expected
to reduce in size, a spanwise domain size of 0.2Ca will be more
than sufficient.

In Figure 4, a sequence of spanwise averaged, spanwise
vorticity plots and corresponding streamline plots pertaining to
the Re=10000 simulations (with spanwise domain size of 0.2Ca)
are shown. The plots span a time–interval of about one time unit.
The plots clearly show that the laminar boundary layer on the
suction surface separates and rolls up into large, clockwise
rotating vortices which subsequently convect down the blade
surface and interact with the shear layer from the lower surface.
The boundary layer separating from the pressure side at the
trailing edge also rolls up into compact counter-clockwise
rotating vortices and the flow downstream of the trailing edge
shows some of the features of a classic Karman vortex street.
Figure 5 shows contours of �u�2

3
� which is the spanwise normal

fluctuating stress. This quantity marks regions where there is
significant three–dimensionality. Since the spanwise normal
stress is significant only beyond x�Ca � 0.9, this implies that
the vortices on the suction side are almost perfectly
two-dimensional  when they are formed and develop
three–dimensional  variations only as they approach the trailing
edge. This development of three-dimensionality is the first stage
in the transition process which will eventually lead to the
formation of a turbulent wake.

Figure 6 shows the temporal variation of u1 along various
location on the suction surface as well as in the very near wake,
and 7 shows the corresponding frequency spectra. Based on the
spectra of the first three probes which are located on the suction
surface, we find that the non–dimensional frequency of vortex
formation (�� f Ca�Uin where f is the frequency) is in the range
from 1.0 to 1.17.  However the last probe which is located in the
very near wake, shows a dominant peak in the spectra at
�� 2.14 which is roughly twice the frequency observed on the

suction surface. Based on our simulations, we hypothesize that
this doubling of frequency is due to the shedding of vortices from
the pressure side which also form at the same frequency as the
suction side vortices but are 180 degrees out of phase in the
shedding cycle. This is precisely the scenario observed in the
case of Karman vortex shedding from a bluff body. Finally, it also
worth noting that none of the spectra show any indications of an
inertial–subrange  thereby confirming that at this low Reynolds
number, the flow over the suction surface as well as that in the
near wake is not turbulent.

Figure 8 shows a comparison of the mean velocity profiles on
the suction surface for the Re=10000 and 25000 simulations.
Due to the presence of thin boundary and shear layers, it is
critical to provide adequate grid resolution in the direction
normal to the wall. In order to investigate the grid dependency
of the computed results for the higher Reynolds number
simulation, we have therefore carried out another simulation
where the grid resolution in the wall normal direction is
improved by adding 33 more points. The grid distribution in the
other directions is kept the same. The fine mesh simulation
however, is not fully converged yet and therefore, only limited
conclusions can be drawn regarding the grid dependence.

A comparison of the mean velocity profiles for the two
Re=25000 simulations indicates that the wall normal grid
resolution does have a noticeable effect on the size and extent of
the separation bubble. In particular, increase in resolution seems
to reduce both the vertical and streamwise extent of the bubble.
In general however, comparison with the Re=10000 profiles
clearly indicates that as expected,  the separation bubble is much
smaller at the higher Reynolds number. In the rest of the paper,
the results presented for the Re=25000 case correspond to the
fully converged simulation on the 257 � 255 � 48 mesh.

Figure 9 shows streamlines corresponding to the time and
span averaged flow for Re=10000 and 25000 cases and this
allows us to directly compare the size and structure of the mean
recirculation  bubble on the suction surface. For Re=10000, the
recirculation  zone extends from about x�Ca = 0.69 to the trailing
edge  whereas for Re=25000, the separation bubble extends from
about x�Ca = 0.71 to the trailing edge. The more significant
difference is in the wall–normal extent of the separation bubble.
At the location where the separation bubbles have the largest
wall–normal extent, the bubble extends about 0.08Ca from the
blade surface for the Re=10000 case where as for the Re=25000
case, it extends to  only about 0.03Ca.

The total width of the wake (�) for the Re=10000 simulation
can be estimated as the maximum wall–normal extent of the
separation bubble plus the blade thickness at this location and
this is roughly about 0.11Ca. If the dominant frequency in the
wake is nondimensionalized as f��Uin, this gives a wake
Strouhal number of roughly 0.23 which is clearly in line with the
vortex shedding Strouhal numbers observed in the wake of bluff
bodies (Roshko 1955). This provides further evidence that at
least at these low Reynolds numbers, the dynamics of the
separation phenomenon on the suction surface is governed by the
Karman vortex shedding type behavior in the wake. Since this
vortex shedding cannot occur without the vortices that are shed
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from the pressure side, accurate representation of the pressure
side boundary layer is required in order to capture the dynamics
of the separation on the suction side. Thus, “modeled” or
“simulated” LPT configurations employed in some experiments
(Qui & Simon 1997, Sohn et al. 1998), which do not include the
pressure side of the blade, might not be able to capture this
feature of the flow. However, it is likely that as the Reynolds
number increases, the separating shear layer on the suction
surface comes to be governed more by a Kelvin-Helmholtz type
shear layer instability which is not strongly influenced by the
vortex structures formed from the pressure side boundary layer.
This hypothesis is being explored for the Re=25000 simulation
and these results will be presented elsewhere.
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Figure 5. Countour plot of the spanwise normal fluctuation stress for

 the Re = 10000 simulation.
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Figure 6. Temporal variation of streamwise velocity.
The plots have been offset in the vertical direction.
(a) x/L=0.81; offset=+0 (b)  x/L=0.93; offset=0.35
(c) x/L=1.02; offset=+0.85 (d) x/L=1.08;

offset=–0.45

Figure 7. Frequency spectra corresponding to the velocity
variations in Figure 4. The spectra have been offset in the
vertical direction. (a) x/L=0.81; offset=x1 (b) x/L=0.93;
offset=x6 (c) x/L=1.02; offset=x25 (d) x/L=1.08;
offset=x155
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Figure 8. Streamwise velocity profiles for the Re = 10000 and the Re = 25000 simulations
on the suction surface. The profiles have each been offset in the horizontal direction by 1.5.
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Figure 9. Mean streamline plots showing the separation bubble

(a) Re = 10000 simulation (b) Re = 25000 simulation.
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