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number [4] or flows at early times after an impulsive start
[5]. Experimental techniques have become very sophisti-Flow over elliptic cylinders can be considered prototypical of flow

over a range of bluff bodies since the geometry allows one to study cated in recent years but an extensive spatial and temporal
the effect of both thickness and angle-of-attack on the flow field. analysis of the three-dimensional (3D) flow field would
Therefore, a careful study of this flow should provide valuable in- quickly overwhelm the available resources. Numerical sim-
sight into the phenomenon of unsteady separation and the structure

ulations provide a promising approach to analyzing thisof bluff body wakes. With this in mind, a spectral collocation tech-
problem. However, there remain a number of issues thatnique has been developed to simulate the full three-dimensional
need to be addressed, namely intelligent grid generation,incompressible flow over elliptic cylinders and, unlike spectral ele-

ment and spectral multidomain techniques, here the flow is solved efficient solution of the governing equations, and the ability
in a single domain. The equations are discretized on a body-fitted to interpret the gigabytes of data that would be generated
elliptic cylindrical grid and properties of the metric associated with from the simulations.
this coordinate system are used to solve the governing equations

Here we consider elliptic cylinders which are more gen-in an efficient manner. Key issues including the inflow and outflow
eral geometrical configurations than the canonical circularboundary conditions and time-discretization are discussed in detail

with the hope that this will facilitate future simulations of similar cylinder and provide a richer flow behavior characteristic
flows. Finally, we present results of two- and three-dimensional of typical engineering flow configurations. For these cylin-
simulations for a range of flow and geometric parameters. The ders, changes in eccentricity allow for shapes ranging from
results are compared with available experimental data and it is

that of a circular cylinder to a flat plate. There have beenfound that important quantities like Strouhal numbers and drag
a few numerical simulations of flows over elliptic cylinders.coefficients match well with established values. Q 1996 Academic

Press, Inc. Notable among these are those by Lugt and Haussling [6,
7] and Blodgett [8]. Lugt and Haussling have studied the
flow over thin ellipses at various angles-of-attack for low

INTRODUCTION Reynolds numbers [6] and also the details of start-up over
elliptic cylinders at 458 angle-of-attack [7]. Blodgett [8] has
performed a systematic study of two-dimensional (2D) flowThe phenomenon of flow separation and bluff body

wakes has long been intensely studied because of its funda- over cylinders with various eccentricities and angles-of-
attack at Reynolds number ranging up to 1000. The abovemental significance in flow physics and its practical impor-

tance in aerodynamic and hydrodynamic applications. studies are limited to 2D simulations and are based on the
vorticity-streamfunction formulation of the Navier–Flow behind a circular cylinder has become the canonical

problem for studying such external separated flows [1–3]. Stokes equations.
In the past decade, direct numerical simulation of 3DEngineering applications, on the other hand, often involve

flows over complex bodies like wings, submarines, missiles, flows at low to moderate Reynolds number have become
possible and have primarily utilized spectral methods forand rotor blades, which can hardly be modelled as a flow

over a circular cylinder. In such flows, parameters such as spatial discretization. Spectral methods provide exponen-
tial accuracy through their global approximation [9] butthickness ratio and angle-of-attack can greatly influence

the nature of separation and the wake structure. A funda- their application has been generally limited to simple ge-
ometries. Spectral element [10] and spectral multidomainmental study of flow over a complex non-canonical object

would therefore significantly augment our current under- [11] methods have been developed to handle problems in
complex geometries and have become quite popular instanding of wake flows.

There are, however, practical reasons why separating recent years. These methods provide great flexibility in
handling a broad range of geometric configurations butflows over complex shapes do not lend themselves easily

to analytical, experimental, or numerical treatment. Due are computationally expensive and relatively difficult to
implement. For the relatively simpler class of geometriesto the complicated nature of the flow, theoretical analysis

is typically limited to either flows at very low Reynolds like elliptic cylinders, prolate/oblate spheroids, and Juo-
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kowski airfoils, more specialized spectral methods based The mapping between Cartesian (x, y, z) and elliptic
(j, h, z) coordinates is given byon a single domain and body-fitted orthogonal grid would

be expected to perform efficiently and are the method of
choice. The justification for developing efficient but spe- x 5 a cosh j cos h; y 5 a sinh j sin h; z 5 z, (1)
cialized methods for these shapes come from recognizing
the fact that these shapes encompass a wide range of con- where a is the distance between the center and the foci of
figurations which are of practical as well as fundamental im- the ellipse. Furthermore, lines of constant j correspond to
portance. confocal ellipses and lines of constant h to hyperbolas. The

This paper describes the simulation of 3D incompress- elliptic coordinate system introduces the following metrics
ible flow over elliptic cylinders using a Fourier–Chebyshev in the three mutually orthogonal directions
spectral collocation method in a single domain. The gov-
erning equations are written in a body-fitted elliptic cylin- hj 5 hh 5 h 5 a Ïsinh2j 1 sin2h; hz 5 1. (2)
drical coordinate system. Special properties of the metric
associated with this curvilinear coordinate system are used

The governing equations of the flow are the incompress-to develop an efficient direct-solution methodology for the
ible Navier–Stokes equations which in the elliptic coordi-Helmholtz equations arising from the momentum equa-
nate system take the form:tions and the pressure Poisson equation. This methodology

can be extended to other geometries such as prolate and
oblate spheroids and bipolar coordinates. Continuity,

1
h2

­(hu)
­j

1
1
h2

­(hv)
­h

1
­w
­z

5 0 (3)
In the present simulations, a technique similar to the

buffer-domain technique of Streett and Macareg [11] and
the viscous sponge technique of Karniadakis and Trianta-
fyllou [1] is used to handle the specification of outflow Momentum conservation,

­u
­t

1 NL(u) 5 2=P 1
1

Re
D(u),

boundary conditions. The main difference is that their tech-
niques are implemented in conjunction with multidomains (4)
(or multiple elements), whereas the current methodology
is based on a single domain. It is demonstrated through where (u, v, w) are the contravariant velocity components
extensive tests that this boundary condition allows large along the (j, h, z) directions, respectively, and NL(u) and
vortical disturbances to convect out of the domain without D(u) are the non-linear advection and diffusion terms,
any reflections. To allow for the displacement effect of the respectively. The above equations have been non-dimen-
boundary layer to be felt in the inflow portion of the outer sionalized using the semi-major axis (Lx) of the ellipse as
boundary, a novel mixed boundary condition has also been the length scale and the freestream velocity (Uy) as the
implemented which improves the behavior of solution at velocity scale. The Reynolds number is thus given by
the inflow–outflow junction. Time-split methods [12, 13], Re 5 Lx Uy/v, where v is the kinematic viscosity. The
despite inherent splitting errors [14–17], are used widely other important parameters are the three dimensionless
in computational fluid dynamics [1, 11, 18, 19]. In this geometric quantities: thickness ratio ( T ), angle-of-attack
paper we outline a method based on an influence matrix (a) and spanwise aspect ratio (A). The thickness ratio of
technique [20, 21] for the removal of errors associated with the ellipse is given by T 5 Ly/Lx , where Ly is the length
the imposition of ad-hoc boundary conditions for a two- of the semi-minor axis, and the spanwise aspect ratio by
step time-split scheme. A 5 Lz/Lx , where Lz is the spanwise length of the ellip-

A number of test cases have been simulated and both tic cylinder.
2D and 3D results are presented. The geometrical and flow
parameters are chosen to provide a good representation Spatial Discretization
of the full parameter space. Quantities like drag coeffi-

A Fourier–Chebyshev collocation scheme is used forcients and Strouhal numbers are compared with existing
the spatial discretization of the governing equations. Aexperimental results in order to validate the current simula-
Chebyshev expansion is used in the wall normal (j) direc-tion methodology.
tion and the Gauss–Lobatto collocation points are com-
puted as

SIMULATION METHODOLOGY

Coordinate System and Governing Equations ji 5
1
2

cosFf(i 2 1)
(Nj 2 1)G (jE 2 jO) 1

1
2
(jE 1 jO)

(5)Elliptic cylindrical coordinates are made up of confocal
for i 5 1, 2, ..., Nj ,ellipses and hyperbolas and form an orthogonal system.
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Temporal Discretization

A time-split method has been used to advance the solu-
tion in time. This method relies on the idea of operator
splitting to uncouple the pressure computation from that
of the velocity field and provides an efficient method for
solving the incompressible Navier–Stokes equations. The
typical two-step version of the time-split method advances
the solution from time level ‘‘n’’ to ‘‘n 1 1’’ through an
intermediate level. In the present simulations, the first step
is the advection-diffusion step and it proceeds as

u* 2 un

Dt
1 NL(un) 5

1
Re

D(u*) in V (6)

u* 5 uE on ­VE (7)

B(u*) 5 0 on ­VO , (8)

where V refers to the interior of the computational domain
and ­VE and ­VO refer to the cylinder surface and outer

FIG. 1. A representative 2D computational grid. Actual grids are
boundary, respectively. Details of the boundary conditionssignificantly finer than this grid.
(7) and (8) will be given in a later section. The advection-
diffusion step is followed by the pressure correction step,

where jE represents the elliptic cylinder, jO represents the
ellipse which forms the outer limit of the computational

un11 2 u*
Dt

5 2=Pn11 in V (9)
domain, and Nj is the number of grid points in the wall
normal direction. jE and jO can be computed in terms of = ? un11 5 0 in V (10)
the thickness ratio as jE 5 As ln [(1 1 T )/(1 2 T )] and

un11 ? t̃j 5 u* ? t̃j on ­V, (11)jO 5 ln[xO cosh jE 1 Ïx 2
O cosh2 jE 2 1], where xO is the

distance of the imaginary outer ellipse measured along the
where ­V 5 ­VE 1 ­VO and t̃j is the unit vector tangentabscissa. Also, the distance between the center and the
to the j-direction. Note that the pressure correction stepfoci of the ellipse is given by a 5 (cosh jE)21.
is in itself a set of inviscid equations and is thus well posedThe azimuthal direction (h) is intrinsically periodic with
only if the boundary condition on the normal velocity com-period 2f and a Fourier expansion is employed along this
ponent is imposed. Equations (9) and (10) together givedirection. The collocation points along this direction are
a Poisson equation for pressure which is solved and thethus computed as hj 5 2f( j 2 1)/Nh for j 5 1, 2, ..., Nh ,
pressure correction is added to the intermediate velocitywhere Nh is the number of grid points in this direction.
u*, viz.,Also, the flow is considered to be periodic along the span-

wise direction with period LZ and therefore a Fourier
expansion is also employed along z. Here spanwise period-

=2Pn11 5
= ? u*

Dt
in V (12)icity is used as a model for flow over a cylinder with infinite

spanwise extent. Over the range of Reynolds numbers
un11 5 u* 2 Dt =Pn11 in V 1 ­V. (13)(180 & Re & 1000) considered in this study, it is known

from experiments [3] that the wake is dominated by struc-
tures which have a well-defined periodic structure in the Thus the pressure step can be viewed as the projection of

the velocity field onto the divergence-free space.spanwise direction. Thus, imposition of periodicity in the
spanwise direction, coupled with an appropriately chosen To avoid severe viscous stability limits, all the terms in

the wall-normal (j) diffusion term except the cross termsspanwise length, should ensure faithful reproduction of the
important physics of the flow field. The collocation points are treated implicitly using a Crank–Nicolson scheme. All

non-linear advection terms, wall-tangential (h and z) vis-along the z direction are therefore uniformly distributed
and are given by zk 5 A(k 2 1)/Nz for k 5 1, 2, ..., Nz , cous terms, and the cross-terms in the wall-normal diffu-

sion term are treated explicitly using a third-order Adams–where Nz is the number of grid points in the spanwise
direction. A representative 2D grid is shown in Fig. 1. Bashforth scheme. In contrast to the second-order
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Adams–Bashforth scheme, this scheme ensures stability
in the limiting case of pure advection.

The potential flow is specified as the initial condition
for the flow computations. Thus, the initial flow field is
divergence free, a necessary condition for well posedness
of the equations. For the non-zero angle-of-attack case, no
artificial perturbation is needed to initiate vortex shedding
and, by specifying the initial condition as potential flow,
conditions for the startup process are simulated accurately.
For the case of zero angle-of-attack, an artificial perturba-
tion is needed to break the symmetry about the x-axis
and initiate the shedding process. Furthermore, for the
3D simulations, a spanwise perturbation is also needed in
order for the flow to develop three-dimensionality. Two
desirable properties of any such artificial perturbation are
that it should neither introduce any divergence nor any
net circulation. For breaking the symmetry about the x
axis, we impose a slip velocity on the surface of the cylinder
sinusoidally (a conveyor-belt type mechanism) for a short
period of time. For the spanwise perturbations, a small

FIG. 2. Schematic of the computational domain showing the variousrandom spanwise variation is given to the slip velocity
boundary conditions at the outer boundary.at the cylinder for a short period of time and the three-

dimensionality is allowed to develop on its own subse-
quently.

the inflow, the displacement effects are not allowed at the
Boundary Conditions inflow part of the outer boundary whereas at the outflow

part, where a convective boundary condition is imposed,Application of appropriate and well posed boundary
the flow is able to adjust to the presence of the body. Thisconditions at the cylinder surface and at the outer boundary
leads to a sharp variation of velocity at the junction of theis crucial for the present simulations. The inflow and out-
inflow and outflow sections of the outer boundary. Thisflow boundary conditions are applied on different sections
discontinuity, although fairly small in magnitude comparedof the computational boundary as shown in Fig. 2. Details
to the potential velocity, is enough to generate oscillationsof the various boundary conditions are given in the follow-
associated with the Gibbs phenomenon and its effect is felting sections.
throughout the computational domain due to the global
nature of the computations.Inflow Boundary Condition

Thus, there is a need to devise an inflow boundary condi-
The most straightforward inflow boundary condition is tion which will smooth out the discontinuity in the vicinity

the Dirichlet boundary condition specifying the inflow as of the inflow–outflow junction. The boundary condition
the potential flow. This follows from the reasonable as- should allow for the flow to react to the blockage effect
sumption that far upstream of the body, the displacement of the cylinder. Also we require the Dirichlet boundary
effect of the body is negligible and thus the flow is very condition over most of the inflow boundary so as to main-
close to potential flow. In reality, the behavior at the outer tain control on the incoming flow. With these constraints
boundary becomes clear if one considers the perturbation in mind, the following mixed boundary condition is used
velocity (where ‘‘perturbation’’ refers to the perturbation at the inflow boundary
from potential flow). The momentum defect in the wake
appears as an inflow in the perturbation velocity which is
balanced by an outflow over the rest of the outer boundary. B(u*) 5 u 2 uin 1 «(h) S­u

­j
2

­upot

­j
D5 0 on ­Vin , (14)

This perturbation outflow is maximum in the region di-
rectly above and below the body and reduces in the up-
stream region. Furthermore, due to the displacement effect where ­Vin is the inflow part of the outer boundary; «(h)

is the coefficient of the Neumann part and is a functionthe flow encounters a body which is more bluff than the
actual shape and, thus, it tends to accelerate more than that varies smoothly from a value of zero in the upstream

region to a small value (p0.1) at the inflow–outflow junc-the potential flow as it goes over the body. By imposing
the potential flow as the Dirichlet boundary condition at tion. Thus, since the coefficient of the Neumann part is
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at the outer boundary, obtained with the two different
inflow boundary conditions, and Fig. 3b shows the corre-
sponding n9 distribution. The result shown is for a simula-
tion with I 5 0.5, a 5 08, and Re 5 1000. Both figures show
that the simulation using Dirichlet boundary conditions
suffers from the Gibbs phenomenon whereas the mixed
boundary condition shows negligible spurious oscillations.
It should be noted that this is at an early stage in the
simulation (t 5 2.5) and the values of the perturbation
are themselves small. However, the fact that the Gibbs
phenomenon is apparent so early shows just how much
damage a badly posed boundary condition can do. With
the mixed boundary condition, the displacement effect due
to the body is allowed to propagate upstream, thereby
adjusting the flow and resulting in a well-behaved solution.

Outflow Boundary Condition

In the present simulations, the semi-infinite domain is
truncated to a large but finite computational domain. The
critical aspect of implementing this technique is the bound-
ary condition at the outflow boundary. In the context of
finite-difference simulations of compressible flow over cir-
cular cylinders, simple outflow boundary conditions based
on primitive variables result in spurious secondary frequen-
cies [23]. Such boundary conditions are catastrophic in
spectral simulations due to their extreme sensitivity and
only carefully derived characteristic variable boundary
conditions produce stable and consistent results [23, 24].

For spectral simulations of incompressible flows, non-
reflective boundary conditions have been proposed and
successfully employed in conjunction with domain trunca-

FIG. 3. Comparison of perturbation velocities obtained at the outer tion. Notable among these are the buffer-domain [11] and
boundary with Dirichlet and mixed inflow boundary conditions. (T 5

viscous-sponge [1] techniques. These techniques recognize0.5, a 5 08, Re 5 1000): (a) u9 variation at the outer boundary. (b) v9
the fact that the source of possible reflections from thevariation at the outer boundary. Both figures show that the mixed bound-

ary condition reduces the Gibbs phenomena at the inflow-outflow outflow boundary is in the elliptic nature of the governing
junction. equation arising from the viscous terms and the pressure

field. The idea is to effectively remove this ellipticity at
the outflow boundary. Here we have implemented this

small, the above boundary condition is primarily a Dirich- technique on a single domain where the first source of
let boundary condition. The small Neumann part is, how- ellipticity is removed by carefully identifying the normal (j)
ever, crucial in that it allows the flow some freedom in the diffusion terms in the momentum equations and smoothly
vicinity of the inflow–outflow junction; uin is the Dirichlet attenuating them to zero at the outer boundary. Similarly,
part of the inflow boundary condition and is specified as the ability of the pressure field to carry signals back into

the domain from the outer boundary is nullified by attenu-
uin 5 upot 1 Dt(2=Pn 2 =Pn21). (15) ating the source term in the pressure Poisson equation

near the outflow boundary. It should be pointed out that
the technique of Street and Macaraeg [11] is intimatelyThe above boundary condition, coupled with a homoge-

neous Neumann pressure boundary condition, ensures that coupled with the use of separate regular and buffer do-
mains which, they emphasize, is crucial in the context ofin the strictly Dirichlet portion of the inflow boundary the

normal velocity is exactly equal to the potential value and spectral simulations. Similar consideration applies to the
viscous-sponge technique [1] which is applied in conjunc-the tangential components are equal to the corresponding

potential values up to O(Dt3) [22]. tion with a spectral element method. Here this technique
has been applied for a single domain spectral method andIn Fig. 3a we compare u9 (which is equal to u 2 upot)
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this requires additional care in the implementation of the flow is primarily convective in nature. Thus, flow at
the entire outflow boundary can be treated as being purelythe technique.

In the present solver, the attenuation of the normal convective in the direction normal to the boundary and
convective boundary conditions can be employed withoutdiffusion and pressure source terms is carried out by multi-

plying the requisite terms by a ‘‘filter function’’ of the form the generation of any spurious boundary layer. Finally, the
exact form of the advection diffusion equation (Eq. 6) is

f (j, h) 5 1 2 exp H2 cFS j 2 jO

jE 2 jO
Db1

1 Sh 2 ha

f Db2GJ,
f (j, h)

­2u*
­j2 1 F(j, h)u* 2

2 Re
Dt

h2u* (17)

(16)
5 R(un) in V,

where jE # j # jO and ha # h # ha 1 f, ha being the h
where the first two terms on the LHS are the normallocation which lies along the angle-of-attack line. The
diffusion terms that are treated implicitly (F(j, h) beingabove function is reflected about the line of angle-of-attack
the variable coefficient of the u* term) and R consists ofto get its representation in the other half of the domain.
all the terms treated explicitly. In the wake region of theWe choose to define the region where f , 0.99 as the
outer boundary, the above equation is purely convective,‘‘filtered region’’ (see Fig. 2), where the attenuation of the
since f 5 0 in that region. The convective boundary condi-normal viscous and the pressure source terms is significant.
tion in (8) is then given byThe rest of the region (where f $ 0.99) will be referred to

as the unfiltered region. In addition to this, we also define
the region, where f , 0.01, as the ‘‘parabolized region’’ B(u*) 5 u* 2

R(un)

FF(j, h) 2
2Re
Dt

h2G5 0 on ­Vout , (18)
where the filter attenuates the requisite terms to 1% of
their reference levels and the equations can be considered
parabolic. It should be stressed that there is no discontinu-
ity in the filter at f 5 0.99 or 0.01 and it varies smoothly where ­Vout is the outflow portion of the outer boundary.
and continuously in the whole domain. The shape and Furthermore, after incorporating the filter function, the
smoothness of the filter function and the extent of the final form of the pressure Poisson equation is given by
filtered and parabolized regions can be controlled through
the parameters c, b1 , and b2 .

The function should be smooth; i.e., its spectra (both 1
h2 H­2Pn11

­j2 1
­2Pn11

­j2 J1
­2Pn11

­z2 5 f (j, h)
= ? u*

Dt
in V.

Chebyshev and Fourier) should show adequate decay.
­f/­j should numerically evaluate to zero close to the body (19)
in order to avoid spurious generation of vorticity. In partic-
ular, piecewise-defined filter functions, which work well

Equations (11) and (13) together result in the boundaryin conjunction with multidomain computations [11], are
condition for pressuredefinitely not compatible with the present single-domain

simulations. Filtering should be limited to the outflow re-
=Pn11 ? t̃j 5 0 on ­VO (20)gion and no filtering should be applied in the inflow region

of the outer boundary. The region upstream of the cylinder
adjusts to the presence of the cylinder only through the which is enforced over the entire outer boundary. It should

be noted that alteration of the pressure Poisson equationaction of diffusion and pressure. Filtering the normal vis-
cous and pressure source terms reduces the ability of the leads to non-zero divergences in the filtered region and

thus amounts to the introduction of artificial compressibil-upstream flow to adjust to the displacement effect of the
cylinder and leads to the development of a spurious bound- ity. Also, with the viscous filter, the momentum equation

can be viewed as a variable viscosity problem and, there-ary layer on the inflow region of the outer boundary. Fi-
nally, vortices get distorted in the parabolized region fore, applying the divergence-free condition on the mo-

mentum equation will not lead to a typical pressure Poissonmainly due to the filtering of the pressure source term and
this can lead to spurious generation of vorticity in the equation. The time-split method then provides the most

straightforward way of decoupling pressure from the mo-computational domain following the exit of the vortices.
Thus, the extent of the parabolized region should be kept mentum equation.

Street and Macaraeg [11] suggest linearizing the convec-small in order to minimize spurious generation of vorticity.
The advection-diffusion equation is thus explicitly para- tion term about the potential flow in the buffer domain.

This helps to ensure that the characteristics at the outflowbolized in the wake region at the outer boundary. Outside
the wake region, the diffusive effects are negligible and boundary are strictly in the outgoing direction. However,
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convecting disturbances out of the computational domain at the end of the pressure correction step, no-slip and no-
penetration conditions are satisfied exactly and the pres-at the potential velocity, instead of the actual velocity,

results in an increased mass imbalance between the net sure satisfies the wall-normal momentum equation as
follows:inflow and the net outflow. For the present simulation, the

outflow boundary is sufficiently downstream of the body
and it is unlikely that, even in the wake, the flow at the

un11 5 0, =Pn11 ? t̃j 5
1

Re
=2un11 ? t̃j on ­VE . (23)outflow boundary will ever reverse direction. Therefore,

we choose not to linearize the convection term; however,
we do check to make sure that the condition of strict

Thus, the boundary conditions are consistent with those
outflow at the outflow boundary is never violated.

of the full Navier–Stokes equations. Details of the formula-
tion of this technique are given in the Appendix.Boundary Conditions on the Body

A number of 2D simulations have been performed with
In order to guarantee no penetration at the end of the the two different surface boundary conditions and the re-

full time step, the boundary condition for pressure on the sults compared. No difference in the flow field and quanti-
surface of the elliptic cylinder is given by the Neumann ties including lift and drag coefficients and Strouhal num-
boundary condition bers have been observed. A closer look at surface pressure

and vorticity also shows no significant differences. This
clearly shows that the time-split procedure and the bound-=Pn11 ? t̃j 5 0 on ­VE (21)
ary conditions (21) and (22) work satisfactorily even in the
simulation of bluff body wakes which involve separation.and the corresponding intermediate velocity boundary
Moreover, even though the influence-matrix method doescondition is given by
not seem to gain much for the present simulations, it repre-
sents a methodology which might prove to be an attractiveu* 5 Dt(2=Pn 2 =Pn21) on ­VE . (22)
alternative for flows, where conventional coupled methods
are difficult to apply (like variable viscosity problems) and

It should be noted since the tangential gradients of pressure
where splitting errors introduced by ad-hoc boundary con-

on the cylinder are not specified, this results in a finite but
ditions may be unacceptable (like boundary driven flows).

small slip velocity of O(Dt3) [22].
The splitting errors and the resulting numerical bound-

Solution Algorithm
ary layer that develops close to the no-slip boundary have
been analyzed in detail and higher-order methods and im- The overall solution procedure consists of two steps.

The first step is the advection-diffusion step, where theproved pressure and intermediate velocity boundary condi-
tions to reduce these errors have been suggested [14–17]. discretized version of Eq. (17) is solved to obtain the inter-

mediate velocity u*. Due to the explicit discretization ofThe time-split method with the above boundary conditions
(Eqs. (21) and (22)) has been used in the past to simulate the advection-diffusion equation along the h and z direc-

tions, Eq. (17) is simply a set of uncoupled ordinary differ-a number of different types of flows, including Taylor–
Couette flow [22] and turbulent square duct flow [25], and ential equations in j for various h and z locations. Since

at any given h location, F is a function of j only, Eq. (17)has led to satisfactory results. However, in the present
simulations, Eq. (21) may be a poor approximation, espe- is a set of variable coefficient 1D Helmholtz equations

which can be solved easily by computing the inverse ofcially at the stagnation, separation, and reattachment
points. Also in separated flows, the initial roll up and vortex the discretized operators. Since the operators are indepen-

dent of z, there are only as many operators as there areshedding processes may be influenced by the non-zero slip
velocity on the body. To test the performance of the above h points and, thus, storage of their inverses is not mem-

ory intensive.boundary conditions we employed an alternate formula-
tion of the time-split scheme where both the no-slip and the To satisfy incompressibility exactly at the end of each

time-step, the pressure Poisson equation must be solvedcorrect pressure boundary condition were satisfied exactly.
Following Marcus [21], an influence-matrix technique was in a fully implicit manner. This is computationally the ex-

pensive step and, therefore, efficient solution of the three-implemented in conjunction with the time-split method.
This implementation differs from the Kleiser and Schu- dimensional pressure Poisson equation is the key issue.

One approach is to use iterative schemes such as GMRESmann [20] influence-matrix technique which avoids all
time-split errors. The current implementation of the influ- or multigrid methods. The other approach is the direct

method, where the operator is inverted without resortingence-matrix technique, which is done in conjunction with
the time-split scheme, basically adjusts the intermediate to iterative schemes. Here we have developed an efficient

direct solver for the 3D Poisson equation in elliptic cylin-wall-normal and tangential velocity components such that,
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drical coordinates. The orthogonal curvilinear elliptic cy- where ji refers to the ith Chebyshev collocation location
given by Eq. (5). Furthermore, P̂ and Ĝ are vectors con-lindrical coordinate system introduces a non-separable

variable coefficient into the Poisson equations, taining the values of P̂ and Ĝ at the Nj collocation points,
respectively, and all the above matrices are of size (Nj 3
Nj). A similar linear system is also obtained for the even­2P

­j2 1
­2P
­h2 1 a2(sinh2 j 1 sin2h)

­2P
­z2 5 G(j, h, z), (24) modes (kej

).
The linear system of equations represented by Eq. (26)

is block tridiagonal with (Nh/2) 3 (Nh/2) blocks of sizewhere G(h, h, z) represents the source term of the pressure
(Nj 3 Nj) each and can be solved using the Thomas algo-Poisson equation (Eq. 19) multiplied by h2. In the context
rithm. A straightforwrad implementation of the Thomasof a spectral simulation, the dependence of the coefficient
algorithm requires the inverse of the individual blocks. Ason the azimuthal coordinate (h) hinders straightforward
can be seen in Eq. (26), only the diagonal blocks are dense.Fourier transform along this direction. However, the lim-
The off-diagonal blocks are simply constant diagonal ma-ited bandwidth of this variable coefficient can be exploited
trices and their inverse can be evaluated easily. A straight-in developing an efficient direct solver. First the equation is
forward inversion and storage of the diagonal blocks accel-Fourier transformed in the z direction in a straightforward
erates the repeated solution of the linear system (Eq. 26)manner. The next step is to transform the equation in the
using the Thomas algorithm. However, this approach re-h direction. The transformed equation in Fourier space
quires memory storage of the order of (N2

j NhNz) for thecan be written as
storage of the inverse, which for a typical 3D simulation
would amount to hundreds of megabytes of memory. This
memory requirement can be greatly reduced by exploiting

­2P̂ukh

­j2 2 Fk2
h 1 a2Ssinh2j 1

1
2Dk2

zG P̂ukh
1 a2k2

zP̂ukh22

(25) the structure of the diagonal blocks [Aj]. For each spanwise
wavenumber kz , these diagonal blocks share a common1 a2k2

zP̂ukh12
5 Ĝukh

.
(Nj 3 Nj) matrix [C] and differ only in their diagonal
entries k2

oj
[I]. Thus, the inverse of [Aj] can be conveniently

In the above equation, P̂ and Ĝ now denote the trans- computed as
formed pressure and source terms, respectively, and kz

and kh represent the wavenumbers in the spanwise and
circumferential directions, respectively. Note that the de- [Aj]21 5 [M] F[l] 2 koj

[I]G21

[M]21, (28)
pendence of the transformed variables on kz is not explic-
itly shown. The above system of equations is uncoupled
for the various Fourier modes in the z direction (kz 5 0, where [M] is the eigenvector matrix of [C], [M]21 is its
6 2f/A, 6 4f/A, ..., 6 Nz f/A) and, therefore, each mode inverse, and [l] is the corresponding diagonal eigenvalue
can be considered independently. Moreover, the odd and matrix. With this approach, the storage requirement is
even modes in h are decoupled and two separate problems, reduced to (N2

j Nz).
one for the odd modes (kh 5 2Nh/2 1 1, 2Nh/2 1 3, ..., Boundary conditions for the pressure can be easily incor-
Nh/2 2 1) and one for the even modes (kh 5 2Nh/2 1 porated within this formulation. Periodic boundary condi-
2, 2 Nh/2 1 4, ..., Nh/2) can be solved separately. Let tions along h and z are implicitly built into the Fourier
kOj

denote the jth odd h-mode and kej
the jth even h-mode. expansion along these directions. Dirichlet boundary con-

Incorporating the Chebyshev collocation along the j-direc- ditions in the j-direction can be built into the matrix repre-
tion for each kz mode, the fully discretized version of Eq. sentation by appropriately modifying the block-tridiagonal
(25) for the odd h-modes becomes system. Neumann boundary conditions can be incorpo-

rated by using the reduced matrix technique and modifying
[B]P̂uko

j21

1 [Aj ]P̂uko
j

1 [B]P̂uko
j11

5 Ĝuko
j

. (26) [Aj] and Ĝ appropriately [26]. A detailed description of
the solution algorithm can be found in Ref. [27].

In the above equation the matrix operators are given by
TEST OF THE OUTFLOW BOUNDARY CONDITION[Aj ] ; [C] 2 k2

Oj
[I], [B] ; a2k2

z[I], and [C] ; [Dc2] 2 [E].
Here [Dc2] is the Chebyshev collocation second derivative

Extensive tests have been performed to study the perfor-matrix, [I] is the identity matrix, and the diagonal matrix
mance of the outflow boundary condition and, also, to[E] is given by
determine the effects of the viscous and pressure filters
on the vortices as they convect downstream through the
filtered region to the outflow boundary. Studying vortices[E]il 5 Ha2(sinh2ji 1 As)k2

z if i 5 l

0 otherwise,
(27)

which are part of a Karman vortex street is not appropriate
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region without encountering the filter. Therefore, this sim-
ulation leads to the base solution and the results of the
other cases can be compared to this reference case to assess
their performance. Finally, the effect of resolution on the
performance of the filters is assessed by simulating one
of the test cases with improved resolution. The various
numerical parameters for all these cases are given in Table
I. In the table, Case A corresponds to the reference case,
Cases B–E are the four test cases, and Case F is the high
resolution run which has the same filter as Case D.

A quantitative assessment of the performance of the
outflow boundary condition can be made by computing
the square integral of the spanwise vorticity (gz) given by
igzi2

2 5 e
V20

g2
z dx dy, where V20 denotes the elliptic domain

up to x 5 20. This quantity is directly related to the energy
spectra associated with the spanwise vorticity and is a good
indicator of the deviation from the potential flow. Figure

FIG. 4. Filter profile for all the filters used in the test of the outflow 5a shows the long time behavior of this quantity for allboundary condition. These profiles correspond to f (j, 0), i.e., along the
the six cases. First, we follow the evolution of igzi2

2 for thewake centerline.
reference case (shown by the solid line) in order to under-
stand the behavior of the vortices as they convect down-
stream and exit V20 in the absence of any filtering. In the

for this purpose since the presence of many vortices which time interval 12.5 , t , 39, the vortices move from near
are being continuously shed and of the body which is con- the body and arrive just upstream of x 5 20. During this
stantly producing vorticity would make the results hard to time, the strength of the vortices decays continuously due
interpret. Thus, a special simulation has been designed to viscous dissipation and this decay is apparent from the
where a pair of vortices can be studied in isolation as they steady decrease in igzi2

2 seen in Fig. 5a. At about t 5 39,
travel downstream. The simulation starts with the usual no- the downstream end of the vortices begins to exit and the
slip boundary conditions on the cylinder, mixed boundary vortices completely exit at around t 5 42. During this
conditions at the inflow, and non-reflective boundary con- period, as expected, there is a rapid drop in igi2

2 . In Fig.
ditions at the outflow boundary. These boundary condi- 5b we zoom into the time interval 39 , t , 43 so as to
tions are maintained until the two vortices which were take a closer look at the behavior of this quantity as the
attached to the cylinder have grown to their full strength vortices exit the computational domain.
(which corresponds to t 5 12.5). At this time, the no-slip The time evolution of igi2

2 for Case B follows that of
boundary condition is replaced by potential velocities on the reference case until about t 5 33. Thereafter, Case B
the body. As a result, the two vortices detach from the deviates from the reference case and there is a more rapid
cylinder and start convecting downstream. At the same decrease in this quantity and it reaches a minimum of about
time the strength of the vorticity layer on the cylinder 0.5 at around t 5 41.4 at which time the vortices completely
starts to reduce and the flow begins to approach the poten-
tial flow.

The parameters chosen for this study are T 5 0.5, a 5
08, and Re 5 500, and a computational domain of size TABLE I
xO 5 20 is used. A number of filters with different exten- Domain and Filter Parameters Used in the Outflow Boundary
sions of the filtered region have been chosen to assess the Condition Test
effect of the filter on the flow field and the ability of the

Filtered Parabolizedfilter to convect large vortical disturbances out of the com-
Test Outer region region Attenuationputational domain. Furthermore, a comparison of the per-
case Nj Nh domain ( f (j, 0) , 0.99) ( f (j, 0) , 0.01) factor

formance of the various filters will allow us to choose the
best filter for our purpose. The four filter shapes that have A 201 160 30 29 29.9 p104

B 101 130 20 7 15.6 p20been chosen for this purpose are shown in Fig. 4. In addi-
C 101 130 20 10 18.6 p100tion to these four cases, we have also simulated the flow
D 101 130 20 15 19.9 p1670in a bigger domain (with xO 5 30), where the filtered region
E 101 130 20 20 20.0 p70

has been kept well outside x 5 20. Thus, in this simulation F 151 160 20 15 19.9 p4000
the vortices convect downstream and out of the x 5 20
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crease of vorticity in the domain after the vortices have
exited the domain.

In Case C, the filter is applied further downstream than
in Case B with the filter extending from x 5 10 to x 5 20.
However, as can be seen in Fig. 4, there is little difference
in the shapes of the filters for Cases B and C. The main
difference is in the extent of the parabolized region which
is smaller for Case C (extending from x 5 18.6 to x 5 20).
For this case, it is observed that the plot of igi2

2 coincides
very well with that for the reference case until about t 5
38 which corresponds to the time when the vortices have
just entered the parabolized region. Thereafter, the curve
departs from that of the reference case and reaches a local
minimum of about 0.1 at t 5 42 at which time the vortices
have completely exited the outflow boundary. Subse-
quently, it undergoes some low level fluctuations due to
the distortion of the vortices by the pressure filter in the
parabolized region and the lower level of the fluctuations
in this case is due to a smaller parabolized region.

Thus, the ability of the filter to allow for a smooth exit
of the vortices from the computational domain depends
very much on the extent of the parabolized region. Further-
more, contrary to expectations, a larger parabolized region
does not necessarily imply a smoother exit of the vortices
from the computational domain since pressure filtering
leads to significant distortion of the vortices. However, the
presence of a region where the pressure source term is
completely filtered out is necessary since this ensures that
the pressure disturbance that is created at the outflow
boundary due to the exiting vortices does not affect the
solution in the unfiltered region. This implies that there is
an optimum filter (with an optimum size of the parabolized
region) which will result in the maximum decay of vorticity
as the vortices exit the computational domain and the

FIG. 5. Variation of square integral of spanwise vorticity with time objective then is to find this filter shape through numerical
for the various filters: (a) Long term behavior of the quantity as the experimentation. Furthermore, so as to quantify the per-
vortices convect downstream from the vicinity of the body and convect formance of the filters we introduce the ‘‘attenuation fac-out of the computational domain. (b) Close-up view of the variation of this

tor’’ which is the ratio of igzi2
2 before the vortices exit thequantity as the vortices approach the outflow boundary and convect out.

domain to just after they have exited the domain. The
highest attenuation factor should be reached for the opti-
mum filter. This quantity is also tabulated in Table I for
the various test filters and a comparison of this quantityexit the domain. This suggests that the vortices undergo

significant distortion due to the filter as they approach the for Cases B and C clearly shows that filter C performs
better than filter B.outer boundary. In fact, at t 5 33, the downstream end of

the vortices has just entered the parabolized domain In Case D, the filter is pushed further downstream and
the parabolized domain now extends only between 19.9 ,(where the filter has attenuated the normal viscous terms

and the pressure source to about 1% of their reference x , 20. Figures 5a and 5b show that the plot of igzi2
2 for

this case departs from the reference case only after t 5 40.levels). We observe that the distortion of the vortices is a
result of the complete filtering of the pressure source term Furthermore, the vortices exit the domain smoothly and

no significant variation in igzi2
2 is observed after the vorti-in the parabolized region. Subsequently, there is an in-

crease in igi2
2 and it undergoes rapid and large variations ces have exited at around t 5 41.6. The superior perfor-

mance of this filter is also evident from the attenuationbefore the final decay. These large variations are clear
indications that the boundary condition is not able to adjust factor which is an order of magnitude larger than the previ-

ous cases.to the exiting vortices and this leads to the spurious in-
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Case E is a step filter (see Fig. 4), where the filter function
takes a value of one everywhere except at the outflow
boundary where it is zero. The igzi2

2 curve for this case
follows closely that of Case D, however, the attenuation
factor achieved by this filter is significantly smaller than
for Case D and is even smaller than Case C. This is a direct
consequence of the absence of a parabolized region which
allows pressure disturbances at the exit to reflect back
into the computational domain. Furthermore, the large
discontinuity in the filter function leads to Gibbs phenome-
non at the outflow boundary and contributes to the de-
crease in the attenuation factor.

Thus, the filter in Case D seems to provide the best
attenuation of vorticity and is the filter shape of choice.
For this filter, the effect of improved resolution on the
performance of the filter is investigated in Case F, where
the resolutions in the wall-normal and circumferential di-
rections are increased to Nj 5 151 and Nh 5 160. A notice-
able improvement in the performance of the filter can
be observed and an attenuation factor of about 4000 as
compared to 1670 is obtained. Thus, part of the discrepancy
between the reference case and the test cases is due to
resolution. However, in actual simulations, filter C pro-
duces results which are virtually indistinguishable from
those obtained using filter D. Thus, there is a range of
filter shapes that perform equally well in actual wake simu-
lations.

An issue of concern is the possible generation of spurious
vorticity due to the introduction of the filter function into
the governing equations. The error introduced in the vor-
ticity equations is proportional to both ­f/­j and the magni-
tude of the viscous terms. This underscores the need for
a smooth filter function and also requires that the filter be
applied far enough downstream where the viscous terms
are small. Proof that the spurious generation of vorticity
is insignificant in the present simulations can be found in
Fig. 5a. For Case C, the vortices enter the filter region
around t 5 25 and reach the parabolized region around
t 5 38. During this time, the vortices convect through a
region of large streamwise gradient in the filter function
(­f/­j) and should correspond to the largest generation of
spurious vorticity. However, we notice in Fig. 5a that there
is virtually no difference between this and the base case,
implying no significant alteration of the vorticity distribu-
tion due to the filtering process.

Further evidence of the benign nature of the filtering
process is obtained through detailed comparison of the
shape and strength of the vortices as they convect through
the filtered region and exit the outflow boundary. In Fig.
6 we have plotted a sequence of vorticity contour plots for
the reference case (Case A) that show the vortices as they
travel downstream and convect out of V20 . Only a slice of FIG. 6. Sequence of vorticity contours which show the two vortices
the computational domain has been extracted for plotting as they convect downstream and out of V20 for the unfiltered reference
purposes and in all the plots, contours corresponding to case (Case A).
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the same vorticity values (ranging between 22.6 and 2.6)
have been plotted so that changes in the shape of the
vortices can be followed. Figure 7 shows the corresponding
plots for Case D.

Figures 6a and 7a show the vortices at t 5 22.5, at which
time the vortices are located at about x 5 7.0. It can be
observed that there is no noticeable difference in the struc-
ture of the vortices between the two cases. It should be
pointed out that the two small vortices located downstream
of the primary vortices result from the rollup of the shear
layer as the vortices detach from the body and are, thus,
artifacts of the startup process and the abrupt change in
the boundary conditions at the body. Their presence should
not affect the present study of the effectiveness of the
outflow boundary condition. Figures 6b and 7b show the
vortices at t 5 31.25, at which time, for Case D, the vortices
are just upstream of the filtered region. A comparison
between the two cases reveals no significant difference in
the structure of the vortices. Figures 6c and 7c correspond
to a time when, for Case D, the vortices have entered the
filtered region. As before, no differences are observed in
the structure of the vortices for the two cases and this
provides further evidence that filtering does not lead to
the production of spurious vorticity. In the next two sets
of figures, the vortices approach the outflow domain and
exit the boundary at x 5 20. In these plots, small differences
in the structure of the vortices can be observed between the
two cases; however, the vortices exit the outflow domain
smoothly without any reflections. Here it should be
stressed that differences between the filtered and unfiltered
cases are unavoidable in the filtered region, even in the
case of the best filter, since filtering alters the governing
equations. The only requirement we need to impose is that
the presence of the filter does not feed back and affect the
region upstream of the filter and that, as the vortices exit
the outer boundary, no spurious reflections are generated
that affect the unfiltered upstream region.

Thus, the above tests allow us to determine the optimum
filter shape for the present simulations. For the optimum
filter (Case D), the tests show that the filtering procedure
achieves its objective, in a satisfactory manner. Further-
more, it is established that the viscous filtering does not
lead to the generation of spurious vorticity and the filtering
process does not have any adverse effect on the flow in the
unfiltered region. In addition to this, domain independence
studies have also been performed, and it is found that the
computed flow field is relatively insensitive to the size of
the outer domain [27].

Simulation Results
FIG. 7. Sequence of vorticity contours as the two vortices convect

A number of 2D and 3D simulations have been per- downstream and out of computational domain for Case D. Comparison
with the corresponding plots in Fig. 6 shows that the filter has no notice-formed in order to validatae the code and the results for
able effect on the vortices as they convect through the unfiltered region
and the vortices exit the computational domain in a smooth manner.
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TABLE II

Summary of the Various Cases That Have Been Simulated and Comparisons with Available Experimental Results

Present simulations Experimental results
Case
no. Parameters Nj 3 Nh 3 Nz St* CD Parameters St* CD

1 T 5 0.2, a 5 458, Re* 5 163 T 5 1.0 a 5 08, Re* 5 163 0.18 —
2D 81 3 100 0.19 3.71 Williamson (1988)

2 T 5 0.5, a 5 08, Re* 5 1000 T 5 1.0, a 5 08, Re* 5 1000 0.21 —
2D 81 3 100 0.20 0.61 Roshko (1954)

3 T 5 0.5, a 5 458, RE* 5 525 T 5 0.6, a 5 458, Re* 5 104 0.23 —
2D 81 3 100 0.24 2.52 Modi & Wiland (1970)

3D (A 5 2.0) 81 3 100 3 28 — 1.81

4 T 5 1.0, a 5 08, Re* 5 525 T 5 1.0, a 5 08, Re* 5 525 0.21 —
2D 81 3 160 0.22 1.44 Roshko (1954)

3D (A 5 2.0) 81 3 160 3 40 0.22 1.24 T 5 1.0, a 5 08, Re* 5 525 — 1.15
Wieselsberger (1922)

5 T 5 0.5, a 5 08, Re* 5 525 T 5 1.0, a 5 08, Re* 5 525 0.21
2D 81 3 160 0.21 0.78 Roshko (1954)

3D (A 5 2.0) 81 3 160 3 40 0.24 0.77

five different configurations are presented in Table II. For different h-locations in the wake. Here, too, at least five
orders of magnitude decay in the energy spectra can beall these simulations the outer extent of the computational

domain, xO , is 30. A CFL number based on the convection observed. Finally, Fig. 8c shows the spanwise energy spec-
tra at three different points in the near wake, where theterm in elliptic coordinates is used as a guideline in choos-

ing the time step. Simulations have shown that a stable three-dimensional streamwise structures are most active.
More than seven orders of magnitude in the spanwise en-time-stepping is achieved for CFL P0.15 which for the

grids used corresponds to a Dt in the range 0.002–0.006 ergy spectra can be observed, indicating very good resolu-
tion along z. It should be emphasized that similar spectralfor the various simulations. The 3D simulations require

about 6.5 es per time step per grid point on a single- decay is observed for other velocity components and pres-
sure and at other time instances during the shedding cycle.processor Cray C-90, which for a typical 3-D grid amounts

to about three hours of CPU time for simulating one vortex Thus, the grid chosen for the simulations provides ade-
quate resolution of the flow field.shedding cycle. The 3D run is initiated by perturbing the

fully developed 2D flow and about 10 shedding cycles are In Table II, the Strouhal number and Reynolds number
are based on the projected width, L*, of the cylinder. Thus,required for the flow to attain a fully developed 3D state.

Thus, the total CPU time required for one such 3D simula- St* and Re* are equal to F L*/Uy and L*Uy/n, respec-
tively, where F is the oscillation frequency. St* is usefultion is between 50–60 h.

In spectral methodology, the adequacy of grid resolution since it can be used for comparison between flows over
elliptic cylinders of various thickness ratios and angles-of-is commonly investigated in terms of the spectral decay

along the coordinate directions. Here we investigate the attack at the same Re*. In particular, St* can be compared
with the corresponding Strouhal number for flow over aenergy spectra of the u-component of velocity for the 3D

simulation of Case 5. Figure 8a shows the azimuthal energy circular cylinders in order to validate our results. Finally,
the aerodynamic force coefficients are defined as CL 5spectra averaged along the span obtained at an instant

in time. Due to inhomogeneity along the j-direction, the L/As %U2
y2LyLz and CD 5 D/As%U2

y2LyLz , where L and D
are the lift and drag forces on the cylinder, respectively,azimuthal spectra is shown for three different locations in

order to verify the h-resolution in the boundary layer, in and % is the density of the fluid.
Three-dimensional simulations have been performed forthe near wake, and at a sufficiently downstream location.

From the figure it is clear that there are at least five orders different configurations at a Reynolds number of 525. Flow
over a circular cylinder has been observed to become three-of magnitude decay in the azimuthal energy spectra at all

these locations. The radial resolution is investigated in dimensional beyond a Reynolds number of about 180 [1,
3], and we expect the flow around elliptic cylinders toFig. 8b, where the Chebyshev spectra is plotted at three
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behave qualitatively in a similar manner. Also, it has been
observed experimentally that the spanwise wavelength of
the streamwise structures in the wake of a circular cylinder
in the Reynolds number range of 300 to 1000 is typically
equal to one diameter [3, 28]. Thus, for the present 3D
simulations, the spanwise length is adequate to capture at
least one pair of streamwise structures. Visualization of
the saturated 3D flow field has shown that there are in
fact, one, two, and three pairs of streamwise vortices for
Cases 3, 4, and 5, respectively [27].

In the absence of comprehensive experimental data for
elliptic cylinders, the present results are in most cases com-
pared against corresponding experimental data for circular
cylinders. From Table II it can be observed that the present
simulations predict the Strouhal number of vortex shed-
ding with reasonable accuracy. It should be pointed out
that at these relatively low Reynolds numbers no lower
secondary frequencies are observed. Such secondary fre-
quencies have been observed in other simulations [23] and
are known to be caused by spurious reflections from the
outflow boundary. The absence of these low frequencies in
the current simulations further attests to the non-reflective
nature of the outflow boundary conditions.

It is observed that 2D simulations, in general, predict a
higher mean drag coefficient than the corresponding 3D
simulations. Furthermore, for the case of a circular cylinder
(Case 4), the drag computed from the 3D simulation com-
pares better with the experimental value than the corre-
sponding 2D simulation. The 2D drag coefficient values
are 74%, 16%, and 1.3% higher than the corresponding 3D
values for Cases 3, 4, and 5, respectively. Cases 3 and 5
correspond to flow over an elliptic cylinder of thickness-
ratio of 0.5 at 08 and 458 angles-of-attack, respectively.
Case 4 corresponds to a circular cylinder and all three
simulations are at an identical Reynolds number of 525.
Thus, it is evident that 2D simulations estimate the drag
more accurately for streamlined bodies than for bluffer
bodies. The underlying cause for the discrepancy in the
mean drag has been studied in detail and it has been found
that the overprediction of drag in 2D simulations is due
to larger in-plane (j 2 h plane) Reynolds stresses [31].

Figure 9 shows the variation of the lift and drag coeffi-
cients for Case 5 as the flow transitions from a fully devel-
oped two-dimensional flow to a saturated three-dimen-
sional flow. The spanwise perturbation is provided at
t 5 68 and the three-dimensionality saturates at around
t 5 102. Although for this case there is no significant reduc-
tion in the average drag level, Fig. 9 shows that there is a
considerable (48%) decrease in the peak-to-valley ampli-

FIG. 8. Energy spectra of the u-velocity component along the three tude of the lift variation. A similar reduction is also ob-
coordinate directions. At least five orders of magnitude decay is observed

served for Cases 3 and 4. The underlying cause for thisfor all the directions.
discrepancy in the lift fluctuation has been investigated
in detail in Mittal and Balachandar [31] and it has been
observed that the Karman vortices approach closer to the



DIRECT NUMERICAL SIMULATION 365

The use of the ad-hoc pressure and velocity boundary
conditions in conjunction with the time-split method can-
not be justified a priori for separated flows. An alternate
formulation of the two-step time-split method which satis-
fies pressure and velocity boundary conditions that are
consistent with the governing equations has been imple-
mented. However, we observe that this does not lead to
any significant difference in the flow including the surface
pressure and vorticity distribution. Therefore, the conclu-
sion is that the conventional time-split method with homo-
geneous Neumann pressure boundary conditions performs
adequately for separated flows and predicts the flow field in
a satisfactory manner. A number of 2D and 3D simulations
have been performed and quantities like Strouhal numbers
and drag coefficients show good agreement with estab-
lished experimental results.

It is observed that three-dimensionality has a significant
FIG. 9. Variation of lift and drag variation with time for Case 5 as effect on the lift and drag forces of the cylinders; 2D numer-

the flows transition from a fully developed two-dimensional flow to a ical models at Reynolds numbers where the flow is known
saturated three-dimensional flow. The spanwise perturbation is given at

to be intrinsically three-dimensional, tend to overpredictt 5 68 and the three-dimensionality saturates at about t 5 102.
both the average level of drag and the amplitude of lift
fluctuations. In particular, it is observed that for flow past
a circular cylinder, 3D simulations predict the mean dragcylinder base during shedding in 2D simulations than they
more accurately than the corresponding 2D simulations.do in 3D simulations and this leads to a higher lift ampli-
This has important implications in aero- and hydrodynam-tude level in 2D simulations.
ics where 2D simulations are used routinely as part of the
design process.CONCLUSIONS

The solver developed for the simulation of flow over APPENDIX: REMOVAL OF SPLITTING ERRORS FOR
elliptic cylinders is an efficient one in terms of both the A TWO-STEP TIME-SPLIT SCHEME
CPU and memory requirement and will allow us to make
a comprehensive analysis of the various aspects of the A technique similar to the one used by Marcus [21] is

used to impose the exact boundary conditions on the ellip-3D flow field. The outflow boundary condition has been
handled by parabolizing the governing equations near the tic cylinder for a two-step time-split scheme. For the sake

of simplicity, the discussion in this appendix will be re-outflow boundary and the issues in the implementation of
this technique have been discussed in detail. Comprehen- stricted to two dimensions since extension to three dimen-

sions involves no additional complications. Also, since thissive tests have been carried out to assess the performance
of this outflow boundary treatment. These tests have shown method is aimed towards improving the boundary condi-

tions on the surface of the cylinder, boundary conditionsthat with a carefully chosen filter function, large vortical
disturbances are convected out of the computational do- at the outer boundary will be assumed to be known.

The influence-matrix technique reduces to identifyingmain without any spurious reflections. In addition to these
tests, in actual wake simulations, we find that the vortex the correct wall-normal (a) and tangential velocity (b)

boundary conditions which when enforced at the interme-shedding process is relatively insensitive to the size of the
outer boundary and no spurious secondary frequencies are diate * level will result in no-slip and no penetration at

the end of the full time-step with the additional conditionobserved in the present simulations at moderate Reynolds
number where it is known from experiments that no such that the pressure satisfy the normal momentum equation

at the body. The equations and boundary conditions solvedfrequencies exist. This provides strong evidence that the
outflow boundary condition performs satisfactorily in ac- at the intermediate step can be written as
tual wake simulations. A novel inflow boundary condition
has also been proposed that allows for the blockage effect M u* 5 Rj in V; u*(jE , hj) 5 aj on ­VE (29)
of the body to be ‘‘felt’’ in the inflow portion of the outer

M v* 5 Rh in V; v*(jE , hj) 5 bj on ­VE , (30)computational boundary. It has been demonstrated that
this boundary condition improves the overall behavior of
the solution. where M is the linear operator appearing on the LHS of
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Eq. (17), Rj and Rh are the wall-normal and circumferential un11
Cj

5 u*Cj
2 Dt =PCj

in V 1 ­V. (37)
components of the right-hand side. Inflow and outflow
conditions are enforced on ­VO . This advection diffusion

Here the boundary conditions for the jth C-problem implystep is followed by the pressure correction step
a unit wall normal velocity at the jth h-point and zero wall-
normal velocity at all other wall points. A corresponding
wall-normal pressure gradient is also enforced at this point=2 Pn11 5 f (j, h)

= ? u*
Dt

in V;
to ensure zero penetration at the end of the full time
step. The D-complementary functions can be obtained in

=Pn11(jE , hj) ? t̃j 5
aj

Dt
on ­VE (31) a similar fashion where the solution of the jth D-problem

will be obtained by applying a unit tangential slip at the
jth h-point on the cylinder surface at the * level. The D-un11 5 u* 2 Dt =Pn11 in V 1 ­V. (32)
complementary functions satisfy no penetration at all the
h-points automatically. The solution for the A-problemThe Neumann boundary condition for the pressure Poisson
can then be written as a linear combination of the particularequation, along with the pressure correction (Eq. 32), guar-
and complimentary solutions asantee impermeability (un11 5 0) on the surface of the

cylinder. As before, at the outer boundary =Pn11 ? t̃j 5 0.
Now a’s and b’s are to be chosen so that the resulting final
velocity and pressure satisfy the no-slip condition and the 1un11

vn11

Pn1125 1un11
B

vn11
B

PB
21 aj 1

un11
Cj

vn11
Cj

PCj
21 bj 1

un11
Dj

vn11
Dj

PDj

2. (38)wall-normal momentum equation at the body, given by

un11 5 0, =Pn11 ? t̃j 5
1

Re
=2un11 ? t̃j on ­VE . (33)

Here the unknown coefficients a’s and b’s are just the
appropriate wall-normal and tangential velocity boundary

Let Eqs. (29)–(32) be called the ‘‘A-problem.’’ Since the values that will enable the overall velocity and pressure to
functions a and b are unknown a priori in the calculation satisfy Eq. (33). The algebraic relation for the a’s and b’s
of u* and v*, the above A-problem cannot be solved di- can be written in the following matrix form:
rectly. This difficulty can be avoided by using the influence
matrix technique, where instead of solving the above A-
problem, one solves for a particular solution (B-problem) 1

vn11
Cj

vn11
Dj

t̃j ? S=PCj
2

1
Re

=2un11
Cj D t̃j ? S=PDj

2
1

Re
=2un11

Dj D2
(39)

and two sets of complementary functions (C-problem and
D-problem). The particular solution (uB , vB , PB) is ob-
tained by solving Eqs. (29)–(32) with homogeneous bound-
ary conditions u* 5 v* 5 =Pn11 ? t̃j 5 0 applied on the
cylinder. Each member of the first set of complimentary Saj

bj
D5 1

2vn11
B

2t̃j ? S=PB 2
1

Re
=2un11

B D2.functions (uC , vC , PC) is obtained as response to a unit
source of intermediate wall-normal velocity placed at one
point on the cylinder surface. Different members of the
first set are thus built by placing the wall-normal velocity The vector on the RHS corresponds to the final slip error
source at all the points on the cylinder surface one at a and normal momentum residual in the particular solution
time. Thus, there are as many C-complimentary functions due to the imposition of ad-hoc homogeneous intermediate
as there are numbers of points along the h directions, i.e., boundary conditions. The matrix on the left-hand side is
Nh . The equations solved for the jth C-problem then are the influence matrix, whose elements represent the slip

error and normal momentum residual at every point on
the body due to the placement of a unit penetration orM u*Cj

5 0 in V; u*Cj
(jE , hl) 5 djl on ­VE (34)

slip source at a point on the surface. Solution of the above
matrix equation provides the correct combination of com-

M v*Cj
5 0 in V; v*Cj

(jE , hl) 5 djl on ­VE (35)
plimentary functions that nullify the slip velocity and nor-
mal momentum residual produced at the cylinder by the

=2PCj
5 f (j, h)

= ? u*Cj

Dt
in V; particular solution. Thus the advection-diffusion and pres-

sure correction steps in the A-problem become decoupled
and the problem can be solved with the correct intermedi-

=PCj
(jE , hl) ? t̃j 5

djl

Dt
on ­VE (36)

ate boundary conditions.
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