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A new flow-structure interaction method is presented, which couples a sharp-interface
immersed boundary method flow solver with a finite-element method based solid dynam-
ics solver. The coupled method provides robust and high-fidelity solution for complex
flow-structure interaction (FSI) problems such as those involving three-dimensional flow
and viscoelastic solids. The FSI solver is used to simulate flow-induced vibrations of the
vocal folds during phonation. Both two- and three-dimensional models have been exam-
ined and qualitative, as well as quantitative comparisons, have been made with estab-
lished results in order to validate the solver. The solver is used to study the onset of
phonation in a two-dimensional laryngeal model and the dynamics of the glottal jet in a
three-dimensional model and results from these studies are also presented.
�DOI: 10.1115/1.4002587�
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Introduction
Flow-structure interaction �FSI�, which refers to the interaction

f a moveable and/or deformable structure with an internal sur-
ounding fluid, occurs in a number of systems in the human body
nd is oftentimes critical to the physiology of the system. One
bvious example is the cardiovascular system, where the pumping
f blood from the heart is the result of deformation of the heart
all and the functioning of the heart valves is mostly driven by
ow-structure interaction. Flow-structure interaction is also the
ey to the physiology of the gastrointestinal system, where peri-
talsis is employed to move food, as well as the respiratory sys-
em, where contraction/expansion of the lungs leads to respiration.

Another system where FSI is critical is the phonatory system,
here airflow induced vibration of the vocal folds in the larynx

eads to the production of sound, i.e., to phonation. This system is
he primary focus of the current work wherein we are working
oward constructing high-fidelity computational tools that model
he biomechanics of phonation. The motivation is that such tools
ill allow us to better understand the fundamental physical
echanisms that underlie phonation. Eventually, such tools could

e used for preoperative assessment of laryngeal disorders that
ffect speech and even for surgical planning.

Significant advances have been made in the development of
ethods for simulating flow-structure interaction in physiological

ystems. One class of commonly used methods is the so-called
rbitrary-Lagrangian–Eulerian �ALE� methods where the La-
rangian formulation of the Navier equation for solid dynamics is
olved in a coupled manner with the Eulerian formulation of the
avier–Stokes equation for flow. The vast majority of commercial
SI software employ the ALE method, and these have been used
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extensively in the biomedical research especially in the cardiovas-
cular modeling �1–7�. However, the ALE method requires the
simulation to be carried out on a body-conformal mesh, which has
to be modified via a suitable remeshing algorithm at every time-
step. Cases involving large-deformation and/or topological
changes of the boundary pose a severe challenge for the remesh-
ing procedure. Furthermore, the unstructured nature of the mesh
eliminates the use of powerful line-iterative and geometric multi-
grid techniques for the sparse-systems that are required to be
solved. Additionally, in order to provide robustness in the pres-
ence of distorted grids, the ALE based solvers also employ nu-
merical dissipation through “upwinding,” “stabilizers,” or addition
of “artificial-viscosity,” which tends to diminish natural flow in-
stabilities, spuriously damp vortex structures, and hide the effects
of under-resolution.

An alternate approach is to employ an immersed boundary
method �IBM� for the flow simulation. This type of method was
initially developed by Peskin �8� to simulate cardiovascular dy-
namics and this method and its variants �including the so-called
fictitious domain method� have since been used for a variety of
flow problems in engineering and biomechanics �9–15�. In this
type of method, the governing equations are solved on a fixed
Cartesian grid, which does not conform to the solid boundaries,
and this essentially eliminates the grid remeshing issues encoun-
tered with body-conformal grid methods. The structured nature of
the mesh also allows for the use of powerful line-iterative
schemes as well as geometric multigrid methods, which can pro-
vide rapid solution of the discretized equations. However, in this
type of method, a discrete delta function forcing term used to
model the effect of the boundary is spread across multiple grid
cells near the boundary and consequently produces a “diffuse”
fluid-solid interface. This diminishes the resolution of the bound-
ary layer and associated vortex dynamics and this can be undesir-
able at higher Reynolds numbers.

We have recently developed a highly versatile immersed
boundary method for simulating flow with complex moving/

deforming boundaries �16�. This method employs a multidimen-
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ional ghost-cell methodology in conjunction with a finite differ-
nce scheme to solve the 3D, unsteady, incompressible Navier–
tokes equations on a Cartesian grid. This methodology is
ategorized as being a “sharp-interface” method in that the impo-
ition of the no-slip, no-penetration boundary condition is local-
zed precisely on the immersed boundary and is not spread �or
iffused� artificially into the neighborhood of the boundary �11�.
he method also ensures second-order global and local spatial
ccuracy, and this, along with the sharp-interface treatment, pro-
ides for accurate modeling of the boundary layer. This method is
ondissipative and energy conserving, which is highly sensitive to
rid resolution, does not damp out natural flow instabilities, and
oes not spuriously damp out vortex structures.

The flow solution is only one-half of the FSI problem. Also
eeded is an appropriate technique for solving the solid dynamics,
s well as a way of coupling the two solution procedures. There
re a number of approaches available for modeling the solid dy-
amics as well as for coupling the solid and fluid phases in the
omputation. For instance, Luo et al. �17� developed a Cartesian
rid based immersed boundary method to solve the Navier equa-
ions for a viscoelastic solid and coupled it to the immersed
oundary solver of Mittal et al. �16�. The use of a Cartesian mesh
implifies the mesh generation problem significantly, and this is
he primary advantage of this method. The solid and the fluid use
ifferent Cartesian meshes, and these provide flexibility in choos-
ng a grid resolution that is appropriate for each phase. However,
he method is designed for small solid deformation and is not
asily extendable to large-deformation problems, which are rou-
inely encountered in biomechanics.

More recently, Zhao et al. �18� developed a Cartesian grid
ased method that solves FSI problems in a fully coupled manner.
single set of equations is solved on a single Cartesian grid that

overs both the solid and fluid phases, wherein body force terms
re used to model the elastic forces inside the fluid. The coupling
etween fluid and solid effected via transferring of surface stresses
rom the solid to the fluid. This approach has the advantage that it
an address large-deformation problems. However, as mentioned
efore, the method uses a single Cartesian mesh for solving both
he solid and the fluid. While this simplifies the computational

ethodology, it does not allow much flexibility in separately
hoosing the grid resolution for the fluid and solid phases. This
exibility is important if one would like to address a large variety
f FSI problems. Depending on the rigidity and other material
onstraints, the resolution requirements for the solid dynamics can
e very different from that of the fluid flow. Furthermore, many
olids, particularly those encountered in biology can have multi-
ayered, nonisotropic, nonhomogeneous structures, which require
pecial attention to the grid resolution. For instance, the vocal
olds have a three-layered structure �19�, which consists of a thin
uter layer �lamina propria�, an intermediate ligament layer, and
he internal muscle �vocalis� and appropriate resolution of each of
hese layers is required. Similarly, sometimes the flow may re-
uire significantly higher resolution than the solid due to, for in-
tance, the presence of thin boundary layers.

For such general FSI problems, a methodology is needed,
hich allows more flexibility in choosing the grid resolution for

he solid and fluids phases and also has the potential of being
xtended to large-deformation problems. The finite-element
ethod is the de facto standard for modeling in solid dynamics.
his method has been extensively used for a variety of solid dy-
amics problems and the limitations and capabilities of these
ethods are well understood �20�. It would therefore seem that an

mmersed boundary solver �for the fluid� coupled with a finite-
lement solver �for the solid� would provide all the requisite ca-
abilities for addressing a wide variety of FSI problems in biome-
hanics.

Motivated by this, we have coupled the sharp-interface im-
ersed boundary method with a finite-element solver that is ca-
able of solving for the deformation in viscoelastic solids. Since
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most biological materials show some degree of viscoelasticity,
including this capability is essential for these types of applica-
tions. The FE solver is coupled to the IB fluid solver via an ex-
plicit coupling scheme that is shown to be adequate for air-tissue
interaction problems encountered in phonation and respiration.
Furthermore, the current formulation is limited to small deforma-
tion but the underlying finite-element and fluid-solid coupling
methodologies could be extended to large deformations.

In the current paper, we present the salient features of the com-
putational methodology. Following this, we describe the use of the
method for a two-dimensional model of the human larynx. The
model is used to explore a number of issues associated with the
biomechanics of phonation including phonation onset, glottal jet
dynamics, and vocal fold stresses. Comparisons of computed re-
sults to existing data on phonation are made, wherever possible.
Finally, we show results from a 3D model of the human larynx,
which demonstrates the ability of the solver to eventually address
more realistic laryngeal models.

2 Numerical Method
In this section, we describe the key elements of the numerical

method that we have developed here including the immersed
boundary flow solver, the finite-element viscoelastic structural
solver, and the flow-structure coupling approach.

3 Immersed Boundary Flow Solver
The governing equations are the 3D, unsteady, incompressible

Navier–Stokes equations written in the primitive variable form

�ui

�xi
= 0 �1�

�ui

�t
+

�uiuj

�xj
= −

1

�

�p

�xi
+ �

�2ui

�xj � xj
�2�

where uj are velocity components in three directions, p is pres-
sure, and � and � are flow density and kinematic viscosity.

The Navier–Stokes equations are discretized in space using a
cell-centered collocated �nonstaggered� arrangement of the primi-
tive variables ui and p. The fractional step method of Van Kan
�21� is used to integrate the equations in time, which consists of
three substeps. In the first substep, a modified momentum equa-
tion is solved to get an intermediate velocity u�. A second-order
Adams–Bashforth scheme is employed for the convective terms
while the implicit Crank–Nicholson scheme is used to discretize
the diffusion terms to eliminate the viscous stability constraint.
The second substep requires the solution of the pressure correc-
tion equation, which is solved with a highly efficient geometric
multigrid method. Once the pressure is obtained, the velocity field
is updated to its final value.

The simulation employs a sharp interface immersed boundary
method based on a multidimensional ghost-cell methodology,
which has been described in detail in Mittal et al. �16�. In this
method, the body whose surface is described by triangular ele-
ments is immersed into a Cartesian volume grid. As shown in Fig.
1, the Cartesian cells are solid cells or fluid cells depending on
whether they are inside or outside the boundaries of the bodies.
This ghost-cell method proceeds by identifying the ghost cells
�denoted by GC�, which are solid cells, which have at least one
fluid cell neighbor. A “probe” is then extended from one of these
ghost cells onto an “image-point” �denoted by IP� inside the fluid
such that it intersects normal to immersed boundary and the
boundary intercept �denoted by BI� is midway between the ghost-
node and the image-point. Next, a bilinear interpolation �trilinear
in 3D� is used to express the value of a generic flow variable at the
image-point in terms of the surrounding nodes. Following this, the
value of the variable at the ghost-cell is computed by using a
central-difference approximation along the normal probe such that

the prescribed boundary condition at the boundary intercept is

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



i
p
s
l
f
s

w
8
i

m
b
a
O
o
r
b
T
a

4

w
b
d
m
u
a

w
A

f
t
r

J

Downlo
ncorporated. Using this procedure, the boundary conditions are
rescribed to the second-order accuracy, and this, along with the
econd-order accurate discretization of the fluid cells, leads to the
ocal and global second-order accuracy in the computations. The
ormulation for Dirichlet and Neumann boundary conditions are
hown as follows:

�IP = � �i�i �3�

�GC + � �i�i = 2�BI �4�

�GC − � �i�i = �l���

�n
�

BI
�5�

here � is the generic flow variable, i is from 1 to 4 �for 2D� or
�for 3D� and represents the ith surrounding node for IP, � is the

nterpolation weight, and �l is the probe length.
Since the equations are written in the Eulerian form, boundary
otion can now be included into this formulation by moving the

oundary at a given time-step, recomputing the body-intercepts
nd image-points, and then advancing the flow equations in time.
ne issue associated with a moving boundary case of these types
f methods is the so-called “fresh cell” problem �16,22�, which
efers to the cell that was solid cell at previous time-step and
ecame fluid cell at current time-step due to the boundary motion.
he method for treating such cell is described in detail in Mittal et
l. �16� and will not be repeated here.

Viscoelastic Structural Modeling
The governing equations are the Navier equations written as

�
�2di

�t2 =
��ij

�xj
+ �f i �6�

here i and j range from 1 to 3, � is the stress tensor, f i is the
ody force component in i direction, � is the density, and di is the
isplacement component in i direction. Assuming a Kelvin–Voigt
odel �23� for the viscoelasticity, which has been extensively

sed in modeling tissue �23�, the constitutive law between stress
nd strain can be written as

�ij = Cijkl	kl + Aijkl	̇kl �7�

here 	 is the strain tensor, 	̇ is the strain rate tensor, and C and
are fourth-order tensors corresponding to the material constants.
In the current method, a Galerkin formulation �20� is employed

or the finite-element method. This well established �20� formula-
ion employs virtual displacements to discretize Eq. �6� and rep-

Fig. 1 2D schematic describing ghost-cell methodology
esent it in terms of the nodal displacement as follows. The final

ournal of Biomechanical Engineering
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result of this formulation is the following second-order ordinary
differential equation for the nodal displacements:

M
�D̈� + C
�Ḋ� + K
�D� = F

t + F


b �8�

where M
�=�v�Nj�Ni
dv, C
�=�vAijklBkl�Bij
dv, and K
�

=�vCijklBkl�Bij
dv are the mass, damping, and stiffness matrices,
respectively, and F


t =�s��sNi
ds and F

b =�v�f iNi
dv are the

nodal traction and nodal body force, respectively. In the above
expressions, Ni
 is a predefined weight �or “shape”� function,
which connects the displacement di at any arbitrary point inside an
element through a weighted sum of the nodal displacement D
 as
follows:

di = �
=1

n
D
Ni
 �9�

where n is the total number of nodes of the element �three for
triangular and four for quadratic and tetrahedral elements�. The
M, K, and C matrices are obtained via an integration over the
different elements. The integration is simplified through the use of
isoparametric coordinates �20� Following this, Eq. �8� is dicretized
in time using a Newmark scheme �20�, leading to the following
dicrete equation:

�K +
1

��t2 M +
�

��t
C�Dn+1 = Fn+1 + M	 1

��t2Dn +
1

��t
Ḋn + � 1

2�

− 1�D̈n
 + C	 �

��t
Dn + ��

�
− 1�Ḋ

+ � �

2�
− 1��tD̈n
 �10�

where � and � are constants. We choose �=0.25 and �=0.5,
which results in a second-order accurate scheme in time. It should
be noted that the Newmark scheme is unconditionally stable �20�.

In order to reduce the memory requirement and improve the
computational efficiency, a banded LU decomposition is em-
ployed to solve Eq. �10�. Both Cuthill–Mckee �24� and Gibbs–
Poole–Stockmeyer �25� methods are used to re-index the nodes
and to find the smallest banded matrix.

Contact between bodies is a very common problem in mechan-
ics. This phenomenon is particularly relevant to the problem of
vocal fold vibration and phonation since the two vocal folds ex-
perience contact during each vibration cycle. In the current study,
a penalty coefficient method �20� is used to model vocal fold
contact. According to this method �20�, the contact force is mod-
eled as follows:

Fcontact =� �g � gdA �11�

where Fcontact is the contact force, A is the contact area, � is the
penalty coefficient �which is always positive�, and g is the pen-
etration distance. Thus, integrating the contact force over the con-
tact area creates a contact force that opposes penetration of one
vocal fold into another and is proportional to the penetration dis-
tance with � as the constant of proportionality. This integration is
performed using shape function Na for each surface element,
which intrudes into the contact plane. By choosing different val-
ues for �, one can enforce different types of contact with higher
values of �, leading to a “harder” contact condition. It should be
noted that high values of � enhance the stiffness of the resulting
system and can lead to additional constraints on the size of the
time-step. In the normal phonation, the structure and movement of
two vocal folds are nearly symmetric; thus, the contact almost
occurs at the glottal center plane. In the current study, to simplify
the situation, the contact condition is enforced on the glottal cen-
ter plane �Fig. 2�. It should be noted that in a more general case,

which the contact does not necessarily occur on the center plane,

NOVEMBER 2010, Vol. 132 / 111003-3
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ore sophisticated searching algorithms are required for the con-
act detection.

The finite-element solid solver has been validated for 2D and
D canonical cases and the details for these tests can be found in
heng �26�.

Flow-Structure Coupling
A flow-structure coupling scheme has to be implemented

hrough the surface mesh of the solid, which is comprised of
riangular elements. For the flow solver, no-penetration, no-slip
elocity boundary conditions are to be imposed �16�. According to
he ghost-cell methodology described in the earlier section, these
oundary conditions are applied at the boundary intercept points
IB�. The locations and velocities at these points are directly in-
erpolated from the surface nodal values of finite-element solu-
ion. For the solid solver, the traction has to be prescribed at the
uid-solid interface. The normal stress, as well as the shear stress,

s computed using a trilinear interpolation �bilinear interpolation
or 2D�, which is described in Ghias et al. �27�. Once pressure and
hear stress are computed at the surface nodal points, the total
orce on a given element is computed using the shape functions.

Usually, there are two coupling strategies for FSI, namely, loose
oupling and strong coupling. The major difference between loose
nd strong couplings is that they, respectively, integrate the gov-
rning equations of structure explicitly and implicitly in time. The
dvantage of the strong coupling scheme is that it is robust and
oes not usually introduce stability constraints over and above
hose that exist for the flow and solid solvers. However, strong
oupling usually requires an iterative procedure that can signifi-
antly increase the computational expense. On the other hand,
oose coupling may be subject to additional stability constraints
ut is computational inexpensive. It should be noted that the flow
olver used here employs explicit treatment of the convective
erms and is therefore subject to CFL type time-step constraint
17�. This precludes the use of large time-steps and might elimi-
ate the advantage of using a strong coupling scheme. If it can be
hown that loose coupling will not lead to severe stability con-
traints for the problem at hand, then such a scheme would be
deal for our simulations. We now perform a heuristic assessment
f the stability of the loose coupling scheme. For this analysis, we
hoose a flow configuration consisting of an elastically mounted
phere with negligible structural damping in a uniform potential
ow. This canonical problem shares many of the features typical
f FSI and the simplicity of the configuration makes it amenable
o analysis �Fig. 3�.

For the above configuration, an explicit coupling leads to the
ollowing equation for the motion of the structure in the stream-

ig. 2 2D illustration of contact force. The upper vocal fold
ntrudes into the center contact plane.
ise direction:

11003-4 / Vol. 132, NOVEMBER 2010
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MẌn+1 + KXn+1 = Fn �12�

where the fluid traction term Fn is computed using the previous
time-step and X is the location of the center of the sphere. If the
flow is assumed to be an incompressible potential flow, the fluid
dynamic load on the sphere in the streamwise direction is given
by �28�

F = − 2
3�a3� f�U̇B − U̇� + 4

3�a3� fU̇ �13�

where a is the radius of sphere, � f is the fluid density, U̇B= Ẍ is the

body acceleration, and U̇ is the free stream flow acceleration. The
first term of Eq. �13� is the so-called added mass force, which is
due to the sphere acceleration relative to the free stream. The
second term is the force due to the imposed free stream pressure
gradient. Assuming an explicit coupling between the flow and the
solid, for a steady free stream, the equation of motion for the
sphere becomes

4
3�a3�sẌ

n + KXn = − 2
3�a3� fẌ

n−1 �14�

where �s is the solid density. Using a central-difference scheme
for the acceleration terms, the resulting finite difference equation
is

4

3
�a3�s

Xn+1 − 2Xn + Xn−1

�t2 + KXn = −
2

3
�a3� f

Xn − 2Xn−1 + Xn−2

�t2

�15�

Assuming numerical error 	n at time-step n propagates as 	n
=
	n−1 leads to the following characteristic equation:


3 + �1

2

� f

�s
+ �t2�2 − 2�
2 + �1 −

� f

�s
�
 +

1

2

� f

�s
= 0 �16�

where �=�K / �4 /3�a3�s� is the natural frequency of the system.
The critia for a stable solution is



i
 � 1 for i = 1,2,3 �17�

which leads to the following constraint for the roots of the cubic
characteristic equation:

�1

2

� f

�s
+ �t2�2 − 2� = 

1 + 
2 + 
3
 � 3 �18�

�1

2

� f

�s
� = 

1
2
3
 � 1 �19�

�1 −
� f

�s
� = 

1
2 + 
2
3 + 
1
3
 � 3 �20�

These can be simplified to

�t2 �
1

2�2�10 −
� f

�s
�,

� f

�s
� 2,

� f

�s
� 4 �21�

We are particularly interested in air-tissue interaction, so if we

Fig. 3 Schematic flow past an elastically mounted sphere
assume that the tissue has a density equivalent to water, then for
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ir-tissue interaction, � f /�s��air /�tissue�1 kg /m3 /1000 kg /m3

0.001. Thus, the latter two conditions are easily satisfied. Fur-
hermore, for air-tissue interaction, the first constraint becomes
t��5 /� or �t�0.36�, where � is the time-period of the vibra-

ion. Given that we typically have O�1000� time-steps in each
ibration cycle, the above condition is also satisfied quite easily.
he above implies that the loose coupling scheme should work
uite well for the air-tissue interaction problem associated with
honation. Note that the above analysis neglects viscosity, which
ould potentially modulate the stability behavior. However, given
hat viscosity would likely provide additional damping to the FSI
ystem and that inviscid models have been used to predict basic
eatures of FSI in phonation, we expect that an inviscid analysis
ill provide a reasonable assessment of the numerical stability.
In the explicit coupling scheme adopted here, the flow is
arched by one step with the current deformed shape and veloci-

ies of the solid nodes as the boundary conditions. The aerody-
amic forces imparted on the VF are then calculated at this current
ocation of the vocal fold surface via an interpolation scheme on
he flow grid. Finally, the equation for the solid is marched by one
ime-step with the updated surface traction, and the deformation
nd velocities on the solid grid are interpolated onto the vocal fold
urface, so that the fluid/solid interface can be updated. This ex-
licit coupling is quite simple, robust, and efficient. Implicit cou-
ling can be easily implemented if needed by iterating between
he fluid and solid solvers at each time-step.

Computational Modeling of Vocal Fold Dynamics
uring Phonation
The FSI method developed here has been employed to investi-

ate the phonation problem, which results from a highly coupled
iomechanical interaction between glottal airflow and vocal fold
issue. In the past few decades, scientists have achieved various

Fig. 4 „a… A coronal view of CT scan of human
to match the key geometrical features in the C
inside an idealized geometric VF model based
current solver.

Table 1 Material properties of

�
�g /cm3�

Ep
�kPa� �p

Cover 1.043 2.041 0.
Ligament 1.043 3.306 0.
Body 1.043 3.990 0.
ournal of Biomechanical Engineering

aded 28 Dec 2010 to 128.220.159.1. Redistribution subject to ASME
degrees of success in modeling phonation. Approaches have in-
cluded inviscid, irrotational flow models �29,30�, lumped mass
vocal fold models �29–32�, and stationary �33� or specified vocal
fold motion �34,35�. However, these models have inherently low-
fidelity and able to capture limited characteristics of phonation. To
provide quantitative results for direct clinical diagnosis and treat-
ment, as well as the full understanding of the biophysics of pho-
nation, a higher fidelity FSI computational model is required. This
is the primary motivation for the current effort.

6.1 Model Setup. The dimension and geometry of the laryn-
geal model used here is based on a laryngeal CT scan of a 30 year
old male shown in Fig. 4�a�. The overall flow domain is a 12 cm
long by 2 cm wide channel. The true vocal folds �TVFs� are 1 cm
long and extend 0.99 cm toward the glottal midline. The false
vocal folds �FVFs� are 2.3 cm long and extend 0.67 cm toward the
supraglottal space. The ventricles are about 0.56 cm wide at their
widest location, and the false vocal fold gap is 0.667 cm.

The FVFs are modeled as rigid bodies since they do not move
during the normal phonation. The TVFs are viscoelastic bodies
with a complex three-layer structure shown in Fig. 4�b�. A 17,202
triangle mesh is used to represent the entire two-dimensional TVF.
The material properties of each layer are given in Table 1. Similar
properties were used in the past by Alipour et al. �36�. It should be
noted that the longitudinal Young’s modulus was not given by
Alipour et al. �36� due to the in-plain motion assumption. It was
shown by Cook et al. �37� that the longitude Young’s modulus
must be 104 times of in-plain Young’s modulus to produce the
equivalent vocal fold in-plain motion. Thus, in the current study,
the longitudinal Young’s modulus is set to be 104 times of in-plain
Young’s modulus. For the 2D simulation, a plain strain assump-
tion has been adopted and the material is assumed to be isotropic
with a Poisson’s ratio of 0.3 �17�.

For simulations of normal phonation, constant gauge pressures

ynx and the current flow domain that attempts
can. „b… Three-layer vocal fold inner structure
CT scan and triangular elements used in the

three-layers of the vocal folds

Epz
�kPa� �pz

Gpz
�kPa�

�
�P�

20,000 0.0 10 3
33,000 0.0 40 5
40,000 0.0 20 6
lar
T s
on
the

9
9
9
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f 1 kPa and 0 kPa are applied at the inlet and exit of the domain,
espectively, and these approximate typical physiological condi-
ions. A homogeneous normal gradient velocity boundary condi-
ion is also applied at the inflow and outflow boundaries. Finally,
o-slip and no-penetration boundary conditions are applied on the
alls and the flow-tissue interfaces �38�. A 289�256 Cartesian
rid is chosen for fluid mesh, which has a uniform grid in the
-direction and a nonuniform grid in the x-direction with a denser
rid in the vicinity of TVFs and FVFs �as shown in Fig. 5�.

In the simulation, a time-step corresponding to 3.5�10−3 ms is
mployed, which results in 1000–3000 time-steps in every vibra-
ion cycle for a typical phonation frequency between 100 Hz and
00 Hz. Three different studies are reported. The first two studies
re based on a 2D laryngeal model and the primary motivation
ere is to validate computed results both qualitatively and quanti-
atively against established models and experiments. The grid em-
loyed in the 2D simulation is based on our past experience in
imulating these flows and is subjected to grid refinement analysis
n previous studies �17,39�. The third and final study is based on a
D model of the vocal fold, where we demonstrate the ability of
he current method to compute three-dimensional details of the
ocal fold and glottal jet dynamics. The 2D simulations have been
arried on a single-node of a 1.96 MHz AMD Opteron™ worksta-
ion, whereas the 3D simulations are performed on up to 128
rocessors of a Cray XT5.

6.2 Computational Study of Phonation Onset. We first
resent results from a phonation onset study, where the subglottal
ressure is increased systematically from 0.1 kPa to 2.0 kPa �with
ntermediate values of 0.3 kPa, 0.5 kPa, 0.7 kPa, 1.0 kPa, and 1.5
Pa�. It is well known that the onset of sustained vocal fold vi-
rations occurs via a Hopf’s bifurcation �40� once the pressure
xceeds a critical value, and we attempt to reproduce this phe-
omenon with the current computational model. The computa-
ions indicate no sustained vibrations for 0.1 kPa and 0.3 kPa
ases, whereas all other cases exhibit such vibrations. Thus, the
honation onset threshold pressure is predicted to be between 0.3
Pa and 0.5 kPa. A similar range was reported by Baer �41�, who
onducted in vivo measurement on an excised larynx, as well as
itze et al. �42�, who employed a computation with a two-mass
ocal fold model coupled with a 1D Bernoulli equation. Thus, the
urrent modeling procedure gives results that are inline with es-

Fig. 5 Grid used in the current simulation. T
direction.
Fig. 6 Variation of fundamental fre
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tablished studies.
For all of cases for which sustained vibrations are achieved,

spectral analysis of the time-variation of the glottal gap-width is
employed to extract the fundamental phonation frequency F0. The
variation of fundamental frequency F0 versus subglottal pressure
Psub is shown in Fig. 6. Just above the threshold pressure, the
fundamental frequency is found to increase nonlinearly with sub-
glottal pressure but becomes nearly constant at higher subglottal
pressures. It should be noted here that the experimental study of
Titze et al. �42� indicates that the fundamental phonation fre-
quency increases with subglottal pressure when the subglottal
pressure is significantly larger than the normal phonation pressure.
However, a pressure-frequency relationship similar to what is ob-
served here was reported by Ishizaka �30� in one of his two-mass
model FSI studies using a linear spring. Thus, it is quite likely that
the reason that a behavior similar to Titze et al. �42� is not ob-
served in the current simulations due to the assumption of material
linearity. However, since the focus here is on investigating the
normal phonatory behavior, we consider the current model ad-
equate for this purpose.

6.3 Normal Phonation. In all of the current studies, the simu-
lations were continued until the vocal fold vibration reached a
stationary state with a limit-cycle type behavior. The characteris-
tics of this stationary state are then examined to further establish
the fidelity of the current modeling approach. Figure 7 shows the
time history of the glottal airflow volume flux, which clearly
shows that a stationary vibratory state has been established. The
flux shows a phonation frequency of 231 Hz, which is at the upper
end of the range associated with normal phonation in humans. The
average and peak values of the computed volume flux rate are
0.01619 m2 /s and 0.04328 m2 /s, respectively. If the vocal fold
length is assumed to be 2 cm, which would be typical of an adult
human, the average and peak volume fluxes are 322 ml/s and 865
ml/s, which are inline with in vivo measurement of excised laryn-
ges �43�. The typical value of the Reynolds number for human
phonation is around 3000 based on the peak volume flux rate
ReQ= �3 /2�Q /�a, where �a is the kinematic viscosity of air. How-
ever, as shown in the previous study �17�, the vibratory features of
the vocal folds are relatively insensitive to the Reynolds number.

figure shows every three grid points in each
he
quency with subglottal pressure
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hus, to alleviate the computational cost, the Reynolds numbers
mployed in the current study is reduced to 454 based on peak
alue of volume flux rate.

Figure 8 shows a sequence of instantaneous spanwise vorticity
ontours, which reveal the details of the flow dynamics during
honation. As the vocal folds open, the air is pushed out by the
ubglottal pressure into the supraglottal region, leading to the for-
ation of the so-called glottal jet. The interesting thing is that the

et shows noticeable asymmetry and may be deflected to one side
f the channel. This is a consequence of the strong flow recircu-
ation zones in the supraglottal region created in previous cycles,
hich tend to deflect the incipient glottal jet in one direction or

he other. The jet deflection is stochastic in nature and does not
how any regular cycle-to-cycle behavior. This phenomenon of
he so-called bimodal jet has been reported in several experimen-
al studies �44–46�, and further details of this phenomenon, along
ith the role of the false vocal folds in mitigating this bimodality,

re described in Zheng et al. �39�.
The mechanical stress in the vocal fold tissue is important since

ocal folds may experience fatigue and damage due to the exces-
ive localized stress, as well as due to cyclicality of the stress. In
xtreme cases, excessive and prolonged stress can cause laryngeal
athologies such as vocal fold nodules �47�. Thus, accurate com-
utation of the stress inside the vocal folds can help shed insights
nto such laryngeal pathologies. In Fig. 9, we show contours of

echanical stress in the two vocal folds at two extreme positions
uring the vibration cycle. When the vocal folds are fully ad-
ucted, the contact between the vocal folds produces a large com-
ressive stress �negative �yy� on the medial surfaces of the two
ocal folds while at the same time, high levels of elongation stress
positive �yy� occur at the root of ligament and the maximum

Fig. 7 Time variation of two-dimen
tionary vibration stage

Fig. 8 Contours of spanwise vorticity durin

„c… 0.3409 s, and „d… 0.3454 s
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shear stress �xy occurs on the root of vocal folds. At the maximum
abduction position, the shear stress becomes much smaller than
during the closing phase. The normal stress �yy is mainly com-
pressive during the opening phase and appears at the superior part
of the vocal fold body. The normal stress �xx is similar at the two
positions and is, in general, smaller than �yy.

7 3D Flow-Tissue Interaction
While the majority of computational laryngeal models em-

ployed in phonation studies are two-dimensional, the limitations
of these models have been well recognized for some time. In
particular, the 3D shape of the glottis and vocal folds are expected
to have a significant effect on the vibratory dynamics, which can-
not be captured in 2D models. Furthermore, 2D models cannot
accurately compute the transition to turbulence also, which usu-
ally occurs in the glottal jet and which is expected to modify the
flow characteristics significantly. In the current study, we have
developed a relatively simple 3D model by extruding the 2D
model 1.5 cm in anterior and posterior directions. The internal
three-layer structure was kept identical along the longitudinal di-
rection. The anterior, posterior, and lateral walls of true vocal
folds were fixed to represent the attachment to the cartilage. A
12�2.0�1.5 cm3 straight rectangular duct was used to mimic
the human airway. The locations of vocal folds and false vocal
folds inside the airway were kept the same as the 2D flow-tissue
interaction study. The subglottal and supraglottal pressures were
also kept the same as the 2D case, and no-slip boundary condi-
tions are applied on all of the walls. This simulation employs a
nonuniform 256�128�64 Cartesian grid for the flow solver and
a 58,427 tetrahedral element grid for the solid solver. While this

al glottal volume fluxes in the sta-

cal fold vibration: „a… 0.3384 s, „b… 0.3398 s,
sion
g vo
NOVEMBER 2010, Vol. 132 / 111003-7

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



m
p
m
g
o
t
t
t

I
s
s
v
F

1

Downlo
odel does not incorporate all the geometrical and structural com-
lexities of the human larynx, it represents a significant improve-
ent over the 2D model. Similarities between the 2D and 3D

eometries employed here also allow us to identify the key effects
f the inclusion of three-dimensionality. It should be noted that
he 3D model is computationally 30 times more expensive than
he 2D model, and this illustrates the challenge associated with
hese simulations �Fig. 10�.

This 3D simulation are carried out on 128 processors on an
BM iDataPlex cluster with Intel�R� Xeon�R� 2.66 GHz proces-
ors using and continued until the vocal fold vibration reached a
tationary state with a limit-cycle type vibration behavior. Each
ibration cycle requires 45 h of CPU time on 128 processors.
igure 12 shows the time history of the glottal airflow volume flux

Fig. 9 Contours of stresses „kPa… i
closed phases of the vibration cycle

Fig. 10 Flow domain in the 3D flow-

mesh for the true vocal folds

11003-8 / Vol. 132, NOVEMBER 2010
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for six vocal fold vibration cycles. The average and peak volume
fluxes are 118 ml/s and 300 ml/s, which are inline with in vivo
measurement of excised larynges �43�. The Reynolds number
based on the peak volume flux rate is 209. The vibration fre-
quency is 242 Hz, which leads to vibration period about 0.00413
s. If we define T as the period of vibration cycle, the maximum
flow rate occurs at about 0.4T �Fig. 11�.

Particular focus with this simulation is to determine the extent
to which the inclusion of three-dimensionality affects the glottal
jet. Figure 12�a� shows an isosurface of the swirl strength �48�,
which is used to identify vortex structures in flows. The plots
indicate that the glottal jet becomes highly three-dimensional in a
very early stage in its formation. The three-dimensionality in the

he vocal folds during the open and

ucture simulation and finite-element
n t
str
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lottal jet amplifies further as the jet develops into the supraglottal
egion and is characterized by a complex conglomeration of vor-
ex structures. The development of these three-dimensional vortex
tructures is the first stage in the transition to turbulence of the
lottal jet. As shown in the 2D simulation and other PIV experi-
ents �44–46�, the glottal jet exhibits a “bimodal behavior,”
hich has a prominent effect on flow impedance, turbulent char-

Fig. 11 Time variation of three-dim
tionary vibration stage

Fig. 12 Isosurface of swirl strength at six different time i
0.02625 s, „c… 0.02695 s, „d… 0.02765 s, „e… 0.02800 s, and „f…

Fig. 13 Isosurface of the turbulent kinetic energy correspo

energy at the center plane „z=0.75 cm…

ournal of Biomechanical Engineering
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acteristics, and vocal fold vibrations. This bimodal phenomenon
can also be clearly observed in this 3D simulation. In the particu-
lar cycles shown in Fig. 13�c�, once the jet flow exits the glottis, it
starts to deflect toward the lower false vocal fold �shown in Fig.
13�d��. In subsequent cycles, the jet stochastically deflects toward
one or the other false vocal folds.

To investigate the turbulence characteristics of the glottal jet,

ional glottal volume flux in the sta-

ants over one vocal fold vibration cycle: „a… 0.0245 s, „b…
2870 s

ng to a value of KT=0.15 and a contour of turbulent kinetic
ens
nst
ndi
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Fig. 14 „a… Five locations along the center line in X-Y plane chosen to perform the flow spectrum analysis. „„b…–„f……
Span-averaged streamwise velocity spectra: „b… point 1 „x=3.025 cm…, „c… point 2 „x=3.175 cm…, „d… point 3 „x
=3.325 cm…, „e… point 4 „x=3.575 cm…, and „f… point 5 „x=3.975 cm…. Dash-dot line - · - · - · - · - · - corresponds to k−5/3.
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e plot the distribution of the turbulence kinetic energy KT in Fig.
3. The turbulence kinetic energy is computed as

KT =
1

Ujet
2

1

2m�
�

t

t+m�

Vi�Vi�dt �22�

here � is the vibration period, m is the number of cycles over

hich averaging is done, Vi�=Vi− Ũi denotes the turbulent fluctua-

ion of velocity, Vi denotes the instantaneous velocity, Ũi is the
hase-averaged velocity �49,50� �which is 47 m/s for the current
imulation�, and Ujet is the peak jet velocity during the cycle. It
hould be noted that KT contains the effects of both the turbulent
uctuation, as well as the cycle-to-cycle deflection of jet. The
istribution of the turbulent kinetic energy shows that the turbu-
ence intensity is high in the region just downstream of the glottis
nd this is due to the rapid breakdown of the jet into small scale
ortex structures. In addition, KT also shows two lobes down-
tream of the false vocal folds, which are likely due to the jet
eflection. The peak value of the turbulent kinetic energy is found
o be 0.545.

In order to further understand the transition to turbulence in the
lottal jet, we examine the frequency spectra of the velocity in the
et core. Past experiments �45� indicate that the glottal jet has a
aminar core, which rapidly transits to turbulence further down-
tream. We have computed the frequency spectra at the five loca-
ions along the center line �shown in Fig. 14�a��. The spectra are
lso averaged along the spanwise direction in the core of the glot-
al jet.

Also plotted in the spectra is a line with a slope of −5 /3, which
epresents the inertial subrange. The plots in Figs. 14�b�–14�f�
how the clearest presence of a substantial inertial subrange at
ocation 4, indicating that the transition to turbulence occurs be-
ween locations 3 and 4. Thus, the current simulations allow us to
apture the phenomenon of transition to turbulence in the glottal
et.

Conclusions
A flow-structure interaction method has been developed, which

ouples a sharp-interface IBM with a finite-element method based
olid dynamics solver. The coupled method provides robust and
igh-fidelity solution for a highly complex FSI system such as
nvolving three-dimensional flows and viscoelastic solids. The FSI
olver is used to simulate flow-induced vibrations of the vocal
olds during phonation. Both two- and three-dimensional models
ave been examined and qualitative and quantitative comparisons
ith established results indicate that the solver is able to repro-
uce the salient features of phonatory dynamics. To our knowl-
dge, this is the first time a computational model has been used to
apture the phenomena of transition in the glottal jet. The solver is
urrently being used for detailed investigation of the dynamics in
realistic 3D laryngeal model and these results will be presented

n the near future.
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